ENVI监督分类与非监督分类
- 格式:docx
- 大小:2.95 MB
- 文档页数:18
实验四遥感图像的监督分类和⾮监督分类实验四遥感图像的⾮监督分类与监督分类⼀、实验⽬的1.⾮监督分类是对数据集中的像元依据统计数字,光谱类似度和光谱距离进⾏分类,在没有⽤户定义的条件下练习使⽤,在ENVI环境下的⾮监督分类技术有两种:迭代⾃组织数据分析技术(ISodata)和K均值算法(K-Means);2.分类过程中应注意:1)怎样确定⼀个最优的波段组合,从⽽达到最佳的分类精度,基于OIF和相关系数,协⽅差矩阵以及经验的使⽤来完成对最适合的组合的选取,分类效果的关键即在于此;2)K-Means的基本原理;3)Isodata的基本原理;4)分类结束后,被分类后的图像是⼀个新的图像,被分类类码秘填充,从⽽可以获得数据提取信息,统计不同类码数量,转化为实际⾯积,在得到后的图像上,可对不同⽬标的形态指标进⾏分析。
3.对训练区中的像元进⾏分类;4.⽤训练数据集估计查看监督分类后的统计参数;5.⽤不同⽅法进⾏监督分类,如最⼩距离法、马⽒距离法和最⼤似然法。
⼆、实验设备与材料1、软件ENVI 4.7软件2、所需材料TM数据三、实验步骤1.选择最优的波段组合ENVI主⼯具栏中File →Open image file →选择hbtmref.img打开→在Basic Tools中选择Statistics →Compute statistics选定原图,在Spectral subset中可选项全部选定→OK →OK →全选→保存→OK,则各类统计数字均可查;OIF计算,选择分类波段:1,2;2,3;1,3波段标准差分别为2.665727;3.473308;4.574609,和为10.713644。
Correlation Matrix 中1和2波段的相关系数0.964308,加上2和3波段的相关系数0.980166,再加上1和3波段的相关系数0.945880,最终等于2.890354。
⽤标准差相加的结果10.713644⽐上相关系数之和2.890354等于3.70668922。
对照原影像将30种类型进行编号并改名字,改变颜色;进行相同类别的合并:选择Classification中的分类后处理post classification,选择合并同类别Combine Classes,选择之前的非监督分类影像,在输入的文件中依次选择要合并的类,在输出的文件中选择相同的类别,点击Add Combination,所有的类别合并完后点击确定即可。
结果与分析1、各个样本之间的可分离性.说明哪些地物类型之间较易区分,哪些类型之间难以区分。
Jeffries-Matusita(J—M距离):水稻田水浇地河流居民地草地林地工业区裸地水稻田1。
99982。
00002.00002。
00001.95252.00002。
0000水浇1。
99982.00002。
00001.94941。
98902。
00002.0000Band0。
85 0。
90 0。
88 0.93 1.00 0.97 5Band0.90 0.93 0。
92 0。
92 0。
97 1。
00 63、最大似然法进行监督分类结果:原影像最大似然法进行监督分类结果监督分类的最大似然法分类结果中,主要的地物都可以被区分出来,地物分工业区94.7494.7418/1918/19裸地100.00100。
0042/4242/425、Clump Classes和Sieve classes结果:Clump Classes3*3处理结果:Clump Classes5*5处理结果:在聚类统计的结果上很容易看出原本监督分类的生成结果中严重的椒盐现象消失了,地物类型都相对完整,但有些细节已经被消除看不清楚,3*3窗口与5*5窗口生成的结果区别就在于3*3窗口的细节较5*5窗口的更加清楚具体, 5*5窗口将周边的面积较小的地物完全合并在一起.Sieve classes结果(Number of Neighbors设为8):Sieve classes结果(Number of Neighbors设为4):对影像的过滤分析生成的结果显得椒盐现象更加严重,结果影像上出现了很多小黑点,Number of Neighbors的值设置的越小,小黑点越密集,但是经过过滤分析的影像”孤岛”现象都已经消失。
非监督分类1、在ERDAS中裁剪出一部分的区域进行分类,利用AOI工具进行裁剪,另存裁剪的区域。
2、在ENVI中打开裁剪的区域dsb.img在Basic Tool菜单下Region of Interest工具打开ROI Tool新建类别名,由于裁剪的区域没有森林,所以共分五类:水体、耕地、城市、裸地、草地。
分别给予不同颜色。
3、在Zoom 窗口中进行采样即采集训练区。
采样前先判读熟悉影像,在采集样本时注意:采取训练区内颜色越纯越好。
4、采集完训练区后在Classification 菜单下选择Supervised ,利用Maximun Likelihood (最大似然法)进行非监督分类。
5、在分类中遇到的问题①进行第一次分类的结果是城市中的道路被归为了水体, 改进办法:更改城市的训练区样本,对城市的采样除了取建筑物的样本还应在城市的街道处采取几个样点,然后再进行第二次分类。
②第二次分类的结果是部分休耕(收割后)的耕地归为了城新建类别名市区域。
因为该影像是2000年9月14日的影像,故部分耕地已收割休耕,在原图上表现为规则的深紫色,我将其归为耕地。
改进方法:增加耕地的训练区的样本,在颜色为深紫色的的区域采取几个样本点作为耕地的训练区。
③第三次分类的结果是发现河流两岸的落地被归为了城市改进方法:增加裸地的训练区样本。
在河流两岸处选取几个样本做为裸地训练区。
第一次分类的结果:其中:水体耕地城市草地裸地第二次分类结果:其中:水体耕地城市草地裸地第三次分类结果:其中:水体耕地城市草地裸地。
影像的分类可分为监督与非监督分类。
监督分类器根据其原理有基于传统统计分析的、基于神经网络的、基于模式识别的等。
本专题以ENVI的监督与非监督分类的实际操作为例,介绍这两种分类方法。
有以下内容组成:∙ ∙ ●非监督分类∙ ∙ ●监督分类∙ ∙ ●分类后处理非监督分类非监督分类:也称为聚类分析或点群分类。
在多光谱图像中搜寻、定义其自然相似光谱集群的过程。
它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱(或纹理) 信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。
目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。
遥感影像的非监督分类一般包括以下6个步骤:图1 非监督分类操作流程1、影像分析大体上判断主要地物的类别数量。
一般监督分类设置分类数目比最终分类数量要多2-3倍为宜,这样有助于提高分类精度。
本案例的数据源为ENVI自带的Landsat tm5数据Can_tmr.img,类别分为:林地、草地/灌木、耕地、裸地、沙地、其他六类。
确定在非监督分类中的类别数为15。
2、分类器选择目前非监督分类器比较常用的是ISODATA、K-Mean和链状方法。
ENVI包括了ISODATA和K-Mean方法。
ISODATA(Iterative Self-Orgnizing Data Analysize Technique)重复自组织数据分析技术,计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元进行迭代聚合,每次迭代都重新计算均值,且根据所得的新均值,对像元进行再分类。
K-Means使用了聚类分析方法,随机地查找聚类簇的聚类相似度相近,即中心位置,是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的,然后迭代地重新配置他们,完成分类过程。
3、影像分类打开ENVI,选择主菜单->Classification->Unsupervised->IsoData或者K-Means。
实验三遥感图像的监督分类与非监督分类[实验目的]1.理解遥感图像的监督分的含义;2.会使用ENVI软件对遥感图像进行监督分类。
[实验原理]在遥感图像分类中,按照是否有已知训练样本的分类依据,分类方法又分为两大类:监督分类与非监督分类。
遥感图像的监督分类是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量、确定判别函数或判别式(判别规则),进而把图像中的各个像元点划归到各个给定类的分类。
遥感图像的非监督分类是在没有先验知识(训练场地)的情况下,根据图像本身的统计特征及自然点群的分布情况来划分地物类别的分类处理,事后再对已分出的各类的地物属性进行确认,也称作“边学习边分类法”。
两者的最大区别在于,监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来决定。
[实验步骤]一监督分类(数据采用njtmcorrected)监督分类技术需要在执行以前事先定义训练分类器(training classes), 训练分类器也可以用ENVI 感兴趣区(ROI)函数限定。
ENVI的监督分类技术包括平行六面体(平行管道)、最小距离、马氏距离、最大似然、波谱角度制图仪以及二进制编码方法1. “开始”->“程序”->RSI ENVI4.0->ENVI,打开ENVI4.0界面;2. 选择File > Open Image File.3. 当出现Enter Data Filename 对话框,选择要打开的文件名,再点击“OK”,在Available Bands List框里点击Load Band ,图像显示在图像显示窗口。
4. 选择“基本工具”->感兴趣区->ROI工具,弹出ROI Tool对话框。
5. 在ROI_Type菜单里选择建立感兴趣区的类型,可以选择Polygon、Polyline、point、Rectangle、Ellipse等类型。
6. 在Window栏里选择要建立感兴趣区的窗口,可以选择Image、Scroll、Zoom窗口。
实验五:监督分类与非监督分类一、实验目的采用监督分类对多光谱遥感图像进行分类,并对分类后的数据进行处理,处理方法包括:聚合(clump)处理、筛选(sieve)处理、并类(combine)处理,以及精度评估。
监督法分类需要用户选择作为分类基础的训练样区。
分析下面处理的分类结果,或者采用每个分类法默认的分类参数,生成自己的类,然后对分类结果进行比较。
我们将使用各种监督分类法,并对它们进行比较,确定单个具体像素是否有资格作为某类的一部分。
二、实验数据与原理美国科罗拉多州(Colorado)Canon市的Landsat TM 影像数据,其中包括can_tmr.img、can_tmr.hdr、can_km.img、can_km.hdr、can_iso.img、can_iso.hdr、classes.roi、can_pcls.img、can_pcls.hdr 、can_bin.img、can_bin.hdr 、can_sam.img、can_sam.hdr 、can_rul.img 、can_rul.hdr、can_sv.img、can_sv.hdr、can_clmp.img、can_clmp.hdr。
ENVI 提供了多种不同的监督分类法,其中包括了平行六面体(Parallelepiped)、最小距离法(Minimum Distance)、马氏距离法(Mahalanobis Distance)、最大似然法(Maximum Likelihood)、波谱角法(Spectral Angle Mapper)、二值编码法(Binary Encoding)以及神经网络法(Neural Net)。
三、实验过程:1、打开TM图像,File →Open Image File,选择ljs-can_tmr.img文件,在可用波段列表中,选择RGB Color 单选按钮,然后使用鼠标左键,顺次点击波段4、波段3 和波段2。
点击Load RGB 按钮,把该影像加载到一个新的显示窗口中。
ENVI中几种监督分类方法精度比较遥感图像的监督分类常用方法目前可以分为:平行六面体法,马氏距离法,最大似然法,神经网络法以及支持向量机法等。
文章将就以上所述的五种常用的监督分类方法在ENVI中分别对汶川县威州镇同一Landsat8 OLI数据进行土地覆盖与利用状况分类.比较各种方法的分类精度,并对之所产生的差异的原因进行浅析,进而对实际的生产以及应用做出借鉴。
标签:监督分类;平行六面体;神经网络;支持向量机;分类精度Abstract:The common methods of supervised classification of remote sensing images can be divided into:parallelepiped classifier method,Mahalanobis distance method,maximum likelihood method,neural network method and support vector machine method. In this paper,the land cover and utilization of the same Landsat8 OLI data in Weizhou Town,Wenchuan County are classified by the five common supervised classification methods mentioned above in ENVI. Comparing the classification accuracy of various methods,we made an analysis of the causes of the differences,and then identify their actual production and application.Keywords:supervised classification;parallelepiped;neural network;support vector machine;classification accuracy1 概述遥感图像的分类主要是利用计算机将遥感图像中的光谱和空间信息进行分析,提出不同地物之间的特征及边界,并利用一定的算法的各个像元划归到互不重叠的各个子空间之中。
基于监督分类的ENVI遥感技术概述1、监督分类1.1对监督分类的理解监督分类与非监督分类最本质的区别是在于是否有训练样区,训练区是通过人为的目视判读,光谱分析等方法提供给计算机,而计算机以训练区为基础,通过预先设定好的规则对图像进行分类。
所以影响监督分类的质量的因素有训练区的选取(人为因素)与分类方法的优劣(算法因素)。
判断分类质量的方法一般是混淆矩阵法,即通过比较分类结果与通过实地调查或者用地类型图得出的检验用的ROI,建立混淆矩阵,分析两者之间的差异,评价分类错分与漏分的几率而间接评价分类精度。
1.2训练样区的选择训练样区应选择在地物类型分布典型的地区,这样才不会导致错分的像元太多出现。
(例如最小距离法,如果将不典型的地物也选择进去,就会导致同种地物内部差异过大,也就是方差或者标准差偏大,就会使两种原本谱线就相近的地物产生交叉的地方,而在交叉的地方的地物就很有可能被错分)但是同时也不宜试图将差别过小的地物分开。
例如我的CIR图中植被也有分几个层次,有的颜色比较浅,有的颜色比较深,(如光谱收集图中红色和蓝色为较深色植被)但是由于图是位于城市内部,而不是天然的植被或者拥有连片的单一植被,就算能够将其分离也有可能是混合像元造成的,而且另一方面也会导致图像过于破碎,分布不集中等问题。
在训练样区的选择中,一般可以将地物分为水体、岩石(城市)、植被三大类,因为这三类的光谱差异最大,较容易且准确地分出来。
而结合实际图讨论的话。
我将水体继续分为纯净的海水、含沙的海水、河水、湖水及盐池(只有一片),其中为了效果不太混杂,除了盐池之外的其他水体都用blue显示,而颜色深度由水体含沙量决定。
(含沙量:含沙海水=河水>湖水>清洁海水),植被就分为普通植被和水体植被(水体富营养化),由于水体植被混杂了水体和植被两种光谱信息,所以差别也比较明显,而且只有在图幅左下角一部分鱼塘才有出现,也不会分出来过于破碎。
遥感图像的分类实验报告一、实验名称遥感图像的监督分类与非监督分类二、实验目的理解遥感图像监督分类及非监督分类的原理;掌握用ENVI对影像进行监督分类和非监督分类的方法,初步掌握图像分类后的相关操作;了解整个实验的过程以及实验过程中要注意的事项。
三、实验原理监督分类:又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。
它是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
非监督分类:也称为聚类分析或点群分类。
在多光谱图像中搜寻、定义其自然相似光谱集群的过程。
它不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱(或纹理) 信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。
目前比较常见也较为成熟的是ISODATA、K-Mean和链状方法等。
四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM第三波段影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。
鉴于实验内容及图像大小等问题,故从一景TM影像中裁取一个含有较丰富地物信息区域作为待分类影像。
五、实验过程1.监督分类1.1打开并显示影像文件,选择合适的波段组合加载影像打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,为了更好地区分不同地物以及方便训练样本的选取,选择5、4、3波段进行相关操作,点击Load Band 在主窗口加载影像。
1.2使用感兴趣区(ROI)工具来选择训练样区1)主影像窗口菜单栏中,选择Overlay >Region of Interest。
八、定义感兴趣区及分类主窗口—Classification:监督分类,非监督分类,决策树分类。
2)监督分类:按照分类以前自定义的样本进行分类。
2 样本选择:主影像窗口—Tools—Region Of Interest—ROI Tool 调出感兴趣区工具窗口进行样本选择,可以进行样本编辑(名称,颜色,填充方式等),样本选择越精确,分类结果越好。
2 选择分类方式:分类方式包括平行六面体法、最短距离法、马氏距离法、最大似然法、波谱角分类以及二进制编码法等,选择合适的分类方式。
2 引入影像—确定分类范围和波段—选择样本—给定阈值—确定存储路径和文件名—OK。
平行六面体法:用一条简单的判定规则对多波谱数据进行分类。
判定边界在图像数据空间中,形成了一个N维平行六面体。
平行六面体的维数由来自每一种选择的分类的平均值的标准差的阈值确定。
如果像元值位于N个被分类波段的低阈值与高阈值之间,则它归属于这一类。
如果像元值落在多个类里,那么ENVI将这一像元归到最后一个匹配的类里。
没有落在平行六面体的任何一类里的区域被称为无类别的。
最短距离法:用到每一个终端单元的均值矢量,计算每一个未知像元到每一类均值矢量的欧几里德距离。
所有像元都被归为最近的一类,除非限定了标准差和距离的极限(这时,会出现一些像元因不满足选择的标准,而成为“无类别”)。
马氏距离法:是一个方向灵敏的距离分类器,分类时用到了统计。
它与最大似然分类有些类似,但是假定所有类的协方差相等,所以是一种较快的方法。
所有像元都被归到最临近的ROI类,除非用户限定了一个距离阈值(这时,如果一些像元不在阈值内,就会被划为无类别)。
最大似然法:假定每个波段每一类统计呈均匀分布,并计算给定像元属于一特定类别的可能性。
除非选择一个可能性阈值,所有像元都将参与分类。
每一个像元被归到可能性最大的那一类里。
波谱角分类:(SAM)是一个基于自身的波谱分类,它是用n维角度将像元与参照波谱匹配。
遥感图像分类遥感图像的分类就是通过对遥感图像中地物的光谱信息和空间信息进行分析,选择特征,将图像中每个象元按照某种规则或算法划分为不同的类别,然后获得遥感图像与实际地物的对应信息,从而实现遥感图像的分类。
一般的分类方法可分为两类:监督分类和非监督分类。
将多源数据应用于图像分类中,发展成基于专家知识的决策树分类。
一、监督分类监督分类(supervised),又称训练分类法,即用被确认的样本象元去识别其他未知象元的过程。
已经被确认类别的样本象元是指那些位于训练区的象元。
在这种分类中,分析者在图像上对每一种类别选取一定数量的训练区,计算机计算每种训练样区的统计或其他信息,每个象元和训练样本作比较,按照不同规则将其划分到其最相似的样本类。
监督分类的算法主要有:平行算法、最小距离法、最大似然法等。
这里采用最大似然法作为监督分类的算法。
原理:最大似然法假设遥感图像的每个波段数据都是正态分布。
其基本思想是:地物类数据在空间中构成特定的点群;每一类的每一维数据都在自己的数轴上成正态分布,该类的多维数据就构成了一个多维正态分布;各类多维正态分布模型各有其分布特征。
根据各类已有的数据,可以构造出各类的多维正态分布模型,在此基础上,对于任何一个像素,可反过来求出它属于各类的概率,取最大概率对应的类为分类结果。
步奏:第一步:分析图像①打开图像,将图像以5、4、3波段合成RGB显示在#1中。
②通过目视分析,可以定义6类样本:水体、建筑、耕地、草地、荒地、其他。
第二步:选择训练样本①在主图像窗口选择Overlay-----Region of Interest,打开ROI Tool对话框。
②在ROI Tool对话框中设置相关样本的名称、颜色等。
③选择ROI_Type—Polygon,在window中选择image,在图像上绘制训练区。
④重复②、③步奏,最终完成以下结果:第三步:评价训练样本①在ROI Tool对话框中,选择Options——Compute ROI Separability,打开目标图像。
ENVI下的统计分析功能ENVI(Environment for Visualizing Images)是一种强大的遥感图像处理和分析软件,主要用于处理、分析和可视化遥感数据。
它提供了丰富的功能,包括图像显示、数据处理、分类、目标检测、变化检测和统计分析等。
在ENVI中进行统计分析可以帮助用户深入了解数据的特征和分布,以便更好地理解地表表现并获取有关遥感数据中特定特征或目标的信息。
ENVI的统计分析功能包括描述统计、空间统计和变化检测等。
下面将详细介绍ENVI的这些功能。
1.描述统计描述统计是通过计算数据的基本统计量来了解数据分布和特征的方法。
ENVI提供了一系列描述统计功能,如均值、中位数、标准差、最大值、最小值和直方图等。
用户可以通过这些功能,方便地计算和分析遥感数据的基本统计信息。
2.空间统计空间统计是基于地理位置进行分析的统计方法。
ENVI提供了各种空间统计工具,如空间自相关、空间平滑和空间插值等。
通过这些功能,用户可以对遥感数据进行空间分析和预测。
例如,用户可以使用空间自相关工具来探索数据的空间相关性,并生成空间局部自相关图,以了解数据在空间上的聚集和分散情况。
3.变化检测变化检测是一种通过比较不同时间或不同数据源的遥感图像来识别和分析地表变化的方法。
ENVI具有强大的变化检测功能,可以通过多种方法进行变化检测,如基于差值图像、基于指数差异和基于特征的变化检测。
用户可以使用这些方法将不同时间或不同数据源的图像进行比较,以找出地表变化的位置和类型。
4.数据分类ENVI提供了多种数据分类算法,可以将遥感数据划分为不同的类别。
这些分类算法包括监督和非监督分类。
监督分类算法需要用户提供一些训练样本,然后根据这些训练样本来分类整个图像。
非监督分类算法则不需要用户提供训练样本,它通过对整个图像进行聚类分析来确定类别。
用户可以根据自己的需求选择适当的分类算法,并根据分类结果进行统计分析。
5.数据可视化除了统计分析功能外,ENVI还具有强大的数据可视化功能。
envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程.它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。
使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。
遥感影像的监督分类一般包括以下6个步骤,如下图所示:详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理.这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。
启动ENVI5。
1,打开待分类数据:can_tmr。
img。
以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。
通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。
第二步:样本选择(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。
1)在Region of Interest (ROI) Tool面板上,设置以下参数:ROI Name:林地ROI Color:2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本.注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。
监督分类监督分类用于在数据集中根据用户定义的训练样本类别聚集像元。
训练样本类别是像元的集合或单一波谱。
在分类过程中,可以选择它们作为代表区域或分类素材。
区分:非监督分类仅仅用统计方法对数据集中的像元进行分类,它不需要用户定义任何训练样本类别。
监督分类的方法:1.基于传统统计分析分类器:平行六面体、最小距离、马氏距离、最大似然2.基于人工智能分类器:神经网络3.基于模式识别分类器:支持向量机、模糊分类监督分类的步骤:类别定义/特征判别——样本选择——分类器选择——影像分类——分类后处理——结果验证数据:以Landsat TM为数据源,影像can_tmr.img处理过程:一、样本选择:打开影像can_tmr.img后543波段显示,目视判断一下这个影像中地物大概分几类,可定义偏暗红色的为裸地,鲜绿色的为耕地,深绿色的为林地,白色的为沙地,沙地与林地之间的绿色的为草地,黑色的为阴影与水体定义为其他。
在主影像窗口菜单中点overlay----region of interests, ROI tool窗口就打开了,window 的方式点击zoom窗口,先定义一类ROI:裸地在缩放窗口中画裸地,画的图斑尽量小,分布尽量均匀。
划完裸地后,点击new region,定义新的种类,沙地、林地、草地、其他的定义和画法都同裸地一样。
得到如下结果:二、验证样本:在ROI tool对话框菜单点击options—compute ROI separability 计算ROI 可分离性,这是一种定量的方式来验证样本的方法。
还有一种定性的来验证样本的方法是N维可视化方法。
选择要进行可分离性计算的文件为影像can_tmr.img,点击OK点击把六组样本都选择,点击OK。
出现如下报告:红笔圈画区域数字代表两类样本的相近性,数字越大代表越不相近,两类样本越不好区分。
后面每一栏>1.8最好,所以我们需要修改林地和草地。
激活草地(表格中草地前面带星号),点击Goto,进行逐一删除后重新画样本。
TM影像的非监督分类1、首先打开ENVI 5.1,然后点击File/open ,打开待分类影像Can_tmr.img(这里以ENVI自带的参考影像为例),在Layer Manager 中右击图像选择Change RGB Bands改变显示波段5-4-3,之后选择进行影像分析,大体上估计影像主要类别的数量。
一般非监督分类的分类数量比最终分类数量多2—3倍为宜,这样有利于提高分类精度。
2、然后进行非监督分类,在软件右侧Toolbox/Classification /Unsupervised Classification,然后会看到两种非监督分类的方法,这里选择IsoData,在弹出的Classification Input File对话框中选择Can_tmr.img,如下图;注:分类器的选择——IsoData重复自组织数据分析技术,计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元进行迭代聚合,每次迭代都重新计算均值,且根据新均值,对像元进行再分类。
K-Means使用了聚类分析方法,随机地查找聚类簇的聚类相似度相近,即中心位置,是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的,然后迭代地重新配置他们,完成分类过程。
3、点击ok,弹出ISODATA Paramenters对话框,分类的数量Number of Classes:5-15(因为该幅影像最终想要分6类),迭代次数Maximum Iterations:20(迭代次数越多越精确,同样处理的也较慢),其他的阈值、最小像素、标准差等都保持默认设置就可以,然后选择输出路径和文件名,设置参数如下图:点击ok,软件开始分类,下图为自动分类后的图:4、然后进行类别合并,选择T oolbox/Classification/Post Classification/Combine Classes,在弹出的对话框中选择非监督分类后的影像点击ok,把同一类合并成一类,如下图,点击ok后,选择输出文件和Remove Empty Class 选择YES,可以得到结果。
选择classification/unsupervised/Isodata,选择子区为输入文件,,点击OK,设置参数如下图所示。
对照原影像将30种类型进行编号并改名字,改变颜色;进行相同类别的合并:选择Classification中的分类后处理post classification,选择合并同类别Combine Classes,选择之前的非监督分类影像,在输入的文件中依次选择要合并的类,在输出的文件中选择相同的类别,点击Add Combination,所有的类别合并完后点击确定即可。
原影像
最大似然法进行监督分类结果
监督分类的最大似然法分类结果中,主要的地物都可以被区分出来,地物分布也很清楚的展现出来,只是生成的结果又很严重的椒盐现象,分析可能是选取训练区时认为造成了误差。
缺点就是没有将结果中的颜色按照真实地物的颜色进行修改,下次
在聚类统计的结果上很容易看出原本监督分类的生成结果中严重的椒盐现象消失
但有些细节已经被消除看不清楚,3*3窗口与5*5窗口生成的
5*5窗口的更加清楚具体, 5*5窗口将周边的面积较
对影像的过滤分析生成的结果显得椒盐现象更加严重Number of Neighbors的值设置的越小,小黑点越密集
象都已经消失.
主要成分分析得到的结果较好,椒盐现象得到避免邻地物之间的合并,分析窗口越小,地物信息更加具体次要分析(kernal size为3*3):
利用次要成分分析的影像不但没有减轻椒盐现象,反而椒盐现象更加严重,未定义的黑点更密集,并且变得更大,效果很不好.
7、非监督分类结果:
在进行非监督分类的时候首先将地物分成了30类,然后人工进行识别分类后最终与监督分类结果一样合并成了8类,但是最后的效果并不是很好,在非监督分类一开始就将水稻田与林地分类到一起,最后生成的结果只能区分大致的地物分布,与监督分类结果相比,非监督分类结果更粗糙.。