向量组线性相关性的判别定理
- 格式:pptx
- 大小:225.92 KB
- 文档页数:9
向量组的线性相关性向量组线性相关与线性无关的概念向量组线性相关性的判别向量组线性相关性的有关结论向量组线性相关与线性无关的概念()1122*0ααα,m m k k k +++=定义:给定向量组,12:,,,αααm A 如果存在一组不全为零的实数,12,,,m k k k 使得则称向量组是线性相关的.A 则称向量组是线性无关的.A 仅当时式才成立,120m k k k ====()*例:向量组,1231111, 5, 1281ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭123320,ααα--=线性相关.123,,αααn 维单位坐标向量121000100,0,,0001e e e ,n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1122e e e n nk k k +++12n k k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性无关.12,,,e e e n 10,n k k ⇔===例:考虑只有一个向量的向量组,α如果,0α=则对任意常数都有,0k ≠0α=k 所以当时是线性相关的;0α=如果,0α≠所以当时是线性无关的.0α≠则仅当常数时才有,0k =0α=k则.2121αα=-λλ存在不全为零的实数,12,λλ不防设,10≠λ维向量组线性相关,12,αα例:n 11220.αα+=λλ使得线性相关的分量对应成比例.12,αα12,αα⇔例:向量组12301240,5,4,509710ααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭线性相关.含零向量的向量组必线性相关.0,k ≠对任意1230000.0αααk ⋅+⋅+⋅+⋅=均有向量组线性相关性的判别如何判断它的线性相关性?1212(,,,)m m k k k ααα⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭0A .β=0A 给定向量组,12:,,,αααm A 考虑等式,1122m m k k k ααα+++=0β元线性方程组有非零解m=0Ax12(,,,)mααα=,A()T12,,,mx x x=x().R m<A定理:向量组线性相关12:,,,αααmA().R m=A向量组线性无关12:,,,αααmA元线性方程组只有零解m=0Ax解123102102(,,)124~022157000rααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭例:已知,1231021,2,4157ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试讨论线性相关,12(,)2R αα=,向量组及向量组的线性相关性.123,,ααα12,αα向量组123,,ααα向量组线性无关.12,αα123(,,)2R ααα=,223331,b a a b a a =+=+,证明向量组线性无关.123,,b b b 证一131122233x x x x x x ()()()0a a a +++++=112223331x x x ()()()a a a a a a ⇒++++例:已知向量组线性无关,且123,,a a a 112b a a =+,112233x x x 0,b b b ++=设131223000x x x x x x +=⎧⎪+=⎨⎪+=⎩10111020011=≠线性无关,123,,a a a 所以向量组线性无关.123,,b b b223331,b a a b a a =+=+,证明向量组线性无关.123,,b b b 证二例:已知向量组线性无关,且123,,a a a 112b a a =+,线性无关,123,,a a a 所以向量组线性无关.123,,b b b 把已知的三个向量等式写成矩阵等式123123*********(,,)(,,)b b b a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭=.B AK 记作设,=Bx 0()=AK x ⇒0,=Kx ⇒0,20,K =≠=x ⇒0,223331,b a a b a a =+=+,证明向量组线性无关.123,,b b b 证三例:已知向量组线性无关,且123,,a a a 112b a a =+,线性无关,123,,a a a所以向量组线性无关.123,,b b b 把已知的三个向量等式写成矩阵等式123123*********(,,)(,,)b b b a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭=.B AK 记作()R =3.A ⇒20K =≠又由知可逆,K 从而()()R R ==3.B A向量组线性相关性的有关结论111111.j j m j j j m j j j jk k k k k k k k ααααα-+-+=-----其余个向量线性表示.1m -的充分必要条件是其中至少有一个向量可以由12m 证明1122m m k k k ααα+++=0.(必要性)设线性相关,()122m m ααα,,,≥则存在一组不全为零的实数,12,,,m k k k 使得0j k ≠不防设,其余个向量线性表示.1m -的充分必要条件是其中至少有一个向量可以由12m 证明(充分性)设()122m m ααα,,,≥线性相关.111111j j j j j m m k k k k ααααα--++=++++,111111j j j j j m m k k k k ααααα--++++-++=0,111,,,1,,,j j m k k k k -+-不全为零,其余个向量线性表示.1m -的充分必要条件是其中任何一个向量都不能由12m 证明(必要性)设线性无关,()122m m ααα,,,≥若存在一个向量可由其余个向量线性表示,1m -()122m m ααα,,,≥则必线性相关,与已知矛盾.任何一个向量都不能由其余个向量线性表示.1m -其余个向量线性表示.1m -的充分必要条件是其中任何一个向量都不能由定理:向量组线性无关()12:2m A m ααα,,,≥证明(充分性)假设线性相关,()122m m ααα,,,≥必存在一个向量可由其余个向量线性表示,1m -与已知矛盾.所以线性无关.()122m m ααα,,,≥证明定理:向量组线性相关,()12:2m A m ααα,,,≥则向量组也线性相关.12+1:m m B αααα,,,,向量组线性无关,则向量组也线性无关.A B 反之,因为向量组线性相关,12:m A ααα,,,所以存在一组不全为零的实数,12,,,m k k k 1122m m k k k ααα+++=0.使得112210m m m k k k αααα+++++⋅=0.于是所以向量组也线性相关.12+1:m m B αααα,,,,结论:则该向量组线性相关. 一个向量组若有线性相关的部分组,一个向量组若线性无关,一般地,向量组线性相关,()12:2m A m ααα,,,≥则向量组也线性相关.12+1:m m s B ααααα,,,,,,则它的任何部分组也线性无关.定线性相关. 12(,,,)m ααα=,A 证明例如,向量组线性相关.123202110ααα,,⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭定理:个维向量组成的向量组,当m 时一n n m <特别地,个维向量必线性相关.n 1n +n m ⨯个维向量构成矩阵m n 12m ααα,,,设R n <m ().A ≤n m <当时,有个维向量线性相关.m n 12m ααα,,,证明定理:向量组线性无关,()12:2m A m ααα,,,≥而向量组线性相关,12:m B αααβ,,,,必能由向量组线性表示,且表示式是惟一的.A β则向量记()12=m ααα,,,,A ()12=m αααβ,,,,,B 由于R R ()(),A B ≤有惟一解,从而结论成立.因此方程组βAx =而1R m R m ()(),,A B =<+所以1m R m (),B ≤<+即.R m ()B =问题转化为讨论方程组是否有惟一解.βAx =证明:证明(2)用反证法. 矛盾.例设向量组线性相关,线性无关,123,,a a a 234,,a a a (1)能由线性表示;1a 23,a a (2)不能由线性表示.123,,a a a 4a 因线性无关,知线性无关,(1)234,,a a a 23,a a 再由线性相关,知能由表示.123,,a a a 1a 23,a a 假设能由线性表示,4a 123,,a a a (1)知能由线性表示;1a 23,a a 又由于是能由线性4a 23,a a 表示,。
分布图示★ 线性相关与线性无关★ 例1★ 例2★ 证明线性无关的一种方法线性相关性的判定★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 定理3 ★ 定理4 ★ 定理5★ 例7★ 内容小结 ★ 课堂练习★ 习题3-3内容要点一、线性相关性概念定义1 给定向量组,,,,:21s A αααΛ 如果存在不全为零的数,,,,21s k k k Λ 使,02211=+++s s k k k αααΛ (1)则称向量组A 线性相关, 否则称为线性无关.注: ① 当且仅当021====s k k k Λ时,(1)式成立, 向量组s ααα,,,21Λ线性无关; ② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.二、线性相关性的判定定理1 向量组)2(,,,21≥s s αααΛ线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示.定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j ΛM =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组s ααα,,,21Λ线性相关的充要条件是: 是矩阵),,,(21s A αααΛ=的秩小于向量的个数s .推论 1 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是: 矩阵),,,(21n A αααΛ= 的秩等于(小于)向量的个数n .推论2 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是:矩阵),,,(21n A αααΛ= 的行列式不等于(等于)零.注: 上述结论对于矩阵的行向量组也同样成立.推论3 当向量组中所含向量的个数大于向量的维数时, 此向量组必线性相关. 定理3 如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关. 推论4 线性无关的向量组中的任何一部分组皆线性无关.定理4 若向量组βαα,,,1s Λ线性相关, 而向量组s ααα,,,21Λ线性无关, 则向量β可由s ααα,,,21Λ线性表示且表示法唯一.定理5 设有两向量组,,,,:;,,,:2121t s B A βββαααΛΛ向量组B 能由向量组A 线性表示, 若t s <, 则向量组B 线性相关.推论5 向量组B 能由向量组A 线性表示, 若向量组B 线性无关, 则.t s ≥推论6 设向量组A 与B 可以相互线性表示, 若A 与B 都是线性无关的, 则.t s =例题选讲例1 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例2 设有二个2维向量:,10,0121⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使,02211=+e e λλ也就是 ,0100121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛λλ 即 .0002121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλλλ于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例3 (E01) n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21ΛΛΛΛ===εεε称为n 维单位坐标向量组, 讨论其线性相关性.解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,,Λ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛ 是n 阶单位矩阵.由,01≠=E 知.n E r =即E r 等于向量组中向量的个数, 故由推论2知此向量是线性无关的.例 4 (E02) 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩,可同时看出矩阵A 及),(21αα=B 的秩,利用定理2即可得出结论.),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 易见,,2)(=A r ,2)(=B r 故向量组,,,321ααα线性相关. 向量组21a a ,线性无关.例5 判断下列向量组是否线性相关:.11134,1112,5121321⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ααα解 对矩阵)(321ααα,,施以初等行变换化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1115111312421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----990330550421⎪⎪⎪⎪⎪⎭⎫⎝⎛000000110421秩,,,32)(321<=ααα所以向量组321ααα,,线性相关.例6 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例7 (E03) 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明 (1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.课堂练习1. 试证明:(1) 一个向量α线性相关的充要条件是0=α; (2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。
第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。
线性代数3.3向量组线性相关性的判别定理线性代数是数学中的一个分支,它研究向量空间和线性映射等代数结构的性质和规律。
在线性代数中,向量组的线性相关性是一项基本概念。
本文将介绍向量组线性相关性的判别定理。
在数学中,如果存在一组非零向量$\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_n$以及一组不全为零的标量$k_1,k_2,\cdots,k_n$,使得向量组的线性相关性判别定理是指,存在一个简单的方法,可以判断一个向量组是否是线性相关的。
推论:零向量不参与线性相关性的判断但是,如果向量组中包含了零向量,那么零向量不参与线性相关性的判断。
因为任何向量与零向量的线性组合都等于零向量,所以如果向量组中包含了零向量,只有当其他向量出现线性相关性时,才能称向量组是线性相关的。
证明:因为$k_1,k_2,\cdots,k_n$中至少有一个不为零,不妨设$k_1$不为零。
则有因此,向量$\boldsymbol{v}_1$可以表示为其余向量的线性组合。
$$\boldsymbol{v}_i=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2+\cdots+k_{i-1}\bold symbol{v}_{i-1}+k_{i+1}\boldsymbol{v}_{i+1}+\cdots+k_n\boldsymbol{v}_n$$将上式代入得到总结向量组的线性相关性是线性代数中的一个重要概念,它与矩阵的秩、行列式、特征值等有密切的关联。
在实际应用中,判断向量组的线性相关性是很有用的,例如在计算机图形学、信号处理、机器学习等领域中,经常需要对向量组进行操作和分析。
通过本文所介绍的向量组线性相关性的判别定理,我们可以更方便地应用向量空间理论解决实际问题。