复杂结构弹塑性时程分析
- 格式:pdf
- 大小:372.00 KB
- 文档页数:9
动力弹塑性时程分析技术抗震应用阐述高层建筑是当前建筑的主要形式,新材料、新技术的应用使得建筑质量提高,功能越来越齐全。
但其结构设计也更复杂,施工难度加大,因此对其抗震施工技术提出了更高的要求。
高层建筑的投资数额较大,周期也相对较长,而动力弹性时程分析技术是一项综合性较强的技术工作,涉及每一个环节,一旦出现问题,必将影响到施工质量。
从而延误工期,甚至引发安全事故,带来严重的损失。
所以,在施工过程中,必须加强建筑结构抗震设计中对动力弹塑性时程分析技术的应用,进而保证及时解决潜在的隐患。
1.动力弹塑性时程分析技术概述弹塑性时程分析方法可以有效的将结构作为弹塑性振动体系进行相应的分析,并通过对地震波数据在地面运动中的输入应用,可以有效的进行下一步的积分运算,进而可以得出地面加速度随着时间的变化而发生的变化,同时,还可以得出结构的内力与变形随着时间的变化而变化的整个过程。
动力弹塑性时程分析技术的应用通常有以下几个步骤:第一,通过对几何模型的建立,进而实现网格的划分工作;第二,对材料的本构关系进行确定,并根据各个构件自身的单元类型及材料类型的确定,进而对结构的质量、刚度及阻尼矩阵进行确定;第三,根据本场地的地震波,并对模型的边界条件进行定义,进而得出相应的计算结果;第四,根据计算所得出的结果进行进一步的处理工作,并根据处理的结果进行结构整体性可靠度的评估。
2 高层建筑动力弹塑性时程分析技术管理现状2.1材料设备管理中的问题材料是建筑的基础,现代化高层建筑用途不同,所用的材料也千差万别,加上各种新型材料日新月异,种类繁多,管理十分复杂。
如果购置时质检把关不严、储存方式不合理,很容易出现材料不能及时供应等情况,或导致材料性能下降,或与工程技术要求不相符。
各项机械设备、电气设备也是施工中不可或缺的元素,由于制度不健全、监督不严,存在着违规操作等不规范行为,这就导致动力弹塑性时程分析技术在实际的工程施工过程中不能得到有效的反应。
第47卷第5期2014年5月土木工程学报CHINA CIVIL ENGINEERING JOURNALVol.47May No.52014基金项目:北京市自然科学基金(8122040)作者简介:温凌燕,博士,高级工程师收稿日期:2012-02-14结构大震弹塑性时程分析中的能量反应分析温凌燕1娄宇1聂建国2(1.中国电子工程设计院,北京100142;2.清华大学,北京100084)摘要:采用ABAQUS 对23个钢管混凝土框架-钢筋混凝土核心筒结构分析模型进行了大震弹塑性时程分析,分析模型变量为楼层总高度、地震波及地震波峰值加速度。
通过对23个分析模型中得到的各种能量项数值的统计与分析,结合现行规范中结构损伤程度的评估标准,对输入能与地震加速度及结构损伤程度的关系、不同结构损伤程度下塑性耗能在构件中的分配、阻尼耗能比例和塑性耗能比例与结构损伤程度的关系进行了研究。
研究成果为能量法在结构地震反应中的应用及钢管混凝土框架-核心筒结构体系的设计提供参考。
关键词:大震;弹塑性时程;输入能;塑性耗能;阻尼耗能;结构损伤;钢管框架-核心筒中图分类号:TU375.4文献标识码:A文章编号:1000-131X (2014)05-0001-08Energy-based analysis in elastic-plastic time-history analysisof structure under large earthquakeWen Lingyan 1Lou Yu 1Nie Jianguo 2(1.China Electronics Engineering Design Institute ,Beijing100142,China ;2.Tsinghua University ,Beijing100084,China )Abstract :Elastic-plastic time history analyses of 23CFST frame-reinforced concrete core wall structure models under large earthquake have been conducted by using ABAQUS ,and the studied model variables include the total structural height ,earthquake wave and peak acceleration of wave.Based on the statistical analysis of the energy items from 23examples and combined with the evaluation standard on structural damage degree in the present specifications ,the relation between input energy and wave acceleration or structural damage degree ,distribution of plastic energy dissipation in structural members under different structural damages ,relations between the ratio of damping energy dissipation or plastic energy dissipation to input energy and the structural damage have been studied.Research results may provide references for the application of energy analysis method in structural seismic analysis as well as the design of CFST frame-core wall structures.Keywords :large earthquake ;elastic-plastic time-history ;input energy ;plastic energy dissipation ;damping energy dissipation ;structure damage ;CFST frame-core wall E-mail :wenlingyan@ceedi.cn引言结构地震反应的能量分析方法是一种能较好地反映结构在强震作用下的全过程及其自身弹塑性性能的方法。
弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。
基本原理多自由度体系在地面运动作用下的振动方程为:式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。
将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。
式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。
动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。
基本步骤弹塑性动力分析包括以下几个步骤:(1) 建立结构的几何模型并划分网格;(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。
计算模型在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。
在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。
以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。
其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。
它的主要优点有:(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响;(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。
PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。
几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。
与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。
但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。
《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。
下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。
1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。
以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。
在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。
图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。
建筑结构爆破地震反应弹塑性精细时程分析[摘要]根据爆破的地震影响下的建筑的结构安全方面评价的分析,提出使用时程的分析方式进行整体的评价爆破方面的地震波安全程度,成立比较精确的结构弹塑性方面的动力研究结构的方式,制定了建筑结构中的爆破地震的反应中弹塑性的时程研究过程。
本文就建筑机构爆破地震反应弹塑性精细时程进行分析。
[关键词]建筑结构爆破地震弹塑性精细时程中图分类号:tu973.2 文献标识码:a 文章编号:1009-914x (2013)10-0129-01建筑的结构在爆破的地震波的影响中作出的安全评价长久以来都是人们非常重视的问题。
一些爆破的安全制度中也有很的明确规定,要将爆破的地震波动频率的峰值进行安全地振动的速度要求,但是地震波动的速度与主要频率的选择和采用都有着很大的困难。
现在所设计的结构都是根据抗震的规则来进行预防的设置的,但爆破的地震和自然的地震还是有着非常明显的不同。
必须采用时程的分析研究,才可以精准地断定爆破地震的状况下,结构产生动力的反应,从而进行全方位爆破震波的安全性的评估。
爆破的振动产生的破坏其实就是动态的随机的破坏情况。
从动力学的角度研究结构振动的动力反应,这个已经是分析振动对结构造成破坏的有效途径。
使用成熟一点的响应谱的理论方式来研究结构体处在不一样的动力环境中的爆破振动的反应,并且得到了一些成果。
但是,响应谱的理论是根据单个的自由程度系统的弹性的动力进行研究,不可以完全地表现出爆破时地震波对多个自由度的系统弹塑性的动力特点。
将实际测量的爆破的地震记录与爆破的震波模仿当作基础,通过时程的研究方式与有限元的原理研究结构将进行爆破震波与自然震波的环境中所出现的动力反应的不同。
但这样的方式都差分近似,并且对时间都特别地敏锐,并且精确度也不够高,在计算的时候会遇到一些问题。
1、结构的爆破地震响应中弹塑性的动力研究(一)结构中爆破地震响应中弹塑性的动力研究通过爆破的地震波的影响,结构体通常会从弹性的形态步入到弹塑性的形态,分析弹塑性的结构系统在爆破的地震环境里面的动力影响是非常有价值的,使用机制的质量方式或者是有限元的方式,获得n个自由方面结构体的动力计算方式。
目录1 工程概况 (64)1.1工程介绍 (64)1.2进行罕遇地震弹塑性时程分析的目的 (65)2分析方法及采用的计算软件 (65)2.1分析方法 (65)2.2分析软件 (65)2.3材料模型 (65)2.3.1 混凝土材料模型 (65)2.3.2 钢材本构模型 (66)2.4构件模型 (66)2.4.1 梁单元 (66)2.4.2 楼板模型 (67)2.5分析步骤 (67)2.6结构阻尼选取 (67)3 结构抗震性能评价指标 (68)3.1结构的总体变形 (68)3.2构件性能评估指标 (68)4 动力特性计算 (70)5 施工加载过程计算 (70)5.1施工阶段设置 (70)5.2施工阶段计算结果 (70)6 罕遇地震分析总体信息结果汇总 (71)6.1地震波选取 (71)6.2基底剪力 (73)6.3层间位移角 (75)6.3.1 左塔楼 (75)6.3.2 右塔楼 (80)6.4结构顶点水平位移 (85)6.5柱底反力 (88)6.8结构弹塑性整体计算指标评价 (89)7构件性能分析 (90)7.1钢管混凝土柱 (90)7.2斜撑 (90)7.3连梁 (92)7.3主要剪力墙 (92)7.4钢梁的塑性应变 (100)7.5楼板应力及损伤 (100)8 罕遇地震作用下结构性能评价 (103)1 工程概况1.1 工程介绍上海临港中心——结构总高度为180m;主体结构采用框架-核心筒体系,外框架为圆钢管混凝土柱、钢框架梁。
钢管混凝土柱截面为Φ1200x1140~Φ900x860。
核心筒采用钢筋混凝土剪力墙体系,外墙厚750mm~400mm,内墙厚500mm~300mm,部分墙体内配置10mm厚钢板。
在32层以下,结构由左右两个塔楼构成,中间通过钢梁及6-7层、17-20层两道“人”字形斜撑连接,斜撑截面为BOX 560x1060x80x80。
上部主体结构分析时,以地下室顶板为嵌固端。
主要构件信息:(1)框架柱均采用圆钢管混凝土柱,混凝土强度等级为C60。