频谱仪使用
- 格式:doc
- 大小:605.50 KB
- 文档页数:9
频谱仪基本使用方法
频谱仪是一种用于分析信号频谱的仪器,它可以帮助我们了解信号的频率成分和强度分布。
下面是频谱仪的基本使用方法:
1. 连接设备:将被测信号源通过信号线连接到频谱仪的输入端口。
确保连接正确并稳定。
2. 设置参数:打开频谱仪电源并调整显示屏的亮度和对比度。
根据需要,设置频谱仪的中心频率、带宽、参考电平、分辨率带宽等参数。
3. 调整参考电平:参考电平用于设定频谱仪的基准电平,可让功率值正确地显示在频谱图上。
可以使用手动或自动模式调整参考电平。
4. 选择观测模式:频谱仪一般有实时、扫描和跟踪等观测模式。
根据实际需要选择相应模式,并设置相应的参数。
5. 开始观测:开始进行观测前,确保频谱仪正在正常工作并已预热。
按下“Start”按钮或选择触发模式开始信号捕获和分析。
6. 分析信号:观测期间,可以调整参考电平、显示分辨率等参数以获取更清晰的频谱图。
可以使用光标功能来测量信号的频率、功率等参数。
7. 记录数据:观测结果可以通过截屏、保存数据或导出文件的方式记录下来,方便后续分析和比较。
8. 停止观测:观测完成后,按下“Stop”按钮停止信号捕获。
关闭频谱仪电源,断开与被测信号源的连接。
需要注意的是,具体频谱仪的使用方法可能会因品牌和型号的不同而略有差异,请在使用前仔细阅读设备的说明书或寻求专业人员的指导。
频谱仪使用注意事项及要求频谱仪是一种常见的测试仪器,用于测量和分析信号的频谱特性。
在使用频谱仪时,需要遵守一些注意事项和要求,以确保测试的准确性和安全性。
以下是一些常见的频谱仪使用注意事项和要求。
1.安全使用频谱仪频谱仪通常使用电源线连接电网供电。
在使用频谱仪之前,请确保电源线和插座没有损坏,并且插座的接地是可靠的。
在插拔电源线时,应当关掉频谱仪开关,并且插拔时要轻拿轻放,避免拔线时扯断电源线。
2.确保信号的正确输入频谱仪的测试结果受到输入信号的影响,因此需要确保信号输入正确。
在将被测信号连接到频谱仪之前,应当检查信号线路是否正确连接并且与测试设备的输入接口相匹配。
另外,也需要注意信号的幅度、频率范围和功率等参数,确保在频谱仪的规格范围内。
3.避免测试环境的干扰频谱仪通常用于测试信号的频谱特性,因此需要在良好的测试环境中进行。
在测试频谱时,应当避免强电磁干扰源的存在,例如高压电源、电动机、电焊机等设备。
同时,还需要避免测试场所附近有无线电干扰源,如无线电发射台、手机信号塔等。
这些干扰源可能会影响测试结果的准确性。
4.预热和校准频谱仪在使用前需要进行预热和校准。
预热时间通常需要几分钟,以使频谱仪的电子元件达到工作温度,以提高测量的准确性。
校准是为了消除频谱仪的系统误差,通常需要使用专门的校准器件进行校准。
定期的校准可以保证频谱仪的准确性和可靠性。
5.合理设置参数在使用频谱仪进行测试时,需要根据被测信号的特性合理设置参数。
例如,选择适当的触发模式、分辨率带宽、时间窗口等参数,以确保频谱分析结果的准确性和可靠性。
合理设置参数还可以提高测试效率,减少不必要的测试时间。
6.注意保养和维修总之,在使用频谱仪进行测试时,需要遵守一些注意事项和要求,以确保测试的准确性和安全性。
以上所提到的内容只是一些常见的使用注意事项和要求,请根据具体的频谱仪型号和厂家提供的说明书进行操作。
正确使用频谱仪可以提高测试的效率和准确性,有效地分析和解决信号的频谱特性。
手持式频谱仪使用说明
手持式频谱仪使用说明如下:
1. 首先,确保频谱仪已经充电并打开。
有些频谱仪可能需要安装电池,确保电池已经装好并且电量足够。
2. 调整频谱仪的设置。
频谱仪通常有一个液晶屏显示屏,可以用来调整各种参数,如频率范围、带宽、采样速率等。
根据需要,选择适当的设置。
3. 连接频谱仪的天线。
频谱仪通常配有一个天线接口,可以连接不同类型的天线。
根据具体情况,选择合适的天线并将其连接到天线接口上。
4. 扫描频谱。
使用频谱仪的扫描功能来监测并显示当前频率范围内的信号强度和分布情况。
一般来说,按下扫描按钮将开始扫描,并在屏幕上显示信号图形。
5. 分析频谱。
观察频谱仪的显示屏,可以看到各个频率的信号强度和分布情况。
可以利用这些信息来分析和识别不同的信号源,并确定其特征和属性。
6. 调整显示。
根据需要,可以调整频谱仪的显示设置,如图像亮度、对比度、颜色模式等,以获得更清晰和易于阅读的显示效果。
7. 记录数据。
根据需要,可以使用频谱仪的数据记录功能来保
存扫描结果和数据。
通常,频谱仪可以通过USB接口或无线连接与计算机或移动设备进行数据传输和存储。
8. 清理和保养。
使用频谱仪后,将其关机并断开电源。
定期清洁频谱仪的外壳和显示屏,避免灰尘和污垢的堆积。
注意避免强烈的物理冲击和水分进入频谱仪内部。
请在使用频谱仪前仔细阅读并遵守使用说明书中的注意事项和操作指南。
根据具体型号和品牌,频谱仪的使用方法可能会有所不同,因此按照实际情况使用。
频谱仪基本使用方法频谱仪是一种广泛应用于电子领域的测试仪器,用于测量和显示电磁信号的频率分布和强度。
频谱仪可以帮助工程师分析和调试无线电通信设备、音频设备、雷达系统等。
本文将介绍频谱仪的基本使用方法。
1.连接频谱仪:将频谱仪与待测设备连接。
通常,频谱仪的输入端口可以使用同轴电缆、光纤等方式连接。
根据待测设备的信号类型,选择合适的连接方式。
2.打开频谱仪:通常,频谱仪的电源开关位于仪器的前面板或后面板上。
按下电源开关,等待仪器启动完成。
3.设置测量参数:使用频谱仪的菜单或按钮设置仪器的测量参数。
主要参数包括中心频率、带宽、参考电平等。
根据实际需求设置参数,并确保参数设置正确。
4.观察频谱显示:频谱仪通常具有宽屏幕显示器,用于显示信号频率分布的图形。
观察频谱显示,可以直观地了解信号的频率特性和幅度分布。
5.调整分辨率带宽:分辨率带宽是频谱仪用于测量信号频谱的带宽范围。
根据需要,可以调整分辨率带宽以改变频谱显示的细节程度。
较宽的分辨率带宽可以显示更多的细节,而较窄的分辨率带宽可以提高频谱仪的测量速度。
6.设置跟踪方式:频谱仪通常具有多种跟踪方式,包括最大峰值、平均、正常等。
根据需要,选择合适的跟踪方式以获取所需的信号信息。
7.应用衰减器:如果待测设备输出的信号较强,为了避免频谱仪因输入过大而损坏,可以在输入端口处应用衰减器。
衰减器可以减小信号的强度,确保频谱仪的正常工作。
8.数据记录和分析:频谱仪通常具有数据记录功能,可以将测量数据保存到内部存储器或外部存储设备中。
保存的数据可以用于后续的分析和处理。
9.进行频谱扫描:通过设置起始频率和终止频率,可以使用频谱仪进行频谱扫描。
频谱扫描可以帮助工程师了解信号在不同频率点上的强度变化,从而得到信号的频率分布。
10.额外功能:在实际使用中,频谱仪通常还具有许多额外功能,如频谱拓展、峰值搜寻、频谱占用等。
根据实际需要,可以使用这些额外功能来进一步分析和处理信号。
频谱仪基本使用方法频谱仪是一种用于测量信号频谱的仪器。
它可以将信号的时域波形转换为频域图像,显示信号在不同频率上的能量分布情况。
频谱仪广泛应用于电子通信、音频处理、无线电频谱监测等领域。
下面将介绍频谱仪的基本使用方法。
1.连接设备将频谱仪与待测试的设备连接。
通常,频谱仪的输入端口使用BNC接口,需要使用合适的电缆将待测试设备的信号输入到频谱仪。
2.打开频谱仪并调整参数打开频谱仪的电源,等待其启动。
启动后,可以看到频谱仪的屏幕上显示了一片空白画面。
在进行测试之前,需要调整一些基本参数:-设置频谱范围:频谱范围表示频谱仪能够显示的频率范围。
根据需要,可以选择较小的范围以查看较细微的细节,或选择较大的范围以覆盖更广泛的频率范围。
-设置中心频率:中心频率表示频谱仪显示的中心频率。
可以根据需要设置中心频率。
-设置带宽:带宽表示频谱仪显示的频率范围的宽度。
较宽的带宽能够显示更广泛的频率范围,但会丧失分辨率。
-设置参考电平:参考电平表示频谱仪显示的参考响应电平。
可以根据需要设置参考电平,以确保显示的信号在合理的范围内。
3.观察频谱图像当参数设置完成后,可以开始观察频谱图像了。
频谱图像通常以柱状图的形式显示,横轴表示频率,纵轴表示信号的能量。
-可以观察到信号的频率分布情况,以及不同频率上的能量情况。
-可以通过调整带宽和参考电平来获得更好的观察效果。
-可以根据不同的需要选择不同的显示方式,如线性、对数等。
4.测量信号参数频谱仪除了可以显示信号的频谱图像外,还可以通过对信号进行一些测量,来获取更详细的信号参数:-峰值测量:可以通过设置峰值测量功能,自动检测并显示信号的最大峰值。
-带宽测量:可以通过设置带宽测量功能,自动测量信号的带宽。
-占空比测量:可以通过设置占空比测量功能,测量信号的占空比。
-谐波测量:可以通过设置谐波测量功能,测量信号的谐波含量。
5.导出数据频谱仪通常具备数据导出的功能,可以将测量得到的数据保存到计算机或其他设备中,以备后续分析和处理。
频谱仪的基本使用流程1. 连接准备•首先,确保频谱仪和电脑之间的连接正常。
可以通过USB接口或者以太网连接进行连接。
•检查频谱仪的电源是否正常,确保频谱仪已经开启。
•打开电脑上的频谱仪控制软件,准备开始频谱仪的使用。
2. 设置•在频谱仪控制软件中,选择连接方式,根据实际情况选择USB连接或以太网连接。
•在软件界面中,找到频谱仪的设置选项。
这些选项可能包括中心频率、带宽、扫描时间等设置。
•根据实际需求,对频谱仪进行相应设置。
可以参考频谱仪的使用手册进行设置。
3. 扫描频谱•进行频谱扫描之前,确保已经正确设置了频谱仪的参数。
•在频谱仪控制软件界面中,选择要扫描的频谱范围。
可以选择特定频率范围或者全频段扫描。
•点击开始扫描按钮,频谱仪将开始扫描并显示扫描结果。
•通过软件界面上的图表和数据,可以观察频谱中的各种信号和干扰。
4. 分析结果•分析扫描结果时,可以使用软件界面上提供的各种工具和功能。
•可以放大或缩小图表以更清楚地观察频谱中的细节。
•可以选择感兴趣的频谱区域,并进行标记或测量。
•分析结果可以保存为文件或者导出到其他应用程序进行更多的处理和分析。
5. 故障排查•如果扫描结果不符合预期,可能需要进行故障排查。
•检查频谱仪的连接是否正常,确认电源供应是否稳定。
•检查频谱仪的设置是否正确,特别是频率范围、带宽等参数。
•如果仍然无法解决问题,可以参考频谱仪的使用手册或者联系厂商的技术支持。
6. 其他功能•频谱仪通常还具有其他功能,可以根据实际需求进行使用。
•例如,频谱仪可能支持峰值检测、幅度补偿、信号记录等功能。
•可以参考频谱仪的使用手册或者进行进一步的学习,了解和使用这些功能。
以上就是频谱仪的基本使用流程。
根据实际需求进行连接准备、设置频谱仪参数,然后扫描频谱,分析结果,进行故障排查和使用其他功能。
通过频谱仪的使用,可以更好地了解和分析信号和干扰,为无线通信等领域的工作提供技术支持。
频谱仪使用方法详解
一、连接设备
1将频谱仪的电源线插入到电源插座,确保电源稳定可靠。
2.将频谱仪的测试天线连接到频谱仪的对应接口,一般常见的接口
为BNC连接器。
3.将频谱仪与其他设备的连接线连接好,例如与计算机的连接线、
遥控器的连接线等。
二、开机
1.打开频谱仪的电源开关,等待频谱仪进入正常工作状态。
2.调整频谱仪的各项参数,例如频率、带宽、分辨率等。
三、设置参数
1.根据测试需求,设置对应的参数,例如测试频率、扫宽、分辨率
等。
2.根据测试需求,选择对应的测试模式,例如频域模式、时域模式
等。
3.根据测试需求,设置对应的参考电平、耦合方式等参数。
四、测量信号
1.将测试天线放置在待测设备附近,确保能够接收到待测设备的信
号。
2.在频谱仪上观察信号的频谱图,根据信号的特征进行分析和判断。
3.根据测试需求,记录对应的测试数据,例如频率、电平等。
五、关机
1.关闭频谱仪的电源开关,断开电源线。
2.将测试天线和连接线整理好,以便下次使用。
在使用频谱仪的过程中,需要注意以下事项:
1.避免将频谱仪放置在高温、高湿、多尘、强磁场等环境中。
2.注意保持测试天线的清洁和稳定,避免测试结果的误差。
3.在测试过程中,避免对测试环境进行电磁干扰等影响。
4.在使用频谱仪前,请仔细阅读说明书,了解频谱仪的使用方法和
注意事项。
5,若遇到测试问题,可以联系专业人员进行咨询和解决。
频谱仪基本使用方法频谱仪是一种用于测量信号频谱的仪器,广泛应用于无线通信、音频、视频、雷达等领域。
本文将介绍频谱仪的基本使用方法,包括设置测量参数、观察信号频谱、分析信号特征等。
一、设置测量参数1.首先,插入电源线并打开频谱仪的开关。
2.设置中心频率:通过旋转频谱仪上的中心频率控制按钮,可以设置要观察的信号所在的中心频率。
3.设置带宽:使用带宽控制按钮可以设置频谱仪的测量带宽。
带宽越大,可以显示的频率范围越广。
4.设置扫描时间:通过扫描时间设置按钮可以设置频谱仪的扫描时间。
较长的扫描时间可以更好地显示信号的频谱特征。
5.设置参考电平:参考电平是用来调整频谱仪的显示范围的。
通过参考电平控制按钮可以调整信号的显示幅度。
二、观察信号频谱1.连接输入信号:将要测量的信号源与频谱仪的输入端口连接。
2.使频谱仪进入扫描模式:按下开始扫描按钮使频谱仪进入扫描模式,开始对输入信号进行测量。
3.观察频谱显示:在频谱仪的显示屏上,可以看到输入信号的频谱特征图。
频谱图一般以频率为横坐标,幅度为纵坐标显示。
4.调整显示参数:可以根据需要调整频谱仪的显示参数,如中心频率、带宽、参考电平等,以便更好地展示信号的频谱特征。
三、分析信号特征1.寻找信号峰值:在频谱显示图上,可以通过观察峰值点来查找信号的频率分布情况。
峰值一般表示信号的主要频率分量。
2.计算信号带宽:可以通过测量频谱图上信号的半功率带宽来计算信号的带宽。
半功率带宽是指信号功率下降到峰值功率的一半时的频率范围。
3.分析信号幅度:通过观察信号在频谱图上的幅度,可以了解信号的强弱情况。
信号幅度一般在频谱图上以颜色深浅表示,颜色越深表示信号越强。
4.检测杂散和谐波:利用频谱仪可以监测杂散和谐波的频率和幅度,以便进行相关的干扰分析和调整。
四、其他常用功能1.记录和保存数据:一些频谱仪具有数据记录和保存功能,可以将测量的频谱数据保存到内存或外部存储设备中,方便后续分析和比较。
频谱仪的使用方法频谱仪是一种用于测量信号频谱组成的仪器。
它可以将信号的频率范围分解成不同频率的振幅分量,从而提供了许多有关信号特征的重要信息。
这里我将为您详细介绍频谱仪的使用方法。
使用频谱仪的第一步是连接输入信号。
频谱仪通常具有一个输入端口,您可以将待测信号通过信号源或其他仪器连接到该端口。
为了确保准确的测量结果,您应该使用适当的信号线缆以及连接器。
信号线缆的选择要针对输入信号的频率范围和阻抗匹配进行考虑。
在连接好输入信号之后,您需要设置频谱仪的参数。
这些参数包括信号的中心频率、分辨率带宽、时间或频率的测量范围等。
中心频率是指频谱仪所关注的主要信号频率,而分辨率带宽则是指频谱仪在分析频谱时所采用的带宽。
根据您的具体需求,您可以选择不同的参数配置来获得所需的测量结果。
接下来,您需要进行频谱测量。
频谱仪通常提供了多种测量模式,包括峰值模式、平均模式、最大持续测量等。
在选择测量模式之前,您应该了解您需要获取的信号特征以及对测量结果的要求。
例如,如果您关心信号的峰值振幅,并希望测量结果具有较高的信噪比,则可以选择最大持续测量模式。
进行测量时,您可以通过观察频谱仪的显示屏来获取结果。
频谱仪的显示屏通常以图形的形式呈现信号频谱的振幅分量。
您可以看到信号的频率范围以及相应的振幅值。
频谱的横轴通常表示频率,而纵轴表示振幅。
根据您的设备和测量设置,您可以调整显示的范围和分辨率,以便更好地观察和分析信号。
在获取测量结果后,您可以进行进一步的数据处理和分析。
频谱仪通常提供了多种数据输出和分析功能,如保存数据、采集数据的统计信息、导出数据等。
这些功能使您能够更充分地利用和应用测量结果。
最后,您还应该注意使用频谱仪时的安全问题。
例如,当您测试高功率信号时,应该确保频谱仪的输入端口具有足够的能力来承受这些信号。
此外,应该遵循频谱仪的操作说明,以确保使用过程中没有人身伤害或设备损坏的风险。
总结起来,频谱仪是一种用于测量信号频谱组成的重要仪器。
频谱仪使用方法范文频谱仪是用来检测和显示信号频谱分布的仪器。
它可以将各种频率的信号进行分析,并以图形的形式显示出来。
频谱仪广泛应用于无线通信、电视、广播、音频等领域,以下是频谱仪的使用方法。
1.频谱仪的基本构成频谱仪一般由前端收集电路、混频器、数据转换器、数学处理器和显示器等组成。
前端收集电路负责将被测信号引入频谱仪,混频器负责将高频信号转换成低频信号,数据转换器将模拟信号转换成数字信号,数学处理器对数字信号进行处理,最后在显示器上显示频谱。
2.准备工作首先要确保频谱仪的工作状态良好,接通电源后进行自检。
如果自检通过,检查传感器和输入输出端口是否连接正常。
接下来,根据被测信号的特点和要求,调整和设置频谱仪的相关参数,包括中心频率、带宽、分辨率等。
3.设置测量范围根据被测信号的特点,设置合适的测量范围。
如果被测信号的幅度较小,可以选择较小的测量范围,以充分利用测量范围的动态范围,提高测量精度。
4.设置分辨率带宽分辨率带宽是指频谱仪对信号频率的分辨能力。
较小的分辨率带宽可以提高频谱仪的分辨率,但同时也会降低频谱仪的灵敏度。
在设置分辨率带宽时需要根据被测信号的特点进行适当调整。
5.设置中心频率和扫描范围中心频率是指频谱仪所测量信号的中心频率,扫描范围是指频谱仪所测量信号的频率范围。
根据被测信号的频率范围和特点,设置合适的中心频率和扫描范围,使得被测信号能够完整地显示在频谱仪的显示屏上。
6.选择垂直和水平刻度在频谱仪的显示屏上,垂直轴表示信号的幅度,水平轴表示信号的频率。
根据被测信号的幅度和频率范围,选择合适的垂直和水平刻度,以保证被测信号能够完整地显示出来。
7.进行测量和分析设置好各种参数后,可以进行频谱测量和分析了。
观察频谱仪的显示屏,根据显示结果进行信号分析。
可以通过观察信号的幅度、频率和分布情况来判断信号的质量和稳定性。
8.存储和导出数据频谱仪一般可以将测量结果保存起来,以便后续的分析和处理。
可以将数据存储在频谱仪的内存中,也可以通过连接计算机或其他存储设备进行数据导出。
频谱分析仪系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多工扫描器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(Periodic Random Waves)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(Switching Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系.影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-Shaped Filter),影响的功能就是量测时常见到的解析频宽(R BW,ResolutionBandwidth).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RB W密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念.频谱分析仪的使用一、什么是频谱分析仪在频域内分析信号的图示测试仪。
以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y轴表示信号幅度。
二、原理:用窄带带通滤波器对信号进行选通。
三、主要功能:显示被测信号的频谱、幅度、频率。
可以全景显示,也可以选定带宽测试。
四、测量机制:1、把被测信号与仪器内的基准频率、基准电平进行对比。
因为许多测量的本质都是电平测试,如载波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。
2、波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。
如DG、DP、CLDI、调制深度、频偏等。
五、操作:(一)硬键、软键和旋钮:这是仪器的基本操作手段。
1、三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。
按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。
旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。
2、软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。
3、其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USE R测量/用户自定义、SGL SWP信号扫描。
光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。
控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。
在数字键区有一个B KSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。
大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。
大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。
(二)输入和输出接口:位于一起面板下边一排。
TV IN测视频指标的信号输入口;VOL INTEN是内外一套旋钮控制、调节内置喇叭的音量和屏幕亮度;CAL OUT仪器自检信号输出;300Mhz 29dBmv 仪器标准信号输出口;PROBE PWR仪器探针电源;IN 75Ω1M—1.8G测试信号总输入口。
(三)测试准备:1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:直流25V,交流峰峰值100V。
2、预热:测试须等到OVER COLD消失。
3、自校:使用三个月,或重要测量前,要进行自校。
4、系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。
内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。
配置步骤:按MODE键——CABLE TV ANALYZER软键——Setup软键,进入设置状态。
细节为tune config调谐配置:包括频率、频道、制式、电平单位。
Analyzer inpu t输入配置:是否加前置放大器。
Beats setup拍频设置、测CTB、CSO的频点(频率偏移CTB FRQ offset、CSO FRQ offset)。
GATING YES NO是否选通测试行。
C/N setup载噪比设置:频点(频率偏移C/N FRQ offset)、带宽。
频谱分析仪原理频谱分析仪基本原理实现框图频谱分析仪对于信号分析来说是不可少的。
它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。
下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。
科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。
通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。
但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。
从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。
这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。
这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。
有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。
这一点是非常重要的。
对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。
在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。
这些信号都要从频谱分析的角度来得到所需要的参数。
从技术实现来说,目前有两种方法对信号频率进行分析。
其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。
我们把这种方法叫作动态信号的分析方法。
特点是比较快,有较高的采样速率,较高的分辨率。
即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。
但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。
目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。
是矢量分析。
这种分析方法一般用于低频信号的分析,如声音,振动等。
另一方法原理则不同。
它是靠电路的硬件去实现的,而不是通过数学变换。
它通过直接接收,称为超外差接收直接扫描调谐分析仪。
我们叫它为扫描调谐分析仪。
在工作中通常所用的HP-859X系列频谱仪都是此类的分析仪。
其优点是扫描调谐分析法受器件的影响,只要我们把器件频率做得很高,其分析能力就会很强。
目前的工艺水平,器件可达到100GHz,最高甚至可做到325GHz。
其频率范围要比前一种分析方法大很多。
只是在达到较高分辨率时,其分析测量的时间会有所增加。
在实际工作中,无线信号卫星信号的监督,由于其频率很高,都是采用扫描调谐的方式。
它所能给我们的信息没有相位参数,只有幅度、频率。
它是一种标量的分析方法。
另外,这种方法有很高的灵敏度,它受到前端扫描调谐器件的控制,还有很高的动态范围。
下面我们着重介绍一下扫描调谐分析仪的基本原理,从图2中,我们不难看出,它是用超外差接收机的方式来实现频谱分析的。
最基本的核心部分是它的混频器。
基本功能是将被测信号下变至中频21.4MHz,然后在中频上进行处理,得到幅度。
在下变频的过程中,是由本振来实现下变频的。
本振信号是扫描的,本振扫描的范围覆盖了所要分析信号的频率范围。
所以调谐是在本振中进行的。
全部要分析的信号都下变频到中频进行分析并得到谱频。
这与日常所用的电视机、收音机的原理是一样的。
但是有线电视输出信号范围很广,比如有50个频道播放。
这50个信号是同时进入接收机的,其总功率是迭加的。
而所看的电视节目只能是其中之一。
同理,送入频谱仪的输入端口信号是所采集信号的总和,其中包括所要分析的特定信号,所输入到频谱仪的功率是总功率。
由此要引入一个参数-最大烧毁功率。
这一值是1瓦或是+30dBm。
也就是说输入到频谱仪的信号功率总和不能超过1瓦,否则将会烧毁仪器的衰减器和混频器。
例如,我们要监测一个卫星信号,假设其频率为12GHz,其功率可能只有-80dBm左右,这是很小的。
但要知道输入信号是由很多信号迭加组成的,若是在其它某一频率上包括一个很强的信号,即使你没有看到这个大功率信号,若输入信号功率的总和大于1瓦,也是要烧毁频谱仪的,而其中的大功率信号并不是你所要分析的信号。
这是我们在日常工作中需多加小心的,因为更换混频器的费用是很高的。
当然,频谱仪在输入信号时并没有直接将其接入混频器,而是首先接入一个衰减器。
这不会影响最终的测量结果,完全是为了仪表内部的协调,如匹配、最佳工作点等等。
它的衰减值是步进的,为0dB、5dB、10dB,最大为60dB。
还有的频谱仪是不能输入直流的,否则也会损坏器件。
另外,还应注意不能有静电,因为静电的瞬时电压很高,容易把有源器件击穿。
日常工作中把仪表接地就会有很好的效果,当然要有保护接地会更好。
在中频,所有信号的功率幅度值与输入信号的功率是线性关系。
输入信号功率增大,它也增大,反之相同。
所以我们检测中频信号是可行的。
另外,为了有效检测,要有一个内部中频信号放大。