中职数学幂函数教学教案
- 格式:docx
- 大小:110.14 KB
- 文档页数:4
《幂函数》教案《幂函数》教案教学目标知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点重点从五个具体幂函数中认识幂函数的一些性质.难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.教学程序与环节设计:教学过程环节教学内容设计师生双边互动创设情境组织探究尝试练习巩固反思作业回馈课外活动问题引入.幂函数的图象和性质.幂函数性质的初步应用.复述幂函数的图象规律及性质.幂函数性质的初步应用.利用图形计算器或计算机探索一般幂函数的图象规律.创设情境阅读教材P90的具体实例(1)~(5),思考下列问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如αxy=的函数,其中x是自变量,是α常数.生:独立思考完成引例.师:引导学生分析归纳概括得出结论.师生:共同辨析这种新函数与指数函数的异同.组织探究材料一:幂函数定义及其图象.一般地,形如αxy=)(Ra∈的函数称为幂函数,其中α为常数.下面我们举例学习这类函数的一些性质.作出下列函数的图象:(1)xy=;(2)21xy=;(3)2xy=;(4)1-=xy;(5)3xy=.[解] ○1列表(略)○2图象师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.师生共同分析,强调画图象易犯的错误.环节教学内容设计师生双边互动组织探究材料二:幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于∞+时,图象在x轴上方无限地逼近x轴正半轴.师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.材料三:观察与思考观察图象,总结填写下表:xy=2xy=3xy=21xy=1-=xy定义域值域奇偶性单调性定点材料五:例题[例1](教材P78例题)[例2]比较下列两个代数值的大小:(1)5.1)1(+a,5.1a(2)322)2(-+a,322-[例3] 讨论函数3xy=的定义域、奇偶性,作师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出.出它的图象,并根据图象说明函数的单调性.生:独立思考,给出解答,共同讨论、评析.环节呈现教学材料师生互动设计尝试练习1.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)433.2,434.2;(2)5631.0,5635.0;(3)23(-,23)3(-;(4)211.1-,219.0-.2.作出函数23xy=的图象,根据图象讨论这个函数有哪些性质,并给出证明.3.作出函数2-=xy和函数2)3(--=xy的图象,求这两个函数的定义域和单调区间.4.用图象法解方程:(1)1-=xx;(2)323-=xx.探究与发现1.如图所示,曲线是幂函数αxy=在第一象限内的图象,已知α分别取2,21,1,1-四个值,则相应图象依次为:.2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?(1)3-=xy和31-=xy;规律1:在第一象限,作直线)1(>=aax,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线xy=对称.(2)45x y =和54x y =.作业回馈1.在函数1,,2,1222=+===y x x y x y x y 中,幂函数的个数为:A .0B .1C .2D .3环节呈现教学材料师生互动设计2.已知幂函数)(x f y =的图象过点)2,2(,试求出这个函数的解析式.3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.4.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y (亿),写出:(1)1993年底、1994年底、2000年底的世界人口数;(2)2008年底的世界人口数y 与x 的函数解析式.课外活动利用图形计算器探索一般幂函数αx y =的图象随α的变化规律.收获与体会1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?2.幂函数与指数函数的不同点主要表现在哪些方面?。
中职数学有理数指数幂教案数学教案课题:有理数的指数幂教学目标:1. 了解有理数的指数幂的概念。
2. 掌握有理数的指数幂的运算规则和性质。
3. 能够应用有理数的指数幂解决实际问题。
教学内容与教学步骤:一、导入(5分钟)1. 引导学生回顾有理数的概念和性质。
2. 提问:什么是指数?什么是幂?在数学中有什么重要的应用?二、讲解(20分钟)1. 定义有理数的指数幂。
- 对于有理数a和正整数n,a的n次方(记作a^n)定义为n个a 的乘积,即a^n = a × a × ... × a (n个a)。
- 对于有理数a和正整数n,a的-n次方定义为1/a的n次方,即a^(-n) = 1/(a^n)。
2. 讲解有理数的指数幂的运算规则和性质。
- 同底数的幂相乘,指数相加。
- 同底数的幂相除,指数相减。
- 幂的幂,指数相乘。
- 幂的乘方,底数不变,指数相乘。
- 任何数的0次方等于1。
- 任何数的1次方等于它本身。
- 任何数的-1次方等于它的倒数。
3. 通过例题演示运用有理数的指数幂的运算规则。
三、练习(15分钟)1. 学生个别或小组进行练习,巩固运用有理数的指数幂的运算规则和性质。
2. 针对学生的不同水平,提供不同难度的练习题。
四、拓展与应用(10分钟)1. 引导学生将有理数的指数幂应用于实际问题。
2. 提问:在生活中有哪些场景可以运用有理数的指数幂?五、归纳总结(5分钟)1. 让学生总结有理数的指数幂的运算规则和性质。
2. 强调掌握和应用有理数的指数幂的重要性。
六、作业布置(5分钟)1. 布置课后作业,要求练习有理数的指数幂的运算。
2. 鼓励学生多做实际问题的应用题。
备注:本教案中没有包含任何网址、超链接和电话等外部信息。
《幂函数》教案3.3幂函数(1)教案【教学目标】【知识与技能】1.理解幂函数的概念.2.通过具体实例研究幂函数的图象和性质,并初步进行应用.【过程与方法】通过对幂函数的学习,使学生进一步熟练掌握研究函数的一般思想方法.【情感、态度价值观】1.进一步渗透数形结合、分类讨论的思想方法.2.体会幂函数的变化规律及蕴含其中的性质.3.通过引导学生主动参与作图、分析图象,培养学生的探索精神,并在研究函数变化的过程中渗透辩证唯物主义的观点.【重点难点】重点:通过六个具体的幂函数认识概念,研究性质,体会图象的变化规律.难点:画六个幂函数的图象并由图象概括幂函数的一般性质.【突破方式】教师引导学生动手作图、媒体演示多个幂函数图象,深化学生对图象的直观认识;观察幂函数图象,归纳幂函数的性质,加强学生对幂函数性质的理解和记忆.【教学策略】【教学顺序】复习引入,归纳定义,研究图象,归纳性质,应用性质.【教学方法与手段】1.采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义和性质,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性.2.利用投影仪及计算机辅助教学.超级链接到课件3.3幂函数(1)(个人独立制作)【教学过程】创设情境前面我们学习了函数定义,研究了函数的一般性质,并且研究了指数函数和对数函数.函数这个大家庭有很多成员,如一次函数、二次函数、反比例函数、指数函数、对数函数等.它们在数学中的都承担着各自的任务,每个成员又都有它们各自鲜活的个性.今天,我们利用研究指数函数、对数函数的研究方法,再来认识一位新成员.请大家看如下问题.(板书:.,,,,,12132x y x y x y x y x y )抽取这几个解析式结构上的共同特征:我们能够发现它们的右端都是幂的形式,并且底数是自变量x ,幂指数是常数. 也就是说,它们可以写成ax y 的形式,这种形式的函数就是幂函数.(板书课题:幂函数)探究新知幂函数的定义(形式定义)一般地,形如)(R x y的函数称为幂函数,其中是常数.自变量x 是幂的底数,换句话说,幂的底数是单变量x ,幂指数是个常数,幂的系数是1,符合上述形式的函数,就是幂函数.请同学们举出一个具体的幂函数.从引例和同学们刚才举的例子中,我们可以发现,幂指数可以是正数、负数,也可以是0.幂函数与指数函数,对数函数一样,都是基本初等函数. 课堂练习1.指出下列函数中的幂函数..,,,,5xy x y x y x x y xy 51222探究新知按照从特殊到一般的原则,我们先来研究几个具有代表意义的幂函数..,,,,,212132x y x y x y x y x y x y请同学们用描点法在平面直角坐标系中画出上述函数的图象.我们在前面的课程中已经研究过了函数y x 与2y x 的性质,它们的图象已经呈现在坐标纸中了,在这里,我们只画出余下四个函数的图象.(时间关系,分四组)根据手里作出的图象,以小组为单位对照函数图象,讨论以下四个问题:1.描点法画函数图象的步骤;(列表、描点、连线)2.互相检查函数图象的画法,图象是否一致;3.讨论在画图象过程中出现的问题;4.探究幂函数图象的变化规律,归纳幂函数的性质.通过刚才观察同学们作图,其中几个同学的图象特别规范,请看. 变化趋势. 首先可以很明显的看到,上述六个幂函数的图象都过同一个定点(1,1).从这些函数的图象我们可以看到,幂函数随着幂指数的取值不同,它们的性质和图象也存在着差异,请同学们根据这个表格,寻找这6个幂函数的共性?定义域不同,但有公共区间(0,+∞).为了更好地观察函数图象特征,总结幂函数的性质,我们把6个幂函数的图象画在同一平面直角坐标系中.(这是幂函数……的图象……)总结性质虽然这6个幂函数图象所分布的象限不同,但是我们还是不难发现它们共同的特征.这6个幂函数在(0,+∞)都有定义,图象都过点(1,1).注意到这6个幂函数在第一象限内的单调性的差异,我们来观察当0 时的函数图象,(演示几何画板,隐藏0 时图象)很明显,它们的图象除了过点(1,1)外,还过原点,并且在区间),0[ 上是增函数.再来观察当0 时的函数图象,(演示几何画板,显示0 时图象,隐藏0 时图象)幂函数在区间),0( 上是减函数.在第一象限内,当自变量x 取值从右边趋于0时,图象在y 轴右方无限地靠近y 轴,但不与y 轴相交,当自变量x 取值趋于时,图象在x 轴上方无限地靠近x 轴,但不与x 轴相交.演示画板,改变幂指数的值,观察函数图象的变化趋势,不难发现,所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);当幂指数0 时,幂函数都过原点,在),0[ 上是增函数;当幂指数0 时,在),0( 上是减函数,在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于时,图象在x 轴上方无限地逼近x 轴.0 0在(0,+∞)有定义,图象过点(1,1);在),0[ 上是增函数在),0( 上是减函数图象过原点在第一象限内,当x 从右边趋向于0时,图象在y 轴右方无限地逼近y 轴,当x 趋于时,图象在x 轴上方无限地逼近x 轴.例题解析例1 比较下列两个代数式值的大小:.2,)2)(4(;,)1)(3(;)3(,)2)(2(;4.2,3.2)1(323225.15.123234343a a a分析:观察所给的两个代数式,都是幂的形式.又因为幂指数相同,而底数不同,所以想到要利用幂函数的性质解决此类问题.(1)解:考察幂函数43x y ,因为43x y 在(0,+∞)上单调递增,而且2.3<2.4,所以43434.23.2 .以下各题同理可解:.2)2)(4(;)1)(3(;)3()2)(2(323225.15.12323a a a例2 讨论函数32x y 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.解:要使3232x x y 有意义,x 可以取任意实数,故函数定义域为R .∵f (-x )=3232)(x x =f (x ),∴函数32x y 是偶函数; x1 2 3 4 … y x 01 1.59 2.08 2.52 …幂函数32x y 在[0,+)上单调递增,在(-∞,0)上单调递减.思考与讨论幂函数)(R x y,当,5,,3,1 (正奇数)时,函数有哪些性质?(演示画板)定义域为R ,值域为R ,是奇函数,在(-∞,+∞)上是增函数. 当,6,,4,2 (正偶数)时,这类幂函数的性质和特点,留做同学们课下讨论. 课堂练习2.幂函数43x y 的单调递增区间是________.答案: ,0 3.2121211.1,9.0,2.1 c b a 的大小关系是________.答案a >b >c归纳小结本节课我们学习了幂函数的定义,通过作出6个具有代表意义的幂函数的图象,归纳总结幂函数的共同性质,这也是我们研究函数的一般思想方法. 布置作业作出函数23x y 的图象,根据图象讨论这个函数有哪些性质,并给出证明.通过本节课的学习,相信幂函数已经在大家的头脑中留下十分深刻的印象.最后,让我们在悠扬的音乐声中给大家展示一个数学公式,这是作为基本初等函数的幂函数在高等数学中的应用,用含有阶乘的幂指数是正整数的幂函数形式来表示xe ——泰勒公式.)(!!3!2132R x n x x x x e nx。
乐至县高级职业中学任务教学教学设计
总结:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点(1,1).
2 指出幂函数2y x -=的定义域,并作出函数图像.分析 考虑到22
1
x x
-=
,因此定义域为0-∞+∞()(,)函数为偶函数.其图像关于y 轴对称,可以先作出区间后再利用对称性作出函数在区间(,0)-∞内的图像. 2y x -=的定义域为00-∞+∞(,)(,).由分析过程知道函数为偶函数.在
区间(0,)+∞内,设值列表如下:
以表中的每组,x y 的值为坐标,描出相应的点x …
1
2
1 2 … y … 4 1 1
4
…
总结:这个函数在(0,)
+∞内是减函数;经过点(1,1).
【理论升华整体建构】
一般地,幂函数y xα
=具有如下特征:
(1) 随着指数α取不同值,函数
生变化;
(2)当α>0时,函数图像经过原点
像不经过原点(0,0),但经过(1,1)
任务四、运用知识强化练习
教材练习P100
任务五、归纳小结强化思想
本次课学了哪些内容?
重点和难点各是什么?
任务六、自我反思目标检测
本次课采用了怎样的学习方法?
你是如何进行学习的?
你的学习效果如何?。
幂函数教案教案标题:幂函数教案目标:1. 理解幂函数的定义和特点;2. 掌握幂函数的图像和性质;3. 能够解决与幂函数相关的实际问题。
教学重点:1. 幂函数的定义和特点;2. 幂函数的图像和性质。
教学难点:1. 解决与幂函数相关的实际问题。
教学准备:1. 教师:幂函数的定义和性质的讲解材料、幂函数的图像和性质的示意图、与幂函数相关的实际问题的案例;2. 学生:纸和笔。
教学过程:Step 1:引入幂函数的概念(5分钟)教师通过提问或简短的讲解,引导学生回顾指数函数的概念,并引入幂函数的概念。
解释幂函数的定义:f(x) = ax^b,其中a和b为常数,且a≠0。
Step 2:讲解幂函数的特点(10分钟)教师讲解幂函数的特点,包括:- 当b为正数时,幂函数是递增函数;- 当b为负数时,幂函数是递减函数;- 当b为偶数时,幂函数的图像关于y轴对称;- 当b为奇数时,幂函数的图像关于原点对称。
Step 3:绘制幂函数的图像(10分钟)教师示范如何绘制幂函数的图像,并解释图像的变化规律。
学生跟随教师进行练习,并互相检查答案。
Step 4:解决与幂函数相关的实际问题(15分钟)教师提供一些与幂函数相关的实际问题,如物体的自由落体问题、人口增长问题等。
学生独立或小组合作解决这些问题,并在黑板上展示解题过程和结果。
Step 5:总结与拓展(5分钟)教师对本节课的内容进行总结,并提出一些拓展问题,鼓励学生进一步思考和探索幂函数的应用领域。
Step 6:作业布置(5分钟)教师布置相关的课后作业,包括练习题和思考题,以巩固学生对幂函数的理解和应用能力。
教学辅助工具:1. 幂函数的定义和性质的讲解材料;2. 幂函数的图像和性质的示意图;3. 与幂函数相关的实际问题的案例;4. 黑板和粉笔。
教学评估:1. 教师观察学生在课堂上的参与程度和回答问题的能力;2. 批改学生的课后作业,评估他们对幂函数的理解和应用能力。
拓展活动:1. 学生可以自行寻找更多与幂函数相关的实际问题,并尝试解决;2. 学生可以利用计算机绘制幂函数的图像,并比较不同参数对图像的影响。
2.3幂函数一.教学目标:1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质5.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质;(2)教学用具:多媒体三.教学过程:引入新知阅读教材P90的具体实例(1)~(5),思考下列问题.(1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论答:1、(1)乘以1 (2)求平方(3)求立方(4)求算术平方根(5)求-1次方=,其中x是自变量,α是2、上述的问题涉及到的函数,都是形如:y xα常数.探究新知1.幂函数的定义=(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2.研究函数的图像(1)y x = (2)12y x = (3)2y x =(4)1y x -= (5)3y x = 一.提问:如何画出以上五个函数图像引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像..23.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x =); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:1.证明幂函数()[0,]f x =+∞上是增函数证:任取121,[0,),x x x ∈+∞且<2x 则12()()f x f x -=因12x x -<0所以12()()f x f x <,即()[0,]f x =+∞上是增函数.思考:我们知道,若12()()0,1()f x y f x f x =><若得12()()f x f x <,你能否用这种作比的方法来证明()[0,]f x=+∞上是增函数,利用这种方法需要注意些什么?2.利用函数的性质,判断下列两个值的大小(1)11662,3(2)3322(1),(0)x x x+>(3)22244(4),4a--+分析:利用幂函数的单调性来比较大小.5.课堂练习画出23y x=的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.6.归纳小结:提问方式(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?(2)你能根据函数图象说出有关幂函数的性质吗?作业:P92习题2.3 第2、3 题。
4.1.3 幂函数举例一、教材分析幂函数选自新课标职业高中数学基础模块上册第四章实数指数幂的第四课时,是基本初等函数之一,它不仅有着广泛的应用,而且起着承前启后的作用,从教材的整体安排看,学习了幂函数是为了让学生进一步获得比较系统的函数知识和函数研究方法,为今后学习指数函数,对数函数,三角函数打下良好的基础,在初中曾经研究过21,1,x y x xy x y ====三种幂函数,这节内容是对初中有关内容的进一步概括、归纳与发展,是与幂函数有关知识的高度升华,通过本节课的学习,使学生进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。
二、学情分析在知识储备方面,学生学习幂函数之前,在初中已经掌握的一次函数,二次函数,正比例函数,反比例函数几类基本初等函数,并且在第三章接触过函数,已经确立了利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。
由于幂函数的情况比较复杂,学生在对图像共性的归纳概括方面可能遇到困难,在思维水平方面,所授班级是中职学生,学生的数学基础普遍薄弱,学生层次参次不齐,个体差异比较明显,虽然前面学生已经学会用描点列表连线画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。
三、教学设计四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中归纳出幂函数的模型,在教学重难点上,步步设问、启发学生的思维,通过探究活动,学生讨论,课堂练习的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
关于幂函数的教案范文教案:幂函数一、教学目标:1.理解幂函数的定义及其特点;2.掌握幂函数的图像特点及变化规律;3.运用幂函数解决实际问题。
二、教学重点与难点:1.理解幂函数的定义及其特点;2.掌握幂函数的图像特点及变化规律。
三、教学准备:1.幂函数相关的教学资料;2.黑板、粉笔;3.幂函数的图像示例。
四、教学过程:Step 1:导入新知(5分钟)1.先导入知识,激发学生的学习兴趣。
可以提问:“你们有没有见过幂函数?”或者“你们对幂函数有什么了解?”2.引导学生思考,引出幂函数的定义。
Step 2:幂函数的定义(10分钟)1.讲解幂函数的定义及其一般形式:y=x^a(a为非零实数,x为正数)。
2.分析幂函数的定义,强调底数为正数,指数为非零实数。
3.提问:“当a为正数、负数和零时,幂函数的图像有什么特点?”解答问题并总结。
Step 3:幂函数的图像特点及变化规律(30分钟)1.通过具体数据的计算,构造幂函数的函数表,并画出函数图像。
2.分析不同指数下的幂函数图像的特点及变化规律。
3.提醒学生关注幂函数图像在定义域内的变化趋势,以及图像与坐标轴的关系。
Step 4:练习与巩固(30分钟)1.完成课本上的练习题,帮助学生熟练掌握幂函数的相关知识。
2.出示一些实际问题,引导学生运用幂函数解决实际问题。
Step 5:拓展与应用(20分钟)1.出示一些拓展问题,让学生运用所学知识解答问题。
2.引导学生对幂函数的应用进行思考和探索,例如:利用幂函数解决生活中的问题,如投资收益的计算等。
五、课堂小结(5分钟)总结本节课所学内容,强调幂函数的定义及其特点,并鼓励学生多进行实际问题的思考与解决。
六、作业布置1.完成课堂上未完成的练习题;2.思考并准备一个幂函数的实际问题,并运用所学知识解答。
七、教学反思通过这节课的教学,学生对幂函数的定义及其图像特点有了更深入的理解,并能运用所学知识解决相关实际问题。
需要注意的是,在教学过程中要注重学生的思维活动,灵活运用教学资源,让学生充分参与到课堂教学中来,提高学习效果。
幂函数教案一、教学目标1. 理解幂函数的定义和性质,能够正确运用幂函数的相关概念;2. 掌握幂函数的图像、性质以及变化规律;3. 能够解决幂函数相关的实际问题。
二、教学重点1. 幂函数的定义和性质;2. 幂函数的图像及其变化规律;3. 幂函数在实际问题中的应用。
三、教学难点1. 幂函数的概念和性质的理解与运用;2. 幂函数图像的绘制及变化规律的总结;3. 幂函数在实际问题中的应用解决。
四、教学过程1. 幂函数的引入(10分钟)教师通过列举一些实际问题,引导学生思考实际问题中的变化规律,并与幂函数进行对比,引入幂函数的概念。
2. 幂函数的定义和性质(20分钟)教师给出幂函数的定义,并介绍幂函数的性质,如定积分的计算、导数的运算规则等。
学生通过课堂讨论和练习题的完成,掌握幂函数的定义和性质。
3. 幂函数的图像及其变化规律(30分钟)教师通过几个具体的例子,演示绘制幂函数的图像,并引导学生总结幂函数图像的特点、变化规律和性质。
4. 幂函数的应用(20分钟)教师给出一些实际问题,引导学生运用所学的幂函数知识解决实际问题。
学生通过讨论和解决问题,加深对幂函数应用的理解和运用。
5. 综合练习与讨论(20分钟)教师布置一些综合练习题,让学生进行个人或小组讨论,并进行答案讲解和讨论。
通过综合练习,巩固所学知识并提高解题能力。
6. 课堂小结(10分钟)教师对本节课的内容进行小结,并强调学生在课后的复习重点和需要注意的问题。
五、教学辅助用具1. 纸笔,用于绘制幂函数的图像。
2. 幂函数的例题和练习题,用于学生的讨论和练习。
六、教学评价与反思在教学过程中,教师应注重激发学生的学习兴趣,通过引入实际问题,让学生主动思考和运用所学知识解决问题。
在练习环节,应鼓励学生进行个人或小组讨论,培养学生的合作能力和解决问题的能力。
同时,教师在讲解过程中,要注重总结幂函数的性质和变化规律,并将其应用到实际问题中,帮助学生理解和运用幂函数知识。
幂函数教案一、教学目标1. 理解幂函数的基本概念和特点;2. 掌握幂函数的图像、定义域、值域、单调性和奇偶性等性质;3. 学会利用幂函数求解实际问题。
二、教学重点1. 幂函数的定义和基本性质;2. 幂函数图像的绘制;3. 幂函数的应用。
三、教学难点1. 幂函数图像的绘制和分析;2. 幂函数在实际问题中的应用。
四、教学准备1. 教师准备:教案、教材、黑板、彩色粉笔;2. 学生准备:课本、笔记本。
五、教学过程Step 1:导入引入(1)教师出示一道数学问题:“一个物体的温度随时间变化的规律可以表示为:T(t) = a * t^b,其中,a和b为常数。
请问,这种规律描述中的T(t)是哪种函数?”引导学生思考和回答。
(2)教师解释幂函数的定义:“幂函数就是以自变量为底数的幂运算,通常表示为y = ax^b,其中a和b为常数,a不等于0。
”Step 2:讲解幂函数的基本性质(1)教师讲解幂函数的定义域和值域:“幂函数的定义域为实数集,值域为正实数集。
”(2)教师讲解幂函数的单调性:“当b大于0时,幂函数是递增的;当b小于0时,幂函数是递减的;当b等于0时,幂函数是常数函数。
”(3)教师讲解幂函数的奇偶性:“当b为偶数时,幂函数是偶函数;当b为奇数时,幂函数是奇函数。
”Step 3:绘制幂函数的图像(1)教师带领学生绘制y = 2x^2的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。
(2)教师带领学生绘制y = 1/3x^3的图像,并让学生观察和分析:图像是开口朝上的抛物线,对称轴是y轴,图像在第一象限递增。
(3)教师带领学生绘制y = -4x^4的图像,并让学生观察和分析:图像是开口朝下的抛物线,对称轴是y轴,图像在第一象限递减。
Step 4:幂函数的应用(1)教师出示一道实际问题:“假设一辆小汽车以恒定的速度在一条笔直的道路上行驶,车辆的里程数与行驶时间的关系可以表示为:M(t) = a * t^3,其中,M(t)表示里程数(单位:公里),t表示时间(单位:小时),a为常数。
中职数学:幂函数教学教案一、教学目标1. 让学生理解幂函数的定义和性质。
2. 让学生掌握幂函数的图像和应用。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 幂函数的定义定义:一般地,形如y=x^α(α是常数)的函数,叫做幂函数。
2. 幂函数的性质(1)当α>0时,幂函数在(0,+∞)上单调递增。
(2)当α<0时,幂函数在(0,+∞)上单调递减。
(3)当α=0时,幂函数为常数函数。
(4)当α为正整数时,幂函数的图像是一条曲线。
3. 幂函数的图像通过绘制一些典型的幂函数图像,让学生观察和分析幂函数的性质。
4. 幂函数的应用举例说明幂函数在实际问题中的应用,如物理学、经济学等。
三、教学方法1. 采用讲解、演示、练习、讨论相结合的教学方法。
2. 利用多媒体课件辅助教学,直观展示幂函数的图像和性质。
3. 引导学生通过自主学习、合作交流,发现幂函数的规律。
四、教学步骤1. 引入幂函数的概念,让学生回顾已学的指数函数知识。
2. 讲解幂函数的定义和性质,引导学生理解幂函数的基本特征。
3. 绘制幂函数的图像,让学生观察和分析幂函数的性质。
4. 举例说明幂函数的应用,让学生了解幂函数在实际问题中的重要作用。
5. 布置练习题,让学生巩固所学知识。
五、教学评价1. 课后作业:要求学生完成相关的幂函数练习题,检验对幂函数知识的掌握程度。
2. 课堂问答:教师在课堂上提问,了解学生对幂函数的理解情况。
3. 小组讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
六、教学策略1. 案例分析:通过分析具体案例,让学生了解幂函数在现实生活中的应用,提高学生的学习兴趣和积极性。
2. 问题驱动:提出与幂函数相关的问题,引导学生探究和解决问题,培养学生的独立思考能力。
3. 互助合作:组织学生进行小组讨论,鼓励学生分享自己的观点和思路,提高学生的合作意识和团队精神。
七、教学环境1. 课堂环境:保持教室整洁、安静,营造积极向上的学习氛围。
幂函数优秀教案教案:幂函数一、教学目标:1.理解幂函数的概念及其特点;2.能够画出幂函数图像;3.掌握幂函数的基本性质和运算法则。
二、教学重点:1.幂函数的概念及其特点;2.幂函数的图像;三、教学难点:1.幂函数的性质和运算法则;2.幂函数的应用问题。
四、教学方法:1.课堂讲授法;2.小组合作学习法;3.案例分析法。
五、教学过程:时间内容活动方式教学资源(分钟)1课堂导入1.教师简单介绍幂函数的定义和基本概念,并提出问题,引起学生思考。
幂函数的定义和基本概念2.学生积极回答问题,激发学习兴趣。
10幂函数的定义及其1.学生自愿回答问题,教师进行点拨和引导,帮助学生理解幂函数的定义;幂函数的定义及其特点特点2.教师介绍幂函数的特点:定义域、值域、单调性和奇偶性。
10幂函数图像的1.教师讲解幂函数图像的画法和注意事项;幂函数图像的画法和注意事项画法2.学生跟随教师步骤,画出幂函数的图像。
10幂函数图像的分1.学生分组合作,讨论幂函数图像的特点;幂函数图像的特点析及其特点2.教师引导学生分析幂函数图像的特点,如单调性、奇偶性等。
10幂函数的性质与1.教师讲解幂函数的性质和运算法则;幂函数的性质和运算法则运算法则2.学生积极参与讨论,提出问题,与教师共同探讨幂函数的性质和运算法则。
10幂函数的应用问题1.教师以实例为背景,引导学生解决幂函数的应用问题;幂函数的应用问题2.学生自主思考,带着问题探索解决方法。
10小结与评价1.教师对本节课的内容进行小结,重点强调幂函数图像的特点和性质;无六、教学反思:在本节课中,我采用了多种教学方法和手段,如课堂讲授、小组合作学习和案例分析,以提高学生的学习兴趣和参与度。
通过引入问题、让学生自由讨论等方式,激发了学生的思维,提高了他们对幂函数的理解和运用能力。
同时,通过幂函数的图像,我帮助学生更直观地理解了幂函数的特点和性质。
在下节课中,我将注重培养学生的实际应用能力,希望能够更好地引导学生解决实际问题,提高他们的数学思维水平。
中职数学基础模块上册《实数指数幂及其运算法则》word教案教案目录:一、教学目标1.1 知识与技能目标1.2 过程与方法目标1.3 情感态度与价值观目标二、教学内容2.1 实数指数幂的定义与性质2.2 运算法则2.3 指数幂的应用三、教学重点与难点3.1 教学重点3.2 教学难点四、教学方法与手段4.1 教学方法4.2 教学手段五、教学过程5.1 导入新课5.2 知识讲解5.3 例题解析5.4 课堂练习5.5 总结与拓展教案一、教学目标1.1 知识与技能目标通过本节课的学习,使学生掌握实数指数幂的定义与性质,能够运用运算法则进行简单的计算。
1.2 过程与方法目标通过自主学习、合作探讨的方式,培养学生分析问题、解决问题的能力。
1.3 情感态度与价值观目标激发学生对数学的学习兴趣,培养学生的逻辑思维能力。
二、教学内容2.1 实数指数幂的定义与性质实数指数幂是指以实数为底数的指数幂,例如:2^3、3^4等。
2.2 运算法则同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每个因式的乘方再相乘。
2.3 指数幂的应用指数幂在实际生活中有广泛的应用,如计算利息、折扣等。
三、教学重点与难点3.1 教学重点实数指数幂的定义与性质,运算法则的应用。
3.2 教学难点指数幂的运算法则的理解与运用。
四、教学方法与手段4.1 教学方法采用问题驱动法、案例教学法、小组合作学习法等。
4.2 教学手段利用多媒体课件、教学挂图、实物模型等辅助教学。
五、教学过程5.1 导入新课通过复习实数的基本概念,引出实数指数幂的概念。
5.2 知识讲解讲解实数指数幂的定义与性质,运算法则的推导与解释。
5.3 例题解析举例说明实数指数幂的运算法则的应用,引导学生进行思考。
5.4 课堂练习布置一些相关的练习题,让学生巩固所学知识。
5.5 总结与拓展对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
中职数学:幂函数教学教案第一章:幂函数的概念与性质1.1 教学目标了解幂函数的定义及表达形式掌握幂函数的性质及其应用1.2 教学内容幂函数的定义:介绍幂函数的表达形式及参数含义幂函数的性质:单调性、奇偶性、周期性等幂函数的应用:解决实际问题,如物理、化学等领域1.3 教学方法采用讲授法,讲解幂函数的定义、性质及应用利用数学软件或图形计算器,展示幂函数的图像,增强直观感受举例讲解,让学生参与课堂,提高兴趣和积极性1.4 教学重点与难点幂函数的定义及表达形式幂函数的单调性、奇偶性、周期性等性质的判断与应用第二章:幂函数的图像与性质2.1 教学目标学会绘制幂函数的图像掌握幂函数的单调区间、极值等性质2.2 教学内容幂函数图像的绘制方法:利用数学软件或图形计算器幂函数的单调区间:判断函数的增减性幂函数的极值:求解函数的最大值、最小值2.3 教学方法利用数学软件或图形计算器,绘制幂函数的图像,让学生直观感受举例讲解,让学生学会判断幂函数的单调区间、求解极值的方法2.4 教学重点与难点幂函数图像的绘制方法判断幂函数的单调区间、求解极值的方法第三章:幂函数在实际问题中的应用3.1 教学目标学会将幂函数应用于实际问题中提高解决实际问题的能力3.2 教学内容幂函数在物理中的应用:如电学、热学等领域幂函数在化学中的应用:如化学反应速率、溶质浓度等幂函数在其他领域的应用:如经济学、生物学等3.3 教学方法举例讲解,让学生了解幂函数在各个领域的应用让学生分组讨论,寻找其他幂函数在实际问题中的应用3.4 教学重点与难点幂函数在实际问题中的应用方法第四章:幂函数的综合练习4.1 教学目标巩固幂函数的概念、性质及应用提高学生的综合运用能力4.2 教学内容编写具有代表性的练习题,涵盖幂函数的概念、性质及应用分析练习题的解题思路,让学生掌握解题技巧4.3 教学方法布置练习题,让学生独立完成分析练习题,讲解解题思路和方法4.4 教学重点与难点幂函数的综合运用能力第五章:总结与评价5.1 教学目标总结幂函数的学习内容,巩固知识点评价学生的学习效果5.2 教学内容回顾幂函数的概念、性质及应用,总结学习要点对学生的学习情况进行评价,提出改进建议5.3 教学方法让学生自主总结幂函数的学习内容教师点评,总结学习要点,提出改进建议5.4 教学重点与难点幂函数的学习要点的总结第六章:幂函数的扩展与深化6.1 教学目标学习幂函数的特殊情况,如指数函数、对数函数探讨幂函数与其他函数的关系,加深对幂函数的理解6.2 教学内容指数函数与幂函数的关系:探讨指数函数是幂函数的特殊形式对数函数与幂函数的关系:了解对数函数与幂函数的相互转化幂函数与其他函数的关系:如三角函数、反函数等6.3 教学方法对比讲解,让学生了解指数函数、对数函数与幂函数的关系举例讲解,让学生了解幂函数与其他函数的关系6.4 教学重点与难点指数函数与幂函数的关系幂函数与其他函数的关系的探讨第七章:幂函数在工程与科学计算中的应用7.1 教学目标学习幂函数在工程与科学计算中的应用提高学生解决实际问题的能力7.2 教学内容幂函数在工程计算中的应用:如电学、力学等领域幂函数在科学计算中的应用:如天体物理、生物医学等领域举例讲解,让学生了解幂函数在工程与科学计算中的应用让学生分组讨论,寻找其他幂函数在实际问题中的应用7.4 教学重点与难点幂函数在工程与科学计算中的应用方法第八章:幂函数与其它数学概念的联系8.1 教学目标理解幂函数与其他数学概念的联系提高学生的综合运用能力8.2 教学内容幂函数与不等式的关系:学习利用幂函数解决不等式问题幂函数与方程的关系:探讨幂函数与方程的求解方法幂函数与数列的关系:了解幂函数在数列中的应用8.3 教学方法举例讲解,让学生了解幂函数与不等式、方程、数列的关系让学生分组讨论,寻找其他幂函数与其他数学概念的联系8.4 教学重点与难点幂函数与不等式、方程、数列的关系的探讨第九章:幂函数的实验与探究9.1 教学目标培养学生的实验与探究能力加深对幂函数的理解利用数学软件或图形计算器,进行幂函数的实验探讨幂函数的性质,发现幂函数的规律9.3 教学方法引导学生进行实验,让学生观察幂函数的性质让学生分组讨论,总结幂函数的规律9.4 教学重点与难点幂函数实验的设计与分析幂函数规律的发现第十章:总结与评价10.1 教学目标总结幂函数的学习内容,巩固知识点评价学生的学习效果10.2 教学内容回顾幂函数的概念、性质、应用及与其他数学概念的联系,总结学习要点对学生的学习情况进行评价,提出改进建议10.3 教学方法让学生自主总结幂函数的学习内容教师点评,总结学习要点,提出改进建议10.4 教学重点与难点幂函数的学习要点的总结重点解析本文档涵盖的重点知识点包括:幂函数的定义与表达形式、幂函数的性质(单调性、奇偶性、周期性)、幂函数的图像绘制、幂函数在实际问题中的应用、幂函数的特殊情况(指数函数、对数函数)、幂函数与其他函数的关系、幂函数在工程与科学计算中的应用、幂函数与不等式、方程、数列的关系、幂函数的实验与探究。
中职数学基础模块上册《实数指数幂及其运算法则》Word教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及其运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感、态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、积极探索的精神。
二、教学重点与难点1. 教学重点:实数指数幂的概念,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 情境创设:通过生活实例引入实数指数幂的概念;2. 自主探究:引导学生观察、分析、归纳实数指数幂的运算法则;3. 合作交流:分组讨论,共同解决问题;4. 巩固练习:设计相关练习题,巩固所学知识。
四、教学过程1. 导入新课:(1)复习相关知识点,如幂的定义;(2)通过生活实例引入实数指数幂的概念。
2. 自主探究:(1)观察实数指数幂的运算法则;(2)分析、归纳实数指数幂的运算法则。
3. 合作交流:(1)分组讨论,共同解决问题;(2)分享各自的学习心得和方法。
4. 巩固练习:(1)设计相关练习题;(2)学生独立完成,教师点评、讲解。
5. 课堂小结:(2)强调实数指数幂在实际问题中的应用。
五、课后作业1. 复习实数指数幂的概念和运算法则;2. 完成课后练习题;六、教学策略1. 实例引导:通过具体的实例,让学生理解实数指数幂的实际意义和应用。
2. 问题驱动:提出问题,激发学生的思考,引导学生主动探究实数指数幂的运算法则。
3. 互助合作:鼓励学生之间的合作,共同解决问题,提高学生的团队协作能力。
4. 实践操作:让学生通过实际操作,加深对实数指数幂及其运算法则的理解。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对实数指数幂及其运算法则的掌握程度。
2.3幂函数
一.教学目标:
1.知识技能
(1)理解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.
2.过程与方法
类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性.
二.重点、难点
重点:从五个具体的幂函数中认识的概念和性质
难点:从幂函数的图象中概括其性质
5.学法与教具
(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质;
(2)教学用具:多媒体
三.教学过程:
引入新知
阅读教材P90的具体实例(1)~(5),思考下列问题.
(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论
答:1、(1)乘以1(2)求平方(3)求立方
(4)求算术平方根(5)求-1次方
2、上述的问题涉及到的函数,都是形如:y=xα,其中x是自变量,α是常数.
探究新知
1.幂函数的定义
一般地,形如y=xα(x∈R)的函数称为幂孙函数,其中x是自变量,α是常数.
- 1
让学生通过观察图像,分组讨论,探究幂函数的性质和图像的变化规律,教师注
-10
1 如 y = x
2 , y = x 3
, y = x 4 等都是幂函数,幂函数与指数函数,对数函数一样,都
是基本初等函数 .
2.研究函数的图像
(1) y = x
(2) y = x
(4) y = x -1
(5) y = x 3
1 2
(3) y = x 2
一.提问:如何画出以上五个函数图像
引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,
最后,教师利用电脑软件画出以上五个数数的图像 .
y = x 2
y = x
4
2
1 y = x
2
y =x 3 y =x -1
-5
5
10 15
-2
-4
-6
-8
意引导学生用类比研究指数函数,对函数的方法研究幂函数的性质 . 通过观察图像,填 P 91 探究中的表格
y = x
y = x
2
y = x
3
y = x
1 2
y = x -1
定义域
奇偶性
R
奇
R
奇
R
奇 {x | x ≥ 0} {x | x ≠ 0}
非奇非偶 奇
在 第 Ⅰ 象 限在 第 Ⅰ 象 限在 第 Ⅰ 象 限在 第 Ⅰ 象 限在 第 Ⅰ 象 限在 第 Ⅰ 象 限 单调增减性 单调递增 单调递增 单调递增 单调递增 单调递减 定点 (1,1) (1,1) (1,1) (1,1) (1,1)
+ 1 ;
f ( x )
3.幂函数性质
(1)所有的幂函数在(0, ∞)都有定义,并且图象都过点(1, )(原因
:1x = 1) (2) x >0 时,幂函数的图象都通过原点,并且在 [0,+∞]上,是增函数(从左
往右看,函数图象逐渐上升) .
特别地,当 x >1, x >1 时, x ∈(0,1), y = x 2 的图象都在 y = x 图象的下方,
形状向下凸越大,下凸的程度越大(你能找出原因吗?)
当∠α <1 时, x ∈(0,1), y = x 2 的图象都在 y = x 的图象上方,形状向上凸, α 越小,上凸的程度越大(你能说出原因吗?)
(3)α <0 时,幂函数的图象在区间( 0,+∞)上是减函数 .
在第一家限内,当 x 向原点靠近时,图象在 y 轴的右方无限逼近 y 轴正半轴,当 x
慢慢地变大时,图象在 x 轴上方并无限逼近 x 轴的正半轴.
例题:
1.证明幂函数 f ( x ) =
x 在[0, +∞ ] 上是增函数
证:任取 x , x ∈ [0, +∞), 且x < x 则
1 2
1
2
f ( x ) - f ( x ) = x - x
1 2
1
2
=
( x - x )( x + x )
1 2 1 2
x + x
1 2
= x 1 - x 2
x + x
1 2
因 x - x <0, x + x >0
1 2
1
2
所以 f ( x ) < f ( x ) ,即 f ( x ) =
1
2
x 在[0, + ∞ ] 上是增函数.
思考:
我们知道,若 y = f ( x ) > 0, 若 f ( x 1 )
< 1 得 f ( x ) < f ( x ) ,你能否用这种作比的
1 2 2
2
- 2
, 4
方法来证明 f ( x ) =
x 在[0, +∞ ] 上是增函数,利用这种方法需要注意些什么?
2.利用函数的性质 ,判断下列两个值的大小
1 (1)
2 6 ,
3
1 6
3 (2) ( x + 1)2 , x
3 2
( x > 0) (3) (a + 4) 4 - 2
4 分析:利用幂函数的单调性来比较大小 .
5.课堂练习
2
画出 y = x
3 的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性 .
6.归纳小结:提问方式
(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?
(2)你能根据函数图象说出有关幂函数的性质吗?
作业:P 92 习题 2.3 第 2、3 题。