风力发电资料
- 格式:ppt
- 大小:12.97 MB
- 文档页数:87
风电培训资料一、风电技术概述风电技术是一种利用风能发电的可再生能源技术,它通过将风能转化为电能来实现发电。
风能是一种清洁、无污染的能源,具有广泛的应用前景。
风电技术的发展对于减少化石燃料的使用、降低温室气体排放以及保护环境有着重要意义。
二、风电设备及工作原理1. 风力发电机组风力发电机组主要由风轮、发电机、塔筒等组成。
风轮通过风的作用转动,驱动发电机产生电能。
发电机是核心部件,其工作原理是利用电磁感应的原理将机械能转化为电能。
2. 风能转化过程风力发电机组的转子叶片可以捕捉到风的动能,当风经过转子叶片时,叶片会开始转动。
转子叶片转动的同时,风能也被转化为机械能,转子转动的同时将机械能传递给发电机。
3. 发电机工作原理发电机通过电磁感应原理将机械能转化为电能。
当转子转动时,磁场线经过线圈时会产生感应电流,进而产生电压。
这样,电能就从机械能转化为电能。
三、风力发电系统的运维和维护1. 运维管理的重要性风力发电系统的运维管理对于确保风电站的高效运行至关重要。
良好的运维管理可以提高风力发电机组的可靠性和利用率,减少故障发生以及维修时间,最大程度地保证风电站的发电量。
2. 风力发电系统的维护风力发电系统的维护包括定期检查、故障排除、设备更换等工作。
定期检查包括对发电机组的叶片、塔筒、机组控制系统等部分进行检查,以确保其正常运行。
故障排除主要是对发电机组进行故障分析,并采取相应措施解决故障。
设备更换是指对老旧设备或损坏设备进行更换,以保证发电机组的安全可靠运行。
四、风力发电行业的发展前景1. 国内外风力发电发展情况近年来,全球范围内风力发电行业得到快速发展。
中国积极推动清洁能源的发展,风力发电也成为了国内的重要能源产业。
中国在风力发电方面的投资和装机容量均居世界前列。
2. 风力发电行业的前景分析随着社会对清洁能源需求的不断增加,风力发电技术的进一步发展和应用前景广阔。
风力发电具有无污染、可再生等优势,将成为未来能源结构中的重要组成部分。
风力发电复习资料1 风力发电机的工作范围3—25m/s,风的测量范围0—60m/s,微风(3.4—5.4m/s),基本特征:树叶及小枝摇动不息,旗子展开,高草摇动不息。
2 风的测量:风速,风向。
3 风玫图表示量:风向,风量及出现的频率。
4 风能的功率:P=0.5pv3A 风速增大一倍,则风能增加8倍。
5 中国风能的形成及影响因素:受自然因素,特别是天气气候影响及地形和海陆分布的影响。
三北(西北,华北,东北)地区最丰富,其次是东南沿海及其附属岛屿,最后是内陆风能(湖泊和特殊地形)6风能的转换形式:风中的动能转换为发电机的机械能,再将机械能转换为电能,并以固定电能频率向电网输送电能。
7 风力的类型:水平轴风力机(升力型),定义:风轮的旋转轴与风向平行。
8 风力机的主要部件:风轮,塔架,对风装置,主轴,发电机,刹车制动装置,测风装置,传动装置,增速箱,调速器,控制系统。
9 风轮的作用:从风中吸收能量,然后把风的动能转换为旋转的机械能。
10 风力机叶片使用的材料:纤维增强复合材料,玻璃纤维材料,碳纤维材料,玻璃钢复合材料。
11齿轮箱的作用:将力矩从叶轮传递到发电机。
12 机舱:设在水平轴风力机顶部,内部装有传动装置和其他装置等的机壳。
13 风电的上网电量不超过电网容量的5%14 对风装置:风向传感器和伺服电机相结合的传动装置(大型化风机)15 国内的大型,中型风力发电机普遍采用晶闸管软并网将风力机驱动异步发电机并入电网。
16 异步发电机又称感应电机,它的转子有鼠笼型和绕线型。
17 滑差可调是指调节风力发电机功率18 变速恒频的发电系统:变流器即特殊的控制算法,电磁滑差连接器,整流器。
19 在盛行风上要求风力机布置在5—9倍的风轮直径,垂直于盛行风上要求风力机布置在3—5倍风轮直径。
20 常用的功率调节方式:变桨距和定桨距失速调节。
21 试述并网风力机所使用的双馈异步电动机的特性及优缺点。
答:特性:双馈是指不但发电机转子接电网,发电机定子也接电网。
风电基本知识
风电是一种利用风能发电的可再生能源技术。
它通过风力发电机将风能转化为电能,为人们的生活和工业生产提供清洁、环保的电力。
风电发电机通常由风轮、塔架、传动系统和发电机组成。
当风吹过风轮时,风轮开始旋转。
传动系统将旋转的机械能转化为电能,通过发电机输出电力。
风电发电机的工作原理与水力发电机类似,都是利用自然能源驱动机械设备发电。
风电是一种清洁能源,具有许多优点。
首先,风是一种永无止境的能源,不会因为使用而消耗。
其次,风电发电过程中不会产生任何污染物,对环境没有负面影响。
再次,风电可以分布式布局,灵活性较高,适合在各种地理条件下建设。
此外,风电作为可再生能源,可以有效减少对传统能源的依赖,降低能源成本。
然而,风电也面临一些挑战和限制。
首先,风能是不稳定的,受到季节、气候等因素的影响。
这就意味着风电的发电量会有所波动,不如传统能源稳定可靠。
其次,风电的建设需要占用较大的土地面积,特别是在海上风电场的建设中。
此外,风电设备的制造和维护也需要耗费一定的资源和成本。
尽管如此,风电作为一种清洁、可再生的能源技术,仍然具有巨大的发展潜力。
随着技术的进步和成本的降低,风电已经成为全球范围内最受欢迎的可再生能源之一。
越来越多的国家和地区开始大规
模建设风电项目,以满足能源需求,并减少对传统能源的依赖。
总的来说,风电是一种清洁、可再生的能源技术,具有广阔的发展前景。
通过合理规划和利用风能资源,我们可以为人类创造更加绿色、可持续的能源未来。
让我们共同努力,推动风电技术的发展,为地球做出贡献。
风力发电概述在化石能源日趋枯竭的形势下,风能作为一种绿色能源正得到越来越普及的应用。
2008年,全球风机新增装机容量达2705.6万千瓦,增速同比超过35%,累计装机容量超过了1.2亿千瓦,同比增长约30%2009年, 全球新增风电装机容量达至创纪录的3800万kW2009年, 中国装机容量新增1375万kW,成为第一大风电装机市场, 预计到2010年全球的风电总装机将达到1.9亿千瓦。
在全球扶持风电的政策引导下,到2020年前后,全球风电总装机将达到15亿千瓦据欧洲风电协会的资料,自丹麦1991年建成第一个海上风场到2009年末, 全球在运行及在建的海上风电场超过了300万千瓦, 海上风电场几乎都在欧洲。
风能主要的利用方式是风力发电,将风流动的机械能转化为电能,然后利用电网传输到利用。
风能转化为电能是利用风力发电机,发电机发出的电能经过变流器并到电网,在这能量转化中间存在诸多环节,一下针对每个环节的关键问题以及解决方法进行简要介绍。
风能:风电机将风的动能转化为机械能并进而转化为电能。
从动能到机械能的转化是通过叶片来实现的,而从机械能到电能则是通过发电机芯来实现的。
动能每个具有质量的物体(固体、液体或者气体)在运动的时候都拥有一个跟质量m和运动速度v 的平方成正比的能量(也就是动能或者动力能)。
其数学表达式如下:对于风电机来说,流经叶片转动平面的空气质量运动所携带的动能,就是被经过叶片转化成机械能的那部分动能。
能量和功率功率P 等于单位时间内的能量转化。
为了计算功率,必须要将上面公式中质量m除以时间,也就是空气的dm/dt (每秒钟流经风电机叶片旋转面积的空气质量)计算出来。
空气的质量空气的质量用m 表示。
计算m 要通过空气密度ρ 和空气的体积V:空气密度随着空气压力的增大而增大,随着温度的升高而减小:• 冷空气比热空气密度大(热气球升空就是利用的这个原理)。
在普通大气压力和20°C 温度的条件下每立方米空气的质量是 1.204 kg ;在-10°C 的温度下,每立方米空气重 1.342 kg,比常温下重了11%。
风力发电风力发电是把风的动能转为电能。
风能作为一种清洁的可再生能源,越来越受到世界各国的重视。
其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。
风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。
一、资源我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。
而2003年底全国电力装机约5.67亿kW。
风是没有公害的能源之一。
而且它取之不尽,用之不竭。
对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。
海上风电是可再生能源发展的重要领域,是推动风电技术进步和产业升级的重要力量,是促进能源结构调整的重要措施。
我国海上风能资源丰富,加快海上风电项目建设,对于促进沿海地区治理大气雾霾、调整能源结构和转变经济发展方式具有重要意义。
国家能源局2015年9月21日发布数据显示,到2015年7月底,纳入海上风电开发建设方案的项目已建成投产2个、装机容量6.1万千瓦,核准在建9个、装机容量170.2万千瓦,核准待建6个,装机容量154万千瓦。
这与2014年末国家能源局《全国海上风电开发建设方案(2014-2016)》规划的总装机容量1053万千瓦的44个项目相距甚远。
为此,国家能源局要求,进一步做好海上风电开发建设工作,加快推动海上风电发展。
二、利用风是一种潜力很大的新能源,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。
仅就拔树一事而论,风在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。
风电资料全套
1. 风能发电简介
- 风能发电的基本原理和工作原理
- 风能发电的历史背景和现状
- 风能发电的优势和局限性
2. 风能资源评估
- 风能资源评估的方法和技术
- 风能资源地图和数据分析
- 风能资源评估案例研究
3. 风力发电机组
- 风力发电机组的组成和结构
- 不同类型的风力发电机组及其特点
- 风力发电机组的性能评估和维护
4. 风能发电场设计与建设
- 风能发电场选址和布局
- 风能发电场的土地利用和环境影响评估
- 风能发电场的建设和运营管理
5. 风能发电技术创新和发展趋势
- 风能发电技术的创新和进展
- 风能发电的关键技术挑战和解决方案
- 风能发电的市场前景和发展趋势
附录
- 风能发电术语和定义解释
本文档为您提供了关于风能发电的全面资料,涵盖了其原理、资源评估、发电机组、场地设计与建设以及技术创新和发展趋势等方面。
希望这些资料对您的研究和了解能够有所帮助。
请注意,本文档的内容可能依赖于可确认的引用内容。
所以在引用任何内容时,请确保其来源准确可靠。
祝您阅读愉快!。
风力发电工程师的风力资源评估和风力发电技术资料随着对可再生能源需求的增加,风力发电作为一种清洁、可持续的能源形式,逐渐受到了广泛关注。
作为风力发电工程师,风力资源评估和技术资料是你在工作中必不可少的知识基础。
本文将为您介绍风力资源评估的步骤和风力发电技术资料的相关内容。
一、风力资源评估1. 数据采集和分析风力资源评估的第一步是收集和分析有关风力资源的数据。
您可以从各种数据源中获取数据,包括国家气象局、风能研究中心等。
这些数据包括风速、风向、气象条件等信息。
通过对这些数据进行分析,可以了解特定地区的风能潜力。
2. 风能潜力计算通过采集的数据,可以使用不同的数学模型或软件来计算风能潜力。
这些模型将考虑地形、地面覆盖、大气层厚度等因素,从而准确地预测风力资源的可利用程度。
这些计算结果将为风力发电项目的规划和设计提供重要依据。
3. 风力预测利用历史数据及数学模型,可以对风力进行预测。
这对于风力发电场具有重要意义,因为它可以帮助工程师更好地规划发电设备的布局和风能利用效率。
二、风力发电技术资料1. 风力发电机组技术资料风力发电机组是将风能转化为电能的核心设备。
了解不同类型的风力发电机组的技术参数和性能特点是风力发电工程师必备的知识。
此外,还需掌握风力发电机组的安装、维护和故障排除等相关技术资料。
2. 输电线路和电网接入技术资料一旦风力发电机组产生电能,就需要将其输送到电网中。
因此,了解输电线路的布局、电缆规格、安装标准和电网接入的相关技术资料是非常重要的。
这样可以确保风力发电设备与现有电网的高效连接。
3. 风力发电场设计和施工资料风力发电场的规划和设计需要充分考虑到地形、土地使用、环境影响等因素。
了解风力发电场的设计标准、施工流程和相关技术资料将对项目的成功实施起到至关重要的作用。
4. 风力发电技术研究报告和最新进展风力发电技术是一个不断发展和创新的领域。
作为风力发电工程师,了解最新的技术研究报告和行业进展非常重要。
第一章、绪论1、风力发电机组的组成风力发电机组可分为风轮、机舱、塔架和基础几个部分;1风轮由叶片和轮毂组成;叶片具有空气动力外形,在气流作用下产生力矩驱动风轮转动,通过轮毂将扭矩输入到主传动系统;2机舱由底盘、导流罩和机舱罩组成,底盘上安装除主控制器以外的主要部件;机舱罩后部的上方装有风速和风向传感器,舱壁上有隔音和通风装置等,机舱底部与塔架连接;3塔架支撑风轮与机舱达到所需要的高度;塔架上安置发电机与主控制器之间的动力电缆、控制和通信电缆,还装有供操作人员上下机舱的扶梯,大型机组还设有升降机;4基础为钢筋混凝土结构,根据当地地质情况设计成不同的形式;基础中心预置有于塔架连接的基础部件,以保证将风力发电机组牢牢固定在基础上;基础周围还设置预防雷击的接地装置;2、变桨距、变速型的风力发电机组内部结构1变桨距系统:设在轮毂之中,对于电动变距系统来说,包括变距电动机、变距减速器、变距轴承、变距控制器和备用电源等;2发电系统:包括发电机、变流器等;3主传动系统:包括主轴及主轴承、齿轮箱、高速轴和联轴器等;4偏航系统:由偏航电动机、偏航减速器、偏航轴承、制动机构等组成;5控制与安全系统:包括传感器、电气设备、计算机控制与安全系统含相应软件和控制欲安全系统执行机构等;此外,还设有液压系统,为高速轴上设置的制动装置、偏航制动装置提供液压动力;液压系统包括液压站、输油管和执行机构;为了实现齿轮箱、发电机、变流器的温度控制,设有循环油冷却系统、风扇和加热器;3、风力发电机组的分类:1按功率大小:a微型~1kw;b小型1~100kw;c中型100~1000kw;d大型1000kw以上;2按风轮轴方向:a水平轴风力发电机组随风轮与塔架相对位置的不同而有上风向与下风向之分;风轮在塔架的前面迎风旋转,叫做上风向风力发电机组;风轮安装在塔架后面,风先经过塔架,再到风轮,则称为下风向风力发电机组;上风向风力发电机组必须有某种调向装置来保持风轮迎风,而下风向风力发电机组则能够自动对准风向,从而免去了调向装置;对于下风向风力发电机组,由于一部分空气通过塔架后再吹向风轮,这样塔架就干扰了流过叶片的气流而形成塔影效应,增加了风轮旋转过程中叶片载荷的复杂性,降低了风力发电机组的出力和其他性能;b垂直轴风力发电机组;3按功率调节方式:a定桨距风力发电机组;b变桨距调节风力发电机组;c主动失速调节风力发电机组;4按传动形式:a高传动比齿轮箱型;b直接驱动型;c中传动比齿轮箱型半直驱;5按发电机转速变化:a定速恒速;b多态定速;c变速;4、设计依据风力发电机组的设计依据是风力发电机组的设计任务书,一般包括基本形式、基本参数和外部条件;1基本形式:目前的主流机型是水平轴、上风向、三叶片、变桨距、变速恒频风电机组; 2基本参数:风力发电机组的基本参数主要是指风力发电机组的额定功率、转速范围、总效率、设计寿命和生产成本等;3外部条件:风力发电机组的外部条件包括运行环境条件、电网条件和风场地质情况;运行环境条件主要是风资源、湍流和阵风情况、气候情况等;5、设计内容设计内容包括风力发电机组设计图样和相关的设计文件;设计图样包括外观图、部件图和零件图;设计文件包括设计计算说明书、运输和安装说明书、用户使用和维护手册等;1外观图:风力发电机组的外观图描述了其整体结构并标注了主要尺寸,同时用文字注明了设备的技术特征,如机组类型、功率调节方式、风轮旋转方向、额定功率、额定风速、风轮直径、风轮转速范围、风轮倾角、风轮圆锥角、变距最大角度、齿轮箱类型、齿轮箱增速比、发电机类型、塔架类型、轮毂中心高和各主要部件质量;2部件图:部件图是各层次安装工作的指导图样,表示各零件之间的装配关系、配合公差、轮廓尺寸、装配技术条件和标题栏等;3零件图:零件图是生产零件的依据,包括零件的结构和形状、尺寸、表面粗糙度和几何公差、材料及表面处理技术要求、技术条件、标题栏等;设计零件时,要进行相应的载荷分析和强度校核;4设计文件:设计文件是与设计相关的规范性文件,详细描述了机组设计、制造、装配、运行维护过程的理念、标准、理论依据、方法和技术要求,用于设计部门存档、指导装配和安装、指导用户作业和指导维修人员的维修作业;6、设计原则可靠性、经济性与社会效益、先进性、工艺性和易维修性、标准化;7、设计步骤1方案设计概念设计:确定风力发电机组的主要参数、整体布局和结构形式;对机组的整体载荷及整机质量进行初步计算,选择主要部件的结构,完成机舱布局的计算机设计模型;同时给定控制策略;在此基础上撰写方案设计说明书;2技术设计初步设计:根据方案设计资料,进行整机和部件结构设计和确定技术要求;进行机组载荷计算和分析;对关键零部件进行校核计算和分析;进行电气控制与安全系统设计;初步选择外购件的型号;在此基础上提供技术设计图样和技术设计说明书;3施工设计详细设计:根据技术设计结果,进行载荷计算,对零部件进行强度和刚度校核及失效分析,对关键零部件进行优化设计;对整机进行可靠性分析和动态分析;修改和审定加工图样和技术文件,填写标准件和外购件明细表,撰写设计计算说明书、运输和安装说明书以及用户使用和维修手册;第二章、风力发电机组机械设计基础1、风力发电机组等级由风速和湍流参数决定,分级的目的在于最大限度的利用风能,风速和湍流参数代表了相应风电机组安装场地的类型;注:1、表中所示参数值对应于轮毂高度;2、V ref表示10min平均参考风速;A表示高湍流特性等级;B表示中湍流特性等级;C表示低湍流特性等级;I ref表示风速为15m/s时湍流强度的期望值;2、风况分为:正常风况风力机正常运行期间频繁出现的风况条件和极端风况1年一遇或50年一遇的风况条件;参考风速:50年一遇在轮毂高度处持续10min阵风;3、风况条件是由平均恒流与确定阵风或湍流结合而成;4、每种类型的外部条件又可分为正常外部条件和极端外部条件;5、湍流:风速矢量相对于10min平均值的随机变化;在使用湍流模型时应考虑风速、风向和风切边变化的影响;6、湍流风速矢量的三个分量;纵向沿着平均风速方向横向水平并且与纵向垂直的方向竖向与纵向和侧向均垂直的方向7、正常风廓线模型NWP:风廓线vz是地表以上平均风速对垂直高度z的函数;Vz=VhubZ/Zhub的a次方;8、极端风况:用于确定风力发电机组的极端风载荷,这些风况包括由暴风及风速和风向的迅速变化造成的风速峰值;9、极端风速模型EWM:极端风速模型可能为稳定的或波动的风模型;风速模型应该基于参考风速Vref和确定的湍流标准差σ1,σ1=Iref+b;b=s,σ1=;10、其他环境条件:热、光、腐蚀、机械、电或其他物理作用、温度、湿度、空气密度、阳光辐射、雨、冰雹、雪和冰、活学活性物质、雷电、地震、盐雾;11、正常环境:温度-30~+150,湿度<=95%,阳光辐射强度1000W/m2;12、电网条件:1电压标称值+10%2频率标称值+2%3三相电压不平衡度,电压负序分量的比率不超过2%4适合的自动重合周期5断电,假定电网一年内断电20次,一次断电6小时为正常条件,断电一周为极端条件;13、设计工况:分为运行工况启动发电关机和临时性工况运输吊装维护14、设计工况:发电、发电兼有故障、起动、正常关机、紧急关机、停机、停机兼有故障、运输装配维护和修复;15、DLC设计载荷状态 ECD方向变化的极端连续阵风模型 EDC极端风向变化模型EOG极端运行阵风模型EWM极端风速模型EWS极端风切变模型ETM极端湍流模型NTM正常湍流模型NWP正常风廓线模型F疲劳性载荷分析U极限强度分析N正常A非正常 T运输和安装Vmaint维修保养风速;16、局部安全系数:由于载荷和材料的不确定性和易变性,分析方法的不确定性以及零件的重要性,在设计中一定要有必要的安全储备;17、载荷局部安全系数:载荷特征值出现不利偏差的可能性或不确定性;载荷模型的不确定性;18、材料局部安全系数:材料特征值出现不利偏差的可能性或不确定性;零件截面抗力或结构承载能力评估不确定的可能性;几何参数不确定性;结构材料性能与试验样品所测性能之间的差别;换算误差;19、失效影响安全系数用来区分以下几类零件:1一类零件:失效安全结构件结构件失效后不会引起风力发电机组重要零件的失效2二类零件:非失效安全结构件3三类零件:非失效安全机械件把驱动机构和制动机构与主结构连接起来,以执行风力发电机组无冗余的保护功能;20、风力发电机组极限状态分析内容:极限强度分析;疲劳失效分析;稳定性分析;临界挠度分析;21、稳定性分析:在设计载荷作用下,非失效安全的承载件不应发生屈曲;对于其他零件在设计载荷下,允许发生弹性变形;在特征载荷下,任何零件都不应发生屈曲;第三章、总体设计总体参数是涉及到风力发电机组总结结构和功能的基本参数,主要包括额定功率、发电机额定转速、总效率、设计寿命、年发电量、发电成本、总重量、重心;1、额定功率是正常工作条件下,风力发电机组的设计要达到的最大连续输出电功率;2、设计寿命:风电机组安全等级I到Ⅲ的设计寿命至少为20年;3、额定风速是锋利发电机组达到额定功率输出时规定的风速;10~15m/s;切入风速是风力发电机组开始发电时,轮毂高度处的最低风速;3~4m/s;切出风速是风力发电机组达到设计功率时,轮毂高度处的最高风速;25m/s攻角不变,半径r处的叶素弦长与风轮转速Ω的平方成反比;变桨距攻角改变,反比于转速;4、叶片质量正比于外壳厚度与弦长的乘积,因此它随转速而正比增加;5、转速增加导致叶片重量增加、成本增加,同时转速增加导致叶片平面外的疲劳弯矩减小,机舱和塔架成本减少;6、风力发电机组产生的气动噪声正比于叶尖速度的5次方;陆基叶尖速限制在65m/s,海上74m/s;7、比功率:风力发电机组额定功率与风轮的扫掠面积的比值;405W/m平方;风电机组的总体布局包括整机各部件、各系统、附件和设备等布置;8、总体布置原则:保证风力发电机组的强度、刚度、抗振性、平衡和稳定性,支撑部件要力求有足够的刚度;整机各部件、各系统、附件和设备等,要考虑布置得合理、协调、紧凑;保证正常工作和便于维护,并考虑有较合理的重心位置;传统系统力求简短,达到结构紧凑、体积小、重量轻;9、相似设计:根据研究出来的性能良好、运行可靠地模型来设计与模型相似的新风力机;10、风力机相似是指风轮与气体的能量传递过程以及气体在风力机内流动过程相似,他们在任一对应点的同名物理量之比保持常数,这些常数叫相似常数;11、相似条件:几何相似、运动相似、动力相似;12、几何相似:模型与原型风力机的几何形状相同,对应的线性长度比为一定值;13、运动相似:空气流经几何相似的模型与原型机时,其对应点的速度方向相同、比例保持常数;14、动力相似:满足几何相似、运动相似的模型与原型机上,作用于对应点力的方向相同,大小之比应保持常数;15、Re为雷诺数,表示作用于流体上的惯性力与黏性力之比16、对于具有相同叶尖速比的相似模型和原型机,他们的效率也相等;17、模型试验中,雷诺数的值比临界雷诺数高,相似性依旧成立;相反相似性差;18、风电机组成本排序:叶片、塔架、齿轮箱、机舱、电网联接、发电机;第四章、风轮与叶片设计风轮的作用是把风的动能转换成风轮的旋转机械能;风轮的输出功率与风轮扫掠面积或风轮直径的平方、风速的立方和风能利用系数成正比;第一节、概述一、叶片的基本概念1、叶片长度:叶片径向方向上的最大长度;2、叶片面积:叶片旋转平面上的投影面积;3、叶片弦长:叶片径向各剖面翼型的弦长;4、叶片扭角:叶片各剖面弦线和风轮旋转平面的夹角;二、风轮的几何参数1、叶片数:风轮的叶片数取决于风轮尖速比;2、风轮直径:风轮在旋转平面上的投影圆的直径;3、轮毂高度:风轮旋转中心到基础平面的垂直距离;4、风轮扫掠面积:风轮在旋转平面上的投影面积;5、风轮锥角:叶片相对于和旋转轴垂直的平面的倾斜角;其作用是在风轮运行状态下减少离心力引起的叶片弯曲应力和防止叶尖与塔架碰撞的机会;6、风轮仰角:风轮的旋转轴线和水平面的夹角;其作用是避免叶尖和塔架的碰撞;7、风轮偏航角:风轮旋转轴线和风向在水平面上投影的夹角;偏航角可以起到调速和限速的作用,但在大型风力发电机组中一般不采用这种方式;8、风轮实度:叶片在风轮旋转平面上投影面积的总和与风轮扫掠面积的比值;实度大小与尖速比成反比;三、风轮的物理特性1、风轮转速;2、风轮叶尖速比公式;3、风轮轴功率公式;第二节、风轮载荷设计计算一、叶片受力示意图升力,阻力系数公式;翼型的选择:对于低速风轮,由于叶片数较多,不需要特殊的翼型升阻比;对于高速风轮,由于叶片数较少,应当选用在很宽的风速范围内具有较高升阻比和平稳失速特性的翼型,对粗糙度不敏感,以便获得较高的功率系数;另外要求翼型的气动噪声低;二、叶片载荷1、静载荷1最大受力:50年一遇的最大阵风作为最大静载荷值;2最大弯矩:当重力和气动力在同一方向上;3最大扭矩:当最大阵风时;2、动载荷1由阵风频谱的变化引起的受力变化;2风剪切影响引起的叶片动载荷;3偏航过程引起的叶片上作用力的变化;4弯曲力矩变化,由于自重及升力产生的弯曲变形;5在最大转速下,机械、空气动力制动,风轮制动的情况下;6电网周期性变化;三、叶片的受力分析离心力、风压力、气动力矩、陀螺力矩;四、风轮的强度校核1、在载荷下运转时叶片强度的计算;2、无载荷运转时叶片轴强度的计算;3、叶片停转时叶片轴强度的计算;第三节、叶片气动设计一、风力机的性能指标风轮输出功率、风能利用系数、尖速比、推力系数;相关公式二、风力机的空气动力学设计动量理论、叶素理论;三、叶片结构设计与制造一轻型结构叶片的优缺点:优点:1、在变距时驱动质量小,在很小的叶片机构动力下产生很高的调节速度;2、减少风力发电机组总质量;3、风轮的机械制动力矩小;4、周期振动弯矩由于自重减轻而很小;5、减少了材料成本;6、运费减少;7、便于安装;缺点:1、要求叶片结构必须可靠,制造费用高;2、所用材料成本高;3、风轮在阵风时反应灵敏,因此,要求功率调节也要快;4、材料特性和载荷计算必须很准确,以免超载;二叶片材料用于制造叶片的主要材料有玻璃纤维增强塑料GRP、碳纤维增强塑料CFRP、木材、钢和铝等;目前叶片多为玻璃纤维增强复合材料GRP,基体材料为聚酯树脂或环氧树脂;环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小;聚酯材料较便宜,它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形在金属材料与玻璃钢材料之间可能产生裂纹;复合材料的优点:可设计性强、易成型性好、耐腐蚀性强、维护少,易修补;缺点:耐热性差;抗剪切强度低;存在老化问题;生产时安全防护;表面强度低;可以燃烧;GRP材料的风力发电机组叶片成形工艺有手工湿法成形、真空辅助注胶成形和手工预浸布铺层等;三叶片主体结构叶片截面类型:实心截面、空心截面、空心薄壁复合截面等;蒙皮:提供叶片的气动外形,同时承担部分弯曲载荷与大部分剪切载荷;蒙皮的层状结构包括胶衣层、玻纤毡增强层、强度层;主梁:承载叶片的大部分弯曲载荷,是主要的承力结构;四铺层设计原则1、均衡对称原则;2、定向原则;3、按照内力方向的取向原则;4、顺序原则;5、抗局部屈曲设计原则;6、最小比例原则;7、变厚度设计原则;8、冲击载荷区设计原则;五叶根结构形式1、螺纹件预埋式:连接最可靠,但每个螺纹件的定位必须准确;2、钻孔组装式:优点:不需要贵重且质量大的法兰盘;在批量生产中只有一个力传递元件;由于采用预紧螺栓,疲劳可靠性很好;通过螺栓很好的机械联接,法兰不需要粘接;缺点:需要很高的组装精度;在现场安装,要求可靠的螺栓预紧;六功率调节方法1、失速控制优点:叶片和轮毂之间无运动部件,轮毂结构简单,费用低;没有功率调节系统的维护费用;在失速后功率的波动相对较小;缺点:气动制动系统可靠性设计和制造要求高;叶片、机舱和塔架上的动态载荷高;由于常需要制动过程,在叶片和传动系统中产生很高的机械载荷;起动性差;机组承受的风载荷大;在低空气密度地区难以达到额定功率;2、变浆距控制优点:起动性好;刹车机构简单,叶片顺浆后风轮转速可以逐渐下降;额定点以后的输出功率平滑;风轮叶根承受的静、动载荷小;缺点:由于有叶片变距机构,轮毂较复杂,可靠性设计要求高,维护费用高;功率调节系统复杂,费用高;七防雷击保护雷击造成叶片损坏的机理:一方面,雷电击中叶尖后,释放大量能量,使叶尖结构内部的温度急剧升高,引起气体高温膨胀,压力上升,造成叶尖结构爆裂破坏,严重时使整个叶片开裂;另一方面,雷击造成的巨大声波对叶片结构造成冲击损坏;八降噪措施①提高制造精度,降低表面粗糙度;②修正轮齿缘;在制造齿轮时,在齿轮顶侧沿齿宽修成直线或均匀曲线;③改用斜齿轮;④改进齿轮参数;减小v、d,选取互为质数的传动比;⑤齿轮的阻尼处理;高阻尼、不淬火;⑥改进润滑方式;第四节、轮毂设计一、风轮轮毂的结构设计轮毂是连接叶片与主轴的重要部件,作用是传递风轮的力和力矩到后面的机械结构中去;通常轮毂的形状为三通形或三角形;常用的轮毂形式有:1刚性轮毂;2柔性轮毂铰链式轮毂,叶片在挥舞方向、摆振方向和扭转方向上都可以自由活动;由于铰链式轮毂具有活动部件,相对于刚性轮毂来说,制造成本高,可靠性相对较低,维护费用高;它与刚性轮毂相比所说力与力矩较小;二、风轮轮毂的载荷分析轮毂载荷的分析方法:最大剪切法、ASME锅炉和压力容器规则法、变形能法;第五章、传动与控制机构设计1、传动与控制机构:传动机械能所需传动机构和机组控制调节所需驱动机构2、主传动链:风轮轴功率传递到发电机系统所需机构;典型的主传动链包括风轮主轴系统、增速传动机构齿轮箱、轴系的支撑与连接轴承、联轴器和制动装置;设计要求:载荷传递路径最短,结构紧凑,机械传动系统与承载轴承部件集成;主要构件支撑方式:由独立轴承支撑主轴,三点支撑式主轴,主轴集成到齿轮箱,轴承集成在机舱底盘,固定主轴支撑风轮;3、主轴轴承:径向与轴向支撑通常采用滚动轴承,易产生弯曲变形;轴承计算包括静态和动态额定值、轴承寿命分析等;4、主轴:仅考虑主轴传递扭矩的初步结构设计计算,考虑综合载荷作用的主轴强度计算;5、轴系连接构件:高速轴与发电机轴采用柔性联轴器,以弥补安装误差、解决不对中问题;需考虑对机组安全保护功能;可降低成本;还需考虑完备的绝缘措施;轴与齿轮键连接平键、花键;6、主传动链齿轮:采用大传动比齿轮传动装置,将风轮所产生转矩传递到发电机,使其得到相应转速;基本特点:大传动比,大功率,难以确定动态载荷;常年运行在极端环境下,高空维修困难;设法见效其结构和重量;设置刹车装置,配合风轮气动制动;在满足可靠性和工作寿命要求前提下,以最小体积和重量为目标,获得优化的传动方案;7、齿轮箱:箱体,传动机构,支撑构件,润滑系统,其他附件;传动形式:定轴,行星齿轮以及组合传动;级数:单级,多级;布置形式:展开式,分流式,同轴式;风电齿轮箱:多级齿轮传动,采用一级或两级行星齿轮与定轴齿轮组成的混合轮系;8、轮系:由若干对啮合齿轮组成的传动机构,以满足复杂的工程要求;定轴:所有齿轮几何轴线位置固定,分为平面和空间定轴轮系,尽可能使传动级数少;星系轮系:至少有一个齿轮的轴线可绕其他齿轮轴线转动,传动效率高,承载能力强,结构简单工艺性好;9、设计载荷:分析过程要参照相应设计标准;最重要载荷参数是反映风轮输出转矩及其相应特性的载荷谱;制动载荷:风轮制动主要依靠气动制动功能,制动时间比机械制动时间短,机械制动多用于紧急情况;10、齿轮箱结构设计:内部构件尺寸+运行环境确定外部载荷准确信息;一般传动系统设计标准给出工况系数KA;;结构设计:初步确定总体结构参数,箱体结构设计,齿轮与轴的结构设计,构建连接;11、传动效率与噪声:散热是紧凑结构齿轮箱的关键,定轴轮系每级损失2%,行星轮1%,机组传动载荷小时效率会有明显下降;12、润滑油:减少摩擦,较高承载,防止胶合,降震,防疲劳点蚀,冷却防腐蚀;润滑系统:强制润滑,设置基本回路以及对润滑油加热冷却的回路;润滑方式有飞溅润滑和强制润滑;润滑油换油周期:开始,500h;运行过程,5000~10000h;定期抽样检测;半年检修;对齿轮箱重新进行检测;13、关机运动方程:空气动力矩,机械制动力矩,发电机电磁力矩;空气制动:定桨距由叶尖扰流器实现,变桨距由顺桨实现;机械制动:多置于高速轴;限制条件离心应力,摩擦速度,摩擦片温升,制动盘温升14、变桨距系统:起动,功率调节,主传动链制动;运动方程:空气动力矩,重力矩,摩擦力矩;15、电机驱动机构:驱动功率计算,电动机选择,变距轴承齿轮副传动比,减速箱基本参数;电机外壳的防护等级:IP--;电机外壳的防护GB/。
风力发电组成及原理---1. 前言本文将介绍风力发电的组成和原理。
风力发电是一种可再生能源的发电方式,利用风能转化为电能。
它具有环保、可持续和减少碳排放的优点,因此在能源领域得到越来越广泛的应用。
2. 风力发电组成风力发电主要由以下几个组成部分构成:2.1 风机风机是风力发电系统的核心部件,通常由风轮、主轴、发电机和控制系统组成。
它的主要功能是将风能转化为机械能。
2.2 塔筒塔筒是支撑风机的结构,通常由混凝土或钢材制成。
它的高度往往决定着风机所能捕捉到的风能的多少。
2.3 基础基础是承载整个风力发电系统的结构,既可以是混凝土基础,也可以是钢材基础。
它的稳固性对整个系统的安全运行至关重要。
2.4 控制系统控制系统是风力发电系统的大脑,负责监测和控制风机的运行。
它可以根据风速的变化调整风机的转速,并将机械能转化为电能。
3. 风力发电原理风力发电是利用风能将风机旋转,进而驱动发电机产生电能的过程。
其原理如下:- 当风吹过风机的风轮时,风轮受到风力的作用开始旋转。
- 风轮的旋转通过主轴传递给发电机,并带动发电机转动。
- 发电机内部的磁场与线圈之间的相互作用产生电压和电流。
- 电压和电流通过变压器进行升压处理后,输入电网,供应给用户使用。
4. 结论风力发电系统是由风机、塔筒、基础和控制系统等组成的。
利用风力转化为机械能,再通过发电机将机械能转化为电能。
风力发电是一种环保、可持续和有效的发电方式,将在未来的能源领域发挥重要作用。
---请注意,以上内容仅供参考,详细的风力发电原理和组成可能有所变化。
在实际应用中,请参考相关可靠资料和专业人士的建议。
本文内容仅供参考,请勿引用未经确认的内容。
第二章风力机基础理论2.2风力机的分类国内外风力机的结构形式繁多,从不同的角度有多种分类方法。
①按风轮轴与地面的相对位置,分为水平轴式风力机和垂直轴(立轴)式风力机。
②按叶片工作原理,分为升力型风力机和阻力型风力机。
③按风力机的用途分类,有风力发电机、风力提水机、风力铡草机、风力脱谷机等。
④按风轮叶片的叶尖线速度与吹来的风速之比的大小来分,有高速风力机(比值大3)和低速风力机(比值小3);也有把该比值2~5者称为中速风力机。
⑤按风力机容量大小分类:国际上通常将风力机组分为小型(100 kW 以下)、中型(100~1000kW)和大型(1 000 kW 以上)3种;我国则分成微型(1 kW2.1 以下)、小型(1~10 kW)、中型(10~100 kW)和大型(100 kW 以上)4种;也有的将l 000kW 以上的风机称为巨型风力机。
⑥按风轮相对于塔架的位置,分为上风式(前置式)风力机和下风式(后置式)风力机。
⑦按风轮的叶片数量,分单叶片、双叶片、三叶片、四叶片及多叶片式风力机。
现在各国应用较多的是水平轴、升力型和少叶式的风力发电机(多数为2—3个叶片) 风力机翼型的概念2.3 翼型的几何参数及气动特性2.3.1翼型的几何参数翼型定义:叶片展向长度趋于无穷小时叫翼型。
常见的翼型形状有如图所示几种:对称翼型双凸翼型S型翼型平凸翼型下图为一任意形状的翼,其几何尺寸和参数如下:1.弦长(即翼弦)b翼型最前点(前缘)与最后点(后缘)的连钱称翼弦,它的长度称弦长用b 表示。
当前、后缘厚度不为0时,翼弦定义为前缘中点与后缘中点的连线。
2.厚度(指最大厚度)c是上、下翼面在垂直于翼弦方向的距离,其中最大者称最大厚度,用c 表示。
3.相对厚度c最大厚度c 与弦长b 的比值,用cc b=表示。
4.最大厚度位置c σ指最大厚度线到前线点的弦向距离记作c σ。
5.最大厚度相对位置c σ指最大厚度位置c σ与弦长b 的比值,用c c bσσ=表示。
风力发电机概述一、风力发电机风力发电的原理简单来说:风力发电原理是把风的动能转换为风轮轴的机械能最后到电能!工作原理现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。
如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。
齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。
风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。
对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。
在停机时,叶片要顺桨,以便形成阻尼刹车。
就1500千瓦风机而言,一般在3米/秒左右的风速自动启动,在11.5米/秒左右发出额定功率。
然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。
二、风力发电机结构风力发电机整机主要包括:1.机座2.传动链(主轴、齿轮箱)3. 偏航组件(偏航驱动、偏航刹车钳、偏航轴承)4.踏板和棒5.电缆线槽6.发电机7.联轴器8.液压站9.冷却泵(风冷型无) 10.滑环组件11.自动润滑12.吊车13.机舱柜14.机舱罩15.机舱加热器16.轮毂17.叶片18.电控系统等。
1、机座:机座是风力发电整机的主要设备安装的基机座:础,风电机的关键设备都安装在机座上。
(包括传动链(主轴、齿轮箱)、偏航组件(偏航驱动、偏航刹车钳、偏航轴承)、踏板和棒、电缆线槽、发电机、联轴器、液压站、冷却泵(风冷型无)、滑环组件、自动润滑、吊车、机舱柜、机舱罩、机舱加热器等。
机座与现场的塔筒连接,人员可以通过风电机塔进入机座。
机座前端是风电机转子,即转子叶片和轴。
2、偏航装置偏航装置::自然界的风,方向和速度经常变化,为了使风力机能有效地捕捉风能,就相应设置了对风装置以跟踪风向的变化,保证风轮基本上始终处于迎风状况。