《由三视图到几何体的展开图》PPT课件
- 格式:ppt
- 大小:1.73 MB
- 文档页数:26
第26讲三视图与展开图1.三视图考试内容考试要求三视图正视图从正面得到的,由前向后观察物体的视图叫做正视图,正视图反映物体的长和高.b 左视图从侧面得到的,由左向右观察物体的视图叫做左视图,左视图反映物体的宽和高.俯视图从水平面得到的,由上向下观察物体的视图叫做俯视图,俯视图反映物体的长和宽.画物体的三视图画“三视图”原则(1)正视图和俯视图要长对正;正视图和左视图要高平齐;左视图和俯视图要宽相等;(2)虚实:在画图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.2.立体图形的展开与折叠考试内容考试要求圆锥的侧面展开图圆锥的侧面是一个扇形,能根据展开图想象和制作立体模型.b 直棱柱侧面展开图直棱柱侧面展开图是矩形,能根据展开图想象和制作立体模型.正方体的平面展开图一个立体图形沿不同的棱剪开就得到不同的平面图形.考试内容考试要求基本思想转化思想,将立体图形转化为平面图形,如物体的包装等. b 1.(2017·衢州)如图是由四个相同的小立方体搭成的几何体,它的主视图是()第1题图第2题图2.(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(2017·宁波)如图所示的几何体的俯视图为()4.(2017·金华)一个几何体的三视图如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体【问题】如图,下列四个几何体是水平放置.(1)这四个几何体中,主视图与其他三个不相同的是________;(2)图(1)的直三棱柱,底面是边长为2的正三角形,高为4,则此直三棱柱的侧面展开图的面积________;(3)图(2)的圆柱,底面半径为2,高为4,则此圆柱左视图的面积________;(4)通过(1)(2)(3)的解答,请你联想三视图和立体图形展开图的相关知识、方法.【归纳】通过开放式问题,归纳、疏理简单几何体的三视图、展开图.类型一判断(画)几何体的三视图例1下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④【解后感悟】掌握从不同方向看物体的方法和画几何体三视图的要求,通过仔细观察、比较、分析,可选出正确答案.1.(1)(2016·湖州)由六个相同的立方体搭成的几何体如图所示,则它的主视图是()(2)(2017·黔西南州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个(3)(2017·台州)如图所示的工件是由两个长方体构成的组合体,则它的主视图是()类型二由三视图判断原几何体的形状例2(2016·黄石)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.圆柱D.球【解后感悟】由三视图确定几何体,往往需要把三个视图组合起来、空间想象综合考虑;掌握常见几何体的三视图是解题的关键.2.(1)(2015·桂林)下列四个物体的俯视图与如图给出视图一致的是()(2)(2017·嘉兴模拟)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱(3)(2015·随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.类型三立体图形的展开与折叠例3如图给定的是纸盒的外表面,下面能由它折叠而成的是()【解后感悟】常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形组成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.3.(1)(2017·漳州模拟)如图是一个长方体包装盒,则它的平面展开图是()(2)(2015·广州)如图是一个几何体的三视图,则该几何体的展开图可以是()(3)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B在围成的正方体上的距离是()A.0 B.1 C. 2 D.3(4)(2016·十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.103cm D.202cm类型四几何体的综合运用例4学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1.53 2+34 2+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.【解后感悟】从问题中获取信息(读表),找出碟子个数与碟子高度之间的关系式是解此题的关键.4.(1)(2017·湖州)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm2(2)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【课本改变题】教材母题--浙教版九下第76页例题如图是某几何体的三视图,则该几何体的体积是()A.18 3 B.54 3 C.108 3 D.216 3 【方法与对策】由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.这类题是中考热点题型,平时学习中也要注意平面图形和空间图形的转化.【分不清三视图中的实线与虚线】一个空心的圆柱如图所示,那么它的主视图是()参考答案第26讲三视图与展开图【考题体验】1.D 2.B 3.D 4.B【知识引擎】【解析】(1)图(1)的主视图为长方形;图(2)的主视图为长方形;图(3)的主视图为长方形;图(4)的主视图为三角形.故主视图与其他三个不相同的是图(4).(2)侧面展开图是矩形,侧面积为6×4=24.(3)左视图的面积为4×4=16.(4)画三视图,根据三视图描述简单几何体,直棱柱,圆锥侧面展开图等【例题精析】例1②③的俯视图都是圆,有圆心,故选C.例2∵如图所示几何体的主视图和左视图分别是长方形和圆,∴该几何体可能是圆柱体.故选C.例3B例4(1)2+1.5(x-1)=(1.5x+0.5)cm(2)由三视图可知共有12个碟子,∴叠成一摞的高度=1.5×12+0.5=18.5(cm).【变式拓展】1.(1)A(2)D(3)A 2.(1)C(2)D(3)24 3.(1)A(2)A(3)B(4)D 4.(1)D(2)20 【热点题型】【分析与解】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.故选C.【错误警示】A。
1.截面可能是圆的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥2.截面可能是三角形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥3.截面可能是矩形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥4.截面可能是梯形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥5.截面可能是平行四边形的几何体,请打“√”正方体、长方体、圆柱、圆锥、球、六棱柱、三棱锥6.用一个平面截下面的几何体,截面不可能是三角形的是_______A 圆锥B圆柱C长方体 D 六棱柱7. 正方体的截面不可能是________A 三角形B 四边形C 五边形D 六边形E 七边形8. 基本几何体的三视图(主视图反映物体的长和高,俯视图是长和宽,左视图是高和宽)几何体主视图左视图俯视图圆柱圆锥四棱锥空心圆柱9.由一些大小相同的小正方体搭成的几何体的主视图与俯视图如图所示,则搭成这个几何体的小正方体的个数最多为___,最少为____。
___.10. 如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A.6个B.7个C.8个D.9个11. 如图是由若干个大小相同的正方体搭成的几何体 的三视图,则该几何体所用的正方形的个数是________12.由一些完全相同的小正方体搭成的几何体的主视图和左视图 如图所示,则组成这个几何体的小正方体的个数可能是13. 几个棱长为1的正方体组成的几何体的 三视图如图所示,则这个几何体的体积是____14.几个立方块所搭几何体的俯视图如图所示,小正方形的数字表示在该位置小立方块的个数.请画出这个几何体的主视图和左视图.15.下图,该几何体是_______. 16. 下图,则这个几何体是______17. 下图,该几何体是_______. 18. 下图,三视图表示的几何体是________19.主视图、俯视图和左视图都是..长方形的几何体是_________(填一个即可) 20. 三视图都相同的几何体可能是_________、____________.(有两种类型)3 2 1 1 2 24 1 3主视图左视图2 2 1 3421.下列四个水平放置的几何体中,三视图如图所示的是( )A.B.C.D22.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )A.B.C.D.23.如图所示,下列水平放置的几何体中,俯视图是矩形的是( )A.B.C.D.24. 下列四个几何体中,主视图是三角形的是( )A.B.C.D.25. 下列几何体中,俯视图相同的是( )A①② B①③C②③ D ②④26.下面四个几何体中,左视图是四边形的几何体共有 ( )A 1 个B 2个C 3个D 4个27.下列四个几何体中,主视图与左视图相同的几何体有( )A.1个B.2个C.3个D.4个28.球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( )A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆29.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )。