采油工程第1章
- 格式:ppt
- 大小:2.17 MB
- 文档页数:88
采油工程第一章----第三章复习题一、选择题:1.若泥浆柱的压力( A )油层的压力,且井口又( A )时,造成井喷等严重事故。
A. 小于、控制不当B.大于、控制不当C. 小于、控制适当D. 大于、控制适当2.若泥浆柱压力(B)地层压力时,使油层造成(B),使井筒附近的渗透率(B),影响油井产量,有时甚至不出油。
A. 小于、损害、降低B.大于、损害、降低C. 大于、损害、提高D. 小于、损害、提高3.通常钻(C)采用密度较(C)的压井液(性能指标依地层而异),对于(C)的油层,应当减(C)压井液的密度,以免损害油层。
A.高压油层、小、压力较低、大B.高压油层、小、压力较低、大C.高压油层、大、压力较低、小D.高压油层、大、压力较低、大4.裸眼完井的最大特点是油气井与井底(B)连通,整个油层(B)裸露,油气流入井内的阻力(B),其产能较高。
A. 直接、完全、很大B. 直接、完全、很小C. 间接、部分、很小D. 间接、完全、很大5.套管射孔完井缺点是出油面积(D)、完善程度(D),对井深和射孔深度要求严格,固井质量要求(D),水泥浆可能损害油气层。
A大、差、高 B. 小、差、低 C.大、差、低 D.小、差、高6.套管射孔完井之所以应用最多,其主要原因是它能(A)、(A)产油层位,适应(A)开采工艺的需要。
A.选择、调整、分层B. 不能选择、调整、分层C.选择、调整、合层D. 不能选择、调整、合层7.油管传输射孔即有过油管射孔实现(C)的优点,又有(C)高孔密的(C)射孔枪的性能。
A.正压差、深穿透、小直径B.正压差、深穿透、大直径C.负压差、深穿透、大直径D.负压差、深穿透、小直径8.射孔工程技术要求中,单层发射率在(D)以上,不震裂套管及封固的水泥环。
A. 70%B. 80%C. 85%D. 90%9.油管输送射孔的深度校正,一般采用较为精确的(A)测井校深方法。
A. 放射性B.声幅C.井温D.变密度10.诱喷排液目的是为了清除井底(B)等污物,(B)井底及其周围地层对油流的阻力。
第一章油井基本流动规律一、概念及定义IPR:油井流入动态是指在一定地层压力下,油井产量与井底流压的关系,简称IPR(Inflow Performance Relationship)。
(就单井而言,IPR曲线反映了油层向井的供给能力,即产能)采油指数(Productivity Index,PI):地面产油量与生产压差之比,是反映油层性质、流体参数、完井条件及泄油面积等与产量之间关系的综合指标。
IPR曲线斜率的负倒数即为采油指数。
流动效率(Flowing Efficiency,FE):油井在同一产量下,理想完善情况的生产压差与实际生产压差之比。
完善井S=0,E f=1;超完善井S<0,E f>1;不完善井S>0,E f<1。
流态(Flow Regime,Flow Pattern):油气混合物流动过程中油、气的分布形态。
滑脱现象(Slip Phenomenon):气液混合物上升的垂直或倾斜管流中,由于气液密度差异造成气液速度差异而出现的气体超越液体上升的现象。
持液率(Liquid Holdup):单位管长内液体体积与单位管长容积的比值。
真实速度(Actual Velocity):气、液相在各自所占流通面积上的就地局部速度的平均值,也成平均速度。
表观速度(Superficial Velocity):某相单独充满并流过管子截面的速度。
单相流,表观速度即为真实速度;两相流,表观速度必然小于真实速度。
两相混合物密度两相混合物速度滑脱速度(Slip Velocity):气、液真实速度之差。
无滑脱持液率存在滑脱时,H L>λL,这表明存在滑脱时的液相实际过流断面A L较无滑脱理想情况的液相过流断面增大了。
无滑脱混合物密度活脱损失:因滑脱而产生的附加压力损失。
可用存在滑脱时的混合物密度与不考虑滑脱混合物密度之差Δρ表示单位管长的滑脱损失,即水力半径临界流动(Critical Flow):流体通过油嘴孔道高速流动时,速度达到压力波在流体介质中的传播速度即声速时的流动状态。
附件:成都理工大学采油工程课程教师姓名伊向艺、李成勇等所在学院 ___________ 能源学院___________授课专业 ___________ 石油工程___________课程代码 ___________ 0401C1307 _________总学时56 学分3.5教材名称 __________ 采油工程____________2010年3月20日思考题、讨论题、作业:P47, 1、2、6、7笫一节油井流入动态三、含水及多层油藏油井流入动态1、汕气水三相渗流汕井流入动态2、多层油藏油井流入动态3、具有含水夹层的流入动态卩q、完井方式对汕井流入动态的影响1、射孔完井段压降2、射孔-砾石充填完井段压降五、预测未来油井流入动态1、Fetkovich 方法2^ Vogel-Fetkovich 组合方法第二节气液两相管流基本概念及基本方程一、多相垂直管流物性变化规律1、气体体积流屋2、液体的体积流量3、总混气液的体积流量4、混气液流速5、混气液密度6、压力分布二、混气液密度1、理论密度2、滑脱现象3、实际密度三、气液两相管流的流型重点:含水及多层汕藏汕井流入动态、气液两相管流的滑脱现象及特性参数、气液两相管流的流型;难点:预测未来汕井流入动态、多相垂直管流物性变化规律、垂直管气液两相流流型教学过程:第一学时,继续讲述第一节汕井流入动态剩余的部分,了解汕井含水及存在綾人爰异的多层合采时的油井流入动态,并简要概述了完井方式对油井流入动态的影响;重点讲述了两种用于预测未来油井流入动态的方法即:Fetkovich方法和Vogel-Fetkovich组合方法。
笫二学时,开始本章笫二节的学习,理解并掌握多相垂直管流的物性变化规律及相关公式的推导,利用图示的方法让学生宏观理解气液两相管流的滑脱现彖的概念和垂直管气液两相流的四种流型。
思考题、讨论题、作业:P4& 11参考资料(含参考书、文献等):[1]陈家琅等编著.抽油井的气液两相流动.北京:石油工业出版社,1994[2]李颖川.定向井气液两相压力计算数值方法.天然气工业,1990 (2)[3]Economides M. J. and Hill A. D. Petroleum Production System, 1994[4]Voge 1 J. V. Tnflow Performanee Relationship for Solution Gas Drive Wells, JPT. Jan.1986[5]Joshi S. D. Augme nt at ion of Well Productivity with Slant and Horizo ntal Wells, JPT. June 1988[6]Standing M. B. Inflow Performanee Relationship for Damaged Wells Producing by Solution Gas Drive, JPT. Nove. 1970[7]Fetkovich M. J. The Isochrronal Testing of Oil Wells, SPE 4529 教学后记:气液两相管流的滑脱现象和垂肓管两相管流的流型是重中之重,应该认真学习并重点掌握。
采油工程油田开采是指在地下油藏中钻井、注水、抽油、压裂等方式,将地下的石油资源开采出来。
而采油工程是指对油田进行勘探、设计、施工、运营等综合技术及管理过程,目的是提高油田产量、缩短采油周期、降低成本,使得石油开采更加高效、安全、经济。
一、采油工程的勘探阶段1. 地质勘探:通过勘探手段分析掌握地下油藏的分布、储存方式、构造和性质等信息,确定采油区的范围和油藏的类型、储量等基本情况。
2. 实验室分析:包括对原油、岩石等样品进行分析,了解原油品质、物性及岩石力学性质等重要参数,为采油工程设计提供基础数据。
3. 地质建模:根据地质勘探和实验室分析所得数据,进行三维地质模型的建立,分析油藏的分布、特征、储量等信息,并确定最优的开采方案。
二、采油工程的设计阶段1. 井的设计:根据油藏特征和地质建模结果,确定井的位置、深度、产量、保护措施等信息,设计钻井方案,并进行井壁完整性和稳定性分析。
2. 油井完井工程:包括完井设计、固井设计、井口装置设计等,以确保井内管道的完整性,提高油井的采油效率和井眼环境的安全性。
3. 人工提高采油设计:人工提高采油的方法包括水驱、蒸汽吞吐、二次采油、聚集物注入等,设计人工提高采油方案,确保油井的正常运行。
三、采油工程的施工阶段1. 钻井施工:根据钻井设计方案,进行钻井施工,完成井身和井口的建设。
2. 井口建设:根据井口装置设计方案,进行井口建设,包括井口设施、防溢环和泥浆池建设。
3. 完井施工:根据井的完井设计方案,进行完井施工,包括完井管道连接、固井、调整支架和通风等操作。
4. 井眼环境治理:随着采油时间的延长,油井井眼会存在积水、堵塞等问题,需要进行环境治理,保证正常采油作业。
四、采油工程的运营阶段1. 井的日常管理:包括井口检查、巡视、测量、刺探等操作,维护油井的正常运行和减少生产中的故障。
2. 油田生态环境维护:采油过程中会对油田环境造成一定程度上的影响,需要进行生态环境维护,保护自然环境生态平衡。