当前位置:文档之家› 无水乙醇红外光谱分析实验报告

无水乙醇红外光谱分析实验报告

无水乙醇红外光谱分析实验报告
无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除

无水乙醇红外光谱分析实验报告

篇一:红外光谱分析实验报告

一、【实验题目】

红外光谱分析实验

二、【实验目的】

1.了解傅立叶变换红外光谱仪的基本构造及工作原理

2.掌握红外光谱分析的基础实验技术

3.学会用傅立叶变换红外光谱仪进行样品测试

4.掌握几种常用的红外光谱解析方法

三、【实验要求】

利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。

四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁

波谱。波长在0.78?300卩m通常又把这个波段分成三个区域,

即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。

红外区的光谱除用波长入表征外,更常用波数

(wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为:

作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

五、【仪器与试剂】

1.仪器:spectrumone-b型傅立叶变换红外光谱仪(美国

铂金埃尔默公司)

2.试剂:碳酸钙、溴化钾、丙三醇、乙醇(均为分析纯);聚乙烯醇(化学纯)。

3.红外光谱仪(FT)的构造及工作原理(1)光源

红外光谱仪(FT)中所用的光源通常是一种惰性固体,用

电加热使之发射高强度连续红外辐射,如空冷陶瓷光源。随着科技的发展,一种黑体空腔光源被研制出来。它的输出能量远远高于空冷陶瓷光源,可达到60%以上。

(2)迈克尔逊干涉仪

其作用是将光源发出的红外辐射转变成干涉光,特点是输出能量大、分辨率高、波数精度高(它采用激光干涉条纹准确测定光差,故使其测定的波数更为精确)、且扫描平稳、重线性好。

(3)探测器

其作用是将光信号转变为电信号,特点是扫描速度快

(—般在1s内可完成全谱扫描)、灵敏

度咼。

(4)计算机

特点是各种数据处理快,且具有色散型红外光谱仪所不具备的多种功能。

(5)样品池

用能透过红外光的透光材料制作样品池的窗片,通常用Kbr或nacl做样品池的窗片。

(6)红外光谱仪(FT)的工作原理

FTIR是基于光相干性原理而设计的干涉型红外光谱仪。它不同于依据光的折射和衍射而设计的色散型红外光谱仪。它与棱镜和光栅的红外光谱仪比较,称为第三代红外光谱仪。但由于干涉仪不能得到人们业已习惯并熟知的光源的光谱图,而是光源的干涉图。为此可根据数学上的傅立叶变换函数的特性,利用电子计算机将其光源的干涉图转换成光源的光谱图。亦即是将以光程差为函数的干涉图变换成以波长为函数的光谱图,故将这种干涉型红外光谱仪称为傅立叶变换红外光谱仪。确切地说,即光源发出的红外辐射经干涉仪转变成干涉光,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅立叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。其工作原理如下图所示:

六、【试样的制备】

测定试样的红外光谱时,必须依据试样的状态,分析的目的和测定装置的种类等条件,选择能够得到最满意的结果的试样制备方法。若选择的试样制备方法不合适,也就不能充分发挥测定的效力,甚至还可能导致错误的结论,因而不能轻视试

样的制备及处理方法。这是因为要获得一个良好的光谱记录,除了与仪器性能有关

外,还要受到操作技术的影响。而在操作技术中,一是试样的制备及处理技术,一是光谱的记录条件。所以,在红外光谱法中,试样的制备及处理占有重要的地位。如果试样处理不当,那么即使仪器的性能很好,也不能得到满意的红外光谱图。一般来说,在制备试样时应注意下述各点。

(1)试样的浓度和测试厚度应选择适当,浓度太小,厚度太薄,会使一些弱的吸收峰和光谱的细微部分不能显示出来;过大,过厚,又会使强的吸收峰超越标尺刻度而无法确定它的真实位置。

(2)试样中不应含有游离水。水分的存在不仅会侵蚀吸收池的盐窗,而且水分本身在红外区有吸收,将使测得的光谱图变形。

(3)试样应该是单一组分的纯物质。多组分试样在测定前应尽量预先进行组分分离(如采用色谱法、精密蒸馏、重结晶、区域熔融法等),否则各组分光

谱相互重叠,以致

对谱图无法进行正确的解释

试样的制备,根据其集聚状态可进行如下。

1.固体试样

(1)压片法在红外光谱的测定上被广泛用于固体试样

调制剂的有Kbr、Kcl,它们的共同特点是在中红外区(4000?400cm-1 )完全透明,没有吸收峰。被测样品与它们的配比通常是1: 100,即取固体试样1?3mg在玛瑙研钵中研细,再加入100?300mg磨细干燥的Kbr或Kcl粉末,混合研磨均匀,使其粒度在 2.5卩m (通过250目筛孔)以下,放入锭剂成型器中。加压(5?10t/cm2 )3分钟左右即可得到一定直径及厚度的透明片,然后将此薄片放

在仪器的样品窗口上进行测定。

(2)熔融法将熔点低且对热又稳定的试样,直接放在可拆池的窗片上,用红外灯烘烤,使之受热变成流动性的液体,盖上另一个窗片,按压使其展成一均匀薄膜,逐渐冷却固化后测定。

(3)薄膜法将试样溶于适当的低沸点溶剂中,而后取其溶液滴洒在成膜介质(水银、平板玻璃、平面塑料板或金属板等)上,使其溶剂自然的蒸发,揭下薄膜进行测定。薄膜厚度一般约为0.05?0.1mm

(4)附着法有些高分子物质,结晶性物质或象细菌膜那样的生物体试样,不能用溶液成膜法得到所需的薄膜,可

将其试样溶液直接滴在盐片上展开,当溶剂蒸发后,在盐片的表面上形成薄的附着层即可直接测试。

(5)涂膜法对于那些熔点低、在熔融时又不分解、升华或发生其它化学反应的物质,可将它们直接加热熔融后涂在盐片上,上机测试;另外对于不易挥发的粘、稠状样品,也可直接涂在盐片上(厚度一般约为0.02mm),上机测试2?液体试样

(1)沸点较高试样,直接滴在两块盐片之间,形成液膜(液膜法),上机测试。

(2)沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般约为0.01?1mm

3.气态试样

使用气体吸收池,先将吸收池内空气抽去,然后注入被测试样。

七、【谱图解析】

所谓谱图解析就是根据实际上测绘的红外光谱所出现的吸收谱带的位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确认分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。有机化合物的种类很多,但大多数都由c、h、o、n、s卤素等元素构成,而其中大部分又是仅由c、h、o、n四种元素组成。所以说大部分有机物质的

红外光谱基本上都是由这四种元素所形成的化学键的振动贡献的。研究大量化合物的红外光谱后发现,同一类型的化学键的振动频率是非常相近的,总是出现在某一范围内。例如ch3ch2cl中的ch3基团具有一定的吸收谱带,而很多具有ch3基团的化合物,在这个频率附近(3000?2800cm-1 )

亦出现吸收峰,因此可以认为此出现ch3吸收峰的频率是ch3 基团的特征频率。这个与一定的结构单元相联系的振动频率称为基团频率。但是它们又有差别,因为同一类型的基团在不同的物质中所处的环境各不相同,这种差别常常能反映出结构上的特点。例如c=o伸缩振动的频率范围在1850?

1600cm-1,当与此基团相连接的原子是c、o、n时,c=o谱

带分别出现在1715cm-1 , 1735cm-1, 1680cm-1处,根据这一差别可区分酮、酯和酰胺。因此,特征吸收峰的位置和强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,就可应用红外光谱来检定化合物中存在的基团及其在分子中的相对位置。

为了准确地解析谱图,有必要先排除可能出现的"假谱

带"(非试样本身的吸收)以及微量杂质的存在所造成的红外光谱的变化。常见的"假谱带"主要有水(3400cm-1、1640cm-1、650cm-1)和二氧化碳(2350cm-1、

667cm-1)的吸收。水分的引入可能由于试样本身混有微量水或试样与空

气接触而吸湿以及在样品的制备过程中使用溶剂或锭剂等而造成的。二氧化碳的吸收是由于某些试样能吸附二氧化碳,特别是某些液体试样长期保存在干冰中容易造成二氧化碳被吸收。

总之,未解析前一定要根据试样的来源和制备方法以及试样的性质来区分和确认谱图的可靠性。其谱图解析的程序可大体分为两步:

(1)所含的基团或键的类型

每种分子都具有其特征的红外光谱,谱图上的每个吸收谱带是代表分子中某一基团或键的一种振动形式,并可由特征吸收谱带的位置、强度和形状确定所含基团或键的类型。

以甲基为例,在2960cm-1、2870cm-1、1450cm-1、1380cm-1 附近出现了四个特征吸收谱带,分别归属甲基的c-h反对称

和对称伸缩振动和变形振动的吸收,且有其一定的相对强度顺序和形状。这四个特征吸收谱带就作为甲基的指纹,来确认试样中甲基存在与否。但由于分子结构和测量环境等的不同,其特征吸收谱带的位置,将做相应的移动,就可进一步推测属于何种化合物中的甲基。有机化合物的基团或键的特征频率已由实验上测得并汇集成基团或键的特

征频率表,因而我们可以借助于查"字典"的方法来确认

基团或键的类型。但在实际的谱图解析中,首先从基团判别区(4000?1350cm-1)入手,按谱图上出现的强峰到弱峰的

▲第9页共24页顺序,依次加以确认,并结合指纹区(1350?850cm-1 )的

吸收加以肯定。指纹区虽没有明显的基团或键与特征振动频率的对应关系,但它能反映整个分子结构的特点,尤其是对分子骨架的振动吸收很敏感。以醇类的羟基

(缔合的)为例,

虽然可由基团判别区的3400cm-1附近的伸缩振动吸收加以确认,但尚不能肯定是伯醇、仲醇或叔醇,而必须结合指纹区的1040?1160cm-1的吸收谱带的位置予以推断。伯醇出现在1050cm-1、仲醇出现在1100c m-1、叔醇出现在1150c m-1 因而作为官能团的定性,必须通过基团判别区和指纹区的特征吸收加以综合推定。但当两个基团或键的特征频率较接近时,尤其在共存的情况下,由谱图直接辨认是异常困难的。例如羟基(缔合的)和仲胺基共存的场合,由于两者的伸缩振动频率和变形振动频率都很相近,于是给推断增加了困难。遇到这种情况,可根据溶剂对特征吸收谱带位置的影响而加以分离鉴定。亦可利用化学反应制备衍生物等方法,可以方便的确定分子中所含有的基团或键。

(2)推定分子结构

根据特征吸收谱带和分子结构的关系,依据谱图上出现的特征吸收谱带的位置、强度、形状来确定分子中各个基团或键所邻接的原子或原子团(可参照各类化合物的特征振动频率图表和有关文献),并结合前述的两步,就可推定分子中原子的相互连接方式,亦即是分子结构。但应着重指出,依据分子红外光谱推定分子结构主要是从基团或键的特征振动频率位移,来推定基团或键所邻接的原子或原子团,因而对其特征振动频率位移的规律要侧重的加以掌握和熟记,特别是对前人已做过的工作要尽可能地加以收集、归纳、总结和运用。具体解析方法

a.直接法将未知物的红外光谱图与已知化合物的红外

光谱图直接进行比较。这就要求样品与标准物在相同条件下记录光谱,既要使用仪器的性能(如所用仪器分辨率高,则在某些峰的细微结构上会有差别)和谱图的表示方式(等波数间隔或等波长间隔)相同的仪器,而且样品的制备方法也要一致(指样品的物理状态、样品浓度及溶剂等)。若不同

则谱图也会有差异。尤其是溶剂因素影响较大,须加注意,以免得出错误的结论。如果只是样品浓度不同,则峰的强度会改变,但是每个峰的强弱顺序(相对强度)通常应该是一致的。固体样品,因结晶条件不同,也可能出现差异,甚至差异很大。

b.否定法根据红外光谱与分子结构的关系,谱图中某些

波数的吸收峰,就反映了某种基团的存在。当谱图中不出现某吸收峰时,就可否定某种基团的存在。例如,在2975?

2845cm-1区域内不出现强吸收峰,就表示不存在ch3和ch2

c.肯定法借助于红外光谱中的特征吸收峰,以确定某种特征基团存在的方法。例如,谱图中1740cm-1处有吸收峰,且在1260?1050cm-1区域内出现两个强吸收峰,波数高的表现为第一吸收,则可判断该化合物属于饱和脂类化合物。

应该说,关于识谱的程序至今并无一定规则,在实际工作中,往往是三种方法联合使用,以便得出正确的结论。

补充:

1.无机化合物的基团振动频率:

红外光谱图中的每一个吸收谱带都对应于某化合物的质点或基团振动的形式,而无机化合物在中红外区的吸收,主要是由阴离子(团)的晶格振动引起的,它的吸收谱带位置与阳离子的关系较小,通常当阳离子的原子序数增大时,阴离子团的吸收位置将向低波数方向做微小的位移。因此,在鉴别无机化合物的红外光谱图时,主要着重于阴离子团的振动频率。而与有机物比较,无机化合物的红外鉴定为数较少。但是无机化合物的红外光谱图比有机化合物

简单,谱带数较少,并且很大部分是在1600cm-1以下

低频区,在650?400cm-1的尤多。

2.两个红外光谱中常用的术语:

特征吸收峰-代表某种官能团存在并有较高强度的吸收峰。

特征频率-特征吸收峰所在的位置。

特征频率具有如下特点:不同化合物中,同种基团的吸收峰位置大致相同,不受分子其余部分的影响或影响较小。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

乙醇和水精馏实验课程设计

乙醇和水精馏实验课程设计

乙醇与水连续筛板精馏塔 题目:醇-水溶液连续精馏塔优化设计 班级:1014102 专业:化学工程与工艺 姓名:姚亚丽 学号:101410209 指导教老师:陈湘 设计时间:2013.1.3——2013.1.11

目录 第一章:序言 (4) 第二章设计方案的确定及流程说明 (6) 2.1塔型选择 (6) 2.2操作流程 (6) 第三章塔的工艺计算 (7) 3.1整理有关数据并绘制相关表格 (7) 3.2全塔物料衡算 (9) 3.3最小回流比与操作回流比 (10) 3.4理论塔板数的确定 (11) 3.5全塔效率的估算 (11) 3.6实际塔板数的求取 (13) 第四章塔的工艺条件及物性计算 (13) 4.1平均摩尔质量..................................... 错误!未定义书签。3 4.2平均密度 (14) 4.3液体表面张力 (15) 4.4汽液相体积流率 (17) 4.5塔径的计算 (17) 4.6精馏塔高度的计算 (21) 第五章塔板主要工艺尺寸的计算 (23) 5.1 溢流装置 (24) 5.2 塔板布置 (25) 第六章塔板的流体力学验算............................... 错误!未定义书签。7 6.1 气体通过塔板的压力降hp液柱 (27) 6.2 液面落差 (318) 6.3 液沫夹带(雾沫夹带) (318) 6.4 漏液 (329) 6.5 液泛 (29) 第七章塔板负荷性能图 (31) 7.1漏液线 (31) 7.2液沫夹带线 (31) 7.3液相负荷下限线 (32) 7.4液相负荷上限线 (32) 7.5液泛线 (32) 第八章各接管尺寸的确定及选型 (35) 8.1进料管尺寸的计算及选型 (35) 8.2釜液出口管尺寸的计算及选型 (35) 8.3回流管尺寸的计算及选型 (35)

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

无水乙醇的制备实验

无水乙醇的制备 一、 实验目的 1.了解氧化钙法制备无水乙醇的原理和方法。 2.熟练掌握回流装置的安装和使用方法。 二、 实验原理 为了制得乙醇含量为99.5%的无水乙醇,实验室中常用最简便的制备方法是生石 灰法,即利用生石灰与工业酒精中的水反应生成不挥发、一般加热不分解的熟石灰(氢氧化钙) CaO 它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、 令人愉快的香味,并略带刺激性。 四、 五、 仪器装置

(二)实验装置图 七、

八、实验讨论 1.数据分析 a 无水乙醇产率较高,说明蒸馏过程进行的比较充分 检验后没有变蓝,说明实验仪器干燥较彻底,实验过程操作较规范 b CuSO 4 2.结果讨论 a 回流一定要从第一滴液体滴下开始计时,否则时间不够,CaO与95%乙醇反应不完 全,导致产率偏低 b 蒸馏开始时,应缓慢加热,使烧瓶内的物料缓慢升温。当温度计的温度达到乙醇 的沸点时(78℃),再收集馏分;控制好温度,使之不超过80℃,否则会使产率偏 高 c 蒸馏过程一定要充分,否则产率会明显偏低 d 量无水乙醇的量筒要经过润洗,否则会引入水,导致结果有误 3.实际操作对实验结果的影响 a 仪器应事先干燥,否则将带进水,影响实验结果 b 使用颗粒状的氧化钙,用粉末状的氧化钙将严重暴沸 c 安装温度计时,使红色水银球紧贴支管口下侧,确保蒸馏时水银球能完全被蒸汽 包围,从而获得准确的读书 d 安装冷凝管时,要使冷凝水从下口进,上口流出,保证“逆流冷却” e 必须在烧瓶中加入沸石,以防在回流和蒸馏过程中发生暴沸 f 蒸馏装置的安装顺序一般由左至右,由下至上,首先从左下侧的热源开始安装 g 当烧瓶中的物料变成糊状物时,表示蒸馏已接近尾声。此时,应立即停止加热, 利用电炉的余温将剩余的液体蒸出,以避免烧瓶过热破裂 4.实验注意事项 a 仪器应事先干燥。 b 接引管支口上应接干燥管。(回流过程要求无水操作,则应在球形冷凝管上端安装 一干燥管防潮) c 务必使用颗粒状的氧化钙,切勿用粉末状的氧化钙,否则暴沸严重。 d 在CaO中还应该加入少许NaOH。(除去95%乙醇中少量的醛等杂志) e 回流时用球形冷凝管,蒸馏时用直形冷凝管。

精馏实验报告正确版讲解

系别:化学与环境科学系班级:09应用化学(1)班姓名:赖雪梅 学号:090604118

采用乙醇—水溶液的精馏实验 赖雪梅 摘要:双组分混合液的分离是最简单的精馏操作。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。本文介绍了精馏实验的基本原理以及填料精馏塔的基本结构,研究了精馏塔在全回流条件下,塔顶温度等参数随时间的变化情况,测定了全回流和部分回流条件下的理论板数,分析了不同回流比对操作条件和分离能力的影响。 关键词:精馏;精馏段;提馏段;全回流;部分回流;等板高度;理论塔板数 1.引言 欲将复杂混合物提纯为单一组分,采用精馏技术是最常用的方法。尽管现在已发展了柱色谱法、吸附分离法、膜分离法、萃取法和结晶法等分离技术,但只有在分离一些特殊物资或通过精馏法不易达到的目的时才采用。从技术和经济上考虑,精馏法也是最有价值的方法。在实验室进行化工开发过程时,精馏技术的主要作用有:(1)进行精馏理论和设备方面的研究。(2)确定物质分离的工艺流程和工艺条件。(3)制备高纯物质,提供产品或中间产品的纯样,供分析评价使用。 (4)分析工业塔的故障。(5)在食品工业、香料工业的生产中,通过精馏方法可以保留或除去某些微量杂质。 2.精馏实验部分 2.1实验目的 (1)了解填料精馏塔的基本结构,熟悉精馏的工艺流程。 (2)掌握精馏过程的基本操作及调节方法。 (3)掌握测定塔顶、塔釜溶液浓度的实验方法。 (4)掌握精馏塔性能参数的测定方法,并掌握其影响因素。 (5)掌握用图解法求取理论板数的方法。

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

乙醇水精馏塔设计化工原理课程设计

题目:乙醇水精馏筛板塔设计 设计时间: 化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4) 1概述 (5) 1.1设计目的 (5) 1.2塔设备简介 (6) 2设计说明书 (7) 2.1流程简介 (7) 2.2工艺参数选择 (8) 3工艺计算 (8) 3.1物料衡算 (8) 3.2理论塔板数的计算 (8) 3.2.1查找各体系的汽液相平衡数据 (8) 如表3-1 (8) 3.2.2q线方程 (9) 3.2.3平衡线 (9) 3.2.4回流比 (10) 3.2.5操作线方程 (11) 3.2.6理论板数的计算 (11) 3.3实际塔板数的计算 (11) 3.3.1全塔效率ET (11) 3.3.2实际板数NE (12) 4塔的结构计算 (13)

乙醇-水精馏塔实验

乙醇-水精馏塔实验 一、实验目的: 1.了解板式精馏塔的结构和操作。 2.学习精馏塔性能参数的测量方法,并掌握其影响因素。 二、实验内容: 1.测定精馏塔在全回流条件下,稳定操作后的全塔理论塔板数和总板效率。 2.测定精馏塔在部分回流条件下,稳定操作后的全塔理论塔板数和总板效率。 三、实验原理: 对于二元物系,如已知其汽液平衡数据,则根据精馏塔的原料液组成,进料热状况,操作回流比及塔顶馏出液组成,塔底釜液组成可以求出该塔的理论板数N T .按照式1可以得到总板效率E T ,其中N P 为实际塔板数。 E T %100?= P T N N (1) 部分回流时,进料热状况参数的计算式为 m m F BP Pm r r t t C q +-= )( (2) 式中: t F — 进料温度,℃ 。 t BP — 进料的泡点温度,℃ 。 Cpm — 进料液体在平均温度(t F + t P )/2下的比热,kJ/(kmol ? ℃) r m — 进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 222111x M C x M C Cpm P P += kJ/(kmol ? ℃) (3) 222111x M r x M r r m += kJ/kmol (4) 式中: C P1, C P2 —分别为纯组份1和组份2在平均温度下的比热,kJ/(kg ? ℃)。 r 1,r 2 —分别为纯组份1和组份2在泡点温度下的汽化潜热,kJ/kg 。 M 1,M 2—分别为纯组份1和组份2的摩尔质量,kJ/kmol 。

x1,x2—分别为纯组份1和组份2在进料中的摩尔分率。 四、实验装置基本情况: 1.实验设备流程图(如图1所示): 图1 精馏实验装置流程图 1-储料罐;2-进料泵;3-放料阀;4-加热器;5-直接进料阀;6-间接进料阀;7-进料流量计;8-高位槽;9-玻璃观察段;10-精馏塔;11-塔釜取样阀;12-釜液放空阀;13-塔顶冷凝器;14-回流比流量计;15-塔顶取样阀;16-塔顶液回收罐;17-放空阀;18-冷却水流量计;19-塔釜储料罐;20-塔釜冷凝器;21-第8块板进料阀;22-第9块板进料阀;23-第10块板进料阀;24-液位计;25-料液循环阀;26-釜残液出料阀;27-进料入口阀;28-指针压力表

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

无水乙醇理化性质

名称 中文名称: 无水乙醇 中文别名: 无水酒精,绝对酒精 英文别名: DehydratedAlcohol,Ethanoldenatured,Ethanol,Spiritofwine,Alcoholanhydrous,Ethylalcohol,Grainalcohol,Anhydrousalcohol,Dehydratedalcohol,Ethylhydrate 化学式 结构简式: C2H5OH 分子式: C2H6O 相对分子质量 46.07 性状 无色澄清液体。有愉快的气味和灼烧味。易流动。极易从空气中吸收水分,能与水和氯仿、乙醚等多种有机溶剂混溶。能与水形成共沸混合物(含水 4.43%),共沸点78.15℃。相对密度(d204)0.789。熔点-114.1℃。沸点78.5℃。

折光率(n20D)1.361。闪点(闭杯)13℃。易燃。蒸气与空气能形成爆炸性混合物,爆炸极限3.5%~18.0%(体积) 储存 xxxx干燥保存。 用途 溶剂。分析镍、钾、镁及脂肪的酸价。萃取剂。脱水剂。清洗剂。 xx 贮于低温通风处,远离火种、热源。与酸类、胺类分储。误食,饮温水,催吐。 灭火: 抗溶性泡沫、二氧化碳、干粉、砂土。 灭火方法 燃烧性: xx 闪点(℃):12 爆炸下限(%):3.3 爆炸上限(%):19.0 引燃温度(℃):363 最大爆炸压力(MPa):0.735 灭火剂: 抗溶性泡沫、干粉、二氧化碳、砂土。

灭火注意事项: 尽可能将容器从火场移至空旷处。喷水保持容器冷却,至灭火结束。紧急处理 吸入: 迅速脱离现场至新鲜空气处。就医。 误食: 饮足量温水,催吐,就医。 皮肤接触: 脱去被污染衣着,用流动清水冲洗。 眼睛接触: 提起眼睑,用流动清水或生理盐水冲洗。就医。 编辑本段理化常数 xx: absolute alcohol;anhydrous ethanol CAS:64-17-5 分子式: C2H6O 结构简式: CH3CH2OH或C2H5OH 官能团: —OH(羟基)

精馏实验实验报告

精馏实验实验报告 姓名 班级 学号

1.实验前,请想象并尝试描述气速与整塔压降的关系? 依照教材P228页,当液体喷淋量为零时,压降与空塔气速呈直线关系,与气体以湍流形式流过管道的关系类似;有一定喷淋量时,压降因管道变窄增大,但几乎与无喷淋量时平行;过截点以后,气体对液体产生阻滞作用,填料表面持液量增多,压降随气速较快增长;过了泛点之后,液体变为连续相而气体变为分散相,阻力猛增。 2.实验前,请同学们回顾精馏塔的塔板与填料的发展历程? 舌形塔板 斜孔塔板 鼓泡式塔板 散堆填料 规整填料

3.实验前,请尝试回答精馏操作过程中,使混合物较彻底分离的基本条件? 1、相对挥发度差异较大; 2、每一块板能使气液充分接触; 3、塔高足够高; 4、再沸器与冷凝器温度稳定; 5、混合物不形成共沸物; 6、运行规范稳定,不出现漏液、烨沫夹带、气泡夹带、液泛等非规范操作; 7、加料不反混; 二、实验记录 包括操作条件、实验现象、原始数据表,要求数据的有效数字、单位格式规范。 【原始数据表】 6 77.9 87.8 35.1 24.0 127 瓦数/kw 次数塔顶组成/% 塔釜组成/% 3 1 18.75 81.25 86.30 13.70 2 15.5 3 84.47 88.83 13.17 5 1 12.52 88.48 88.20 11.80 2 13.12 86.88 89.10 10.90 6 1 11.91 88.09 88.35 11.65 2 11.71 88.29 88.14 11.86

【数据处理】 ※空塔气速 首先根据测得的回流液流量求空塔气速。由于实验中采取全回流的方式,回流液质量流量与蒸气质量流量相同。 实验中转子流量计已经将实际溶液的流量转换为水的流量,由公式 2 1 s s V V = (1) 将读数转换为实际回流夜的流量。其中: f ρ取转子密度,近似为铁质,取密度7900kg/m3,1ρ取20 o C 水的密度,2ρ取回流温度下 混合液体的密度。水取998kg/m 3,乙醇取789 kg/m 3。 塔顶、塔釜的溶液组成取两次实验的平均值,并依据公式1 1 n wi m i x ρρ=∑ 计算不同温度下回 流液密度,得到数据如下: 表一、不同功率下的回流液密度 瓦数/kw 塔顶组成/%水 回流液密度kg/m^3 3 17.1 4 818.3751 5 12.82 810.7671 6 11.81 809.008 7 7 23.92 830.6076 7 13.07 811.2035 将所得到的回流液密度带入公式(1),即可得到回流液体积,体积和密度均已知,则可以得到回流液质量。因为全回流,所以根据物料守恒,上升蒸汽的质量与回流液质量相等。 表二、不同功率下的回流液质量流量 瓦数/kw 回流液体积流量L/h 回流液质量流量kg/h 3 7.3 5.9791 5 21.6 17.4929 6 27. 4 22.1651 7 20. 5 17.067 6 7 32.0 25.9294

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

无水乙醇的制备实验报告

化学工 程学院 有 机 化 学 实 验 报 告 实 验 名 称: 无水乙醇的制备 专 业: 化学工程与工艺 班 级: 化工13-6班 姓 名:白慧超 学 号 日 期: 2014年10月31日 指 导 教 师: 房江华 王灵辉 一、 实验目的 1.了解氧化钙法制备无水乙醇的原理和方法。 2.熟练掌握回流装置的安装和使用方法。 二、 实验原理 为了制得乙醇含量为99.5%的无水乙醇,实验室中常用最简便的制备方法是生石灰法,即利用生石灰与工业酒精中的水反应生成不挥发、一般加热不分解的熟石灰(氢氧化钙),以得到无水乙醇。 CaO Ca +H 2O (OH)2 试剂 结构简式 相对分子密度 熔点 沸点 相对密度

它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。 四、 五、仪器装置 (二)实验装置图

步骤现象 回流:在100 ml的圆底烧瓶中,加入50 ml 95%乙醇,慢慢放入10克小颗粒状的生石灰和几颗NaOH,回流1h。随着加热慢慢有蒸气溢出,之后回流管内也慢慢有液体流出 蒸馏:回流毕,改为蒸馏装置,以圆底烧瓶做接受器,接引管支口上接盛有无水氯化钙的干燥管。所蒸得的乙醇密封储存,并用无水CuSO4检验。冷凝管内壁慢慢出现小液滴,约78℃时有液体流入锥形瓶中 检验:向蒸馏得出的乙醇中加入少许CuSO4。不变蓝回收:把检验好的乙醇倒入回收瓶中。 七、 项目蒸馏稳定温 度蒸馏所得乙醇 体积 无水乙醇回收 率 数据73.0℃42.0ml84% 八、实验讨论 1.数据分析

a 无水乙醇产率较高,说明蒸馏过程进行的比较充分 b CuSO4检验后没有变蓝,说明实验仪器干燥较彻底,实验过程操作较规 范 2.结果讨论 a 回流一定要从第一滴液体滴下开始计时,否则时间不够,CaO与95% 乙醇反应不完全,导致产率偏低 b 蒸馏开始时,应缓慢加热,使烧瓶内的物料缓慢升温。当温度计的温 度达到乙醇的沸点时(78℃),再收集馏分;控制好温度,使之不超 过80℃,否则会使产率偏高 c 蒸馏过程一定要充分,否则产率会明显偏低 d 量无水乙醇的量筒要经过润洗,否则会引入水,导致结果有误 3.实际操作对实验结果的影响 a 仪器应事先干燥,否则将带进水,影响实验结果 b 使用颗粒状的氧化钙,用粉末状的氧化钙将严重暴沸 c 安装温度计时,使红色水银球紧贴支管口下侧,确保蒸馏时水银球能 完全被蒸汽包围,从而获得准确的读书 d 安装冷凝管时,要使冷凝水从下口进,上口流出,保证“逆流冷却” e 必须在烧瓶中加入沸石,以防在回流和蒸馏过程中发生暴沸 f 蒸馏装置的安装顺序一般由左至右,由下至上,首先从左下侧的热源 开始安装 g 当烧瓶中的物料变成糊状物时,表示蒸馏已接近尾声。此时,应立即 停止加热,利用电炉的余温将剩余的液体蒸出,以避免烧瓶过热破裂 4.实验注意事项 a 仪器应事先干燥。 b 接引管支口上应接干燥管。(回流过程要求无水操作,则应在球形冷 凝管上端安装一干燥管防潮) c 务必使用颗粒状的氧化钙,切勿用粉末状的氧化钙,否则暴沸严重。 d 在CaO中还应该加入少许NaOH。(除去95%乙醇中少量的醛等杂志) e 回流时用球形冷凝管,蒸馏时用直形冷凝管。

实验5精馏(乙醇—水)

实验五:精馏(乙醇—水)分离 一、实验目的: 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数 二、基本原理 1.在板式蒸馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 对于双组分混合液的蒸馏,若已知汽液平衡数据,测得塔顶流出液组成Xd、釜残液组成Xw ,液料组成Xf及回流比R和进料状态,就可用图解法在y-x图上,或用其他方法求出理论塔板数Nt。精馏塔的全塔效率Et为理论塔板数与实际塔板数N之比, 既: Et=Nt/N 影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作条件等。由于影响塔板效率的因素相当复杂,目前塔板效率仍以实验测定给出。 2.精馏塔的单板效率Em可以根据气相(或液相)通过测定塔板的浓度变化进行计算。 若以液相浓度变化计算,则为: E ml=(X n-1-X n) / (X n-1- X n*) 若以气相浓度变化计算,则为:E mv=(Y n-Y n+1) / ( Y n*-Y n-1) 式中:Xn-1-----第n-1块板下降的液体组成,摩尔分率; Xn-------第n块板下降的液体组成,摩尔分率;

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

共沸精馏实验报告

共沸精馏 一、实验目的: 1.通过实验加深对共沸精馏过程的理解。 2.熟悉精馏设备的构造,掌握精馏操作方法。 3.能够对精馏过程做全塔物料衡算。 4.学会使用气相色谱分析气、液两相组成。 二、实验原理: 精馏是利用不同组份在汽—液两相间的分配,通过多次汽液两相间的传质和传热来达到分离的目的。对于不同的分离对象,精馏方法也会有所差异。例如,分离乙醇和水的二元物系。由于乙醇和水可以形成共沸物,而且常压下的共沸温度和乙醇的沸点温度极为相近,所以采用普通精馏方法只能得到乙醇和水的混合物,而无法得到无水乙醇。为此在乙醇—水体系中加入第三种物质,该物质被称为共沸剂。共沸剂具有能和被分离系统中的一种或几种物质形成最低共沸物的特性。在精馏过程中共沸剂将以共沸物的形式从塔顶蒸出,塔釜则得到无水乙醇。这种方法就称作共沸精馏。 乙醇—水体系加入共沸剂苯以后可以形成四种共沸物。现将它们在常压下的共沸温度、共沸组成列于表1。 为了便于比较,再将乙醇、水、苯三种纯物质常压下的沸点列于表2。 表1 乙醇水-苯三元共沸物性质

乙醇-苯(AB Z )68.24 32.7 0.0 67.63 苯-水(BW Z )69.25 0.0 8.83 91.17 乙醇-水(AW Z )78.15 95.57 4.43 0.0 表2 乙醇、水、苯的常压沸点 物质名称(简记)乙醇(A)水(W)苯(B) 沸点温度(℃)78.3 100 80.2 从表1和表2列出沸点看,除乙醇-水二元共沸物的共沸物与乙醇沸点相近之外,其余三种共沸物的沸点与乙醇沸点均有10℃左右的温度差。因此,可以设法使水和苯以共沸物的方式从塔顶分离出来,塔釜则得到无水乙醇。 整个精馏过程可以用图1来说明。图中A、B、W分别为乙醇、苯和水的英文 字头;AB Z ,AW Z ,BW Z 代表三个二元共沸物,T表示三元共沸物。图中的曲线为25℃ 下的乙醇、水、苯三元共沸物的溶解度曲线。该曲线的下方为两相区,上方为均相区。图中标出的三元共沸组成点T是处在两相区内。 以T为中心,连接三种纯物质 A、B、W及三个二元共沸点组成 点AB Z 、AW Z 、BW Z ,将该图分为 六个小三角形。如果原料液的组成点落在某个小三角形内。当塔顶采用混相回流时精馏的最终结果只能得到这个小三角形三个顶点所代表的物质。故要想得

实验三 精馏实验 (1)

1 实验三 精馏实验 一、实验目的 1. 熟悉板式塔的结构及精馏操作流程。 2. 掌握精馏塔的操作方法,进一步理解回流比等对精馏的因素。 3. 测定精馏塔的塔效率。 二、基本原理 精馏塔的全塔效率E T 精馏塔的全塔效率E T 为理论板数Ne 与实际塔板数N 之比 N N E e T 式中:Ne :理论塔板数; N :实际塔板数,本试验装置为15块。 1)全回流:只要测定塔顶浓度x D 、塔釜浓度x W ,由平衡关系确定相平衡方程,作梯级图即能求得Ne,从而求得E T 。 2)部分回流:测定塔顶浓度x D 、回流比R ,可确定精馏段操作线方程,由进料组成x F 、进料热状态t F 可确定q 线方程,再由塔釜浓度x W 确定提馏线操作线方程。由此可作出部分回流时所需的 理论板数从而求出此时的总板效率E T 乙醇浓度测定----液体比重分析法:利用比重的原理来测样品中乙醇的体积百分数。测定时,样品要冷却到比重计所要求的温度20℃。 三、实验装置流程和主要设备 1. 实验装置流程 精馏实验装置流程如图所示。本实验装置为f 70mm 的不锈钢筛板精馏塔,有14块筛板,从上往下数第11(或13)块板为进料板。原料由储液槽1经进料调节阀2进入精馏塔3内。塔顶蒸汽经套管式冷凝器4冷凝后,一部分经回流调节阀5回流进入塔内,回流比由调节阀5、6控制,一部分进入产品贮槽8。塔釜液经流量调节阀9排出。冷凝水由调节阀7调节进入套管式冷凝器。 四、实验步骤 1. 熟悉流程及每个阀门的作用,检查各阀门的启闭状态,准备加料。本实验采用的是乙醇一水溶液,浓度为体积分率。 2. 打开进料阀2,往塔内加料,待塔釜液位达到液位计的3/4后,停止加料。 3. 全回流操作: (1) 打开冷凝器放空阀排放空气,打开冷凝器的进水阀7, 调节冷却水的用量在120L/h 左右。 (2)开启电源,调节温控仪的温度在102℃左右。 (3)回流阀5全开,塔釜压力维持在约0.003MPa ,塔釜液位约在液位计的2/3高度,塔顶有回流后,即进入全回流操作。 精馏实验装置流程

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

实验三 无水乙醇的制备

实验三无水乙醇的制备 预习要求: 1.阅读教材P97-99,实验步骤在98页(用分子筛制备无水乙醇);2.阅读教材P37-41,蒸馏和沸点的测定。 一、实验目的 1.学会用分子筛制取无水乙醇的原理和方法; 2.巩固蒸馏操作。 二、实验原理 分子筛具有高度选择性吸附性能,是由于其结构形成许多与外部相通的均一微孔,凡是比此孔径小的分子可以进入孔道中,而较大分子则留在孔外,借此以筛分各种大小不同的混合物。3A型分子筛只吸附水等分子,水由于水化而被牢牢地吸附在分子筛中,不吸附乙醇,故能制取无水乙醇。 %的乙醇mL 五、仪器装置 制备装置蒸馏装置

六、实验步骤和现象 实验步骤现象和数据记录 1. 测样品酒精度; 2. 在色谱柱中装入1/3柱高的3A型分子筛,从色谱柱上端加入%的乙醇(使乙醇液面高度略低于分子筛),装上氯化钙干燥管; 3. 静置1h; 4. 将色谱柱中乙醇全部放入干燥的蒸馏烧瓶中,水浴蒸馏,收集馏分,测量馏分体积; 5. 测馏分酒精度。样品酒精度为% 加入%乙醇mL 馏分为mL 外观:无色透明液体馏分酒精度为% 七、产品和产率 原料酒精度: 馏分酒精度: 回收率: 产品外观:无色透明液体 八、讨论 1. 实验室制备无水乙醇的方法有哪些? 答:氧化钙法、分子筛法或阳离子交换树脂脱水法。 2. 为什么本实验所用仪器均需彻底干燥?蒸馏时尾接管为什么要装上氯化钙干燥管? 答:因为无水乙醇具有很强的吸水性,所以在操作过程中必须防止水蒸气进入仪器,所用仪器必须事先干燥。为了防止水分进入蒸馏体系,应在尾接管上装上氯化钙干燥管。 3. 如何检验乙醇中是否含水? 答:检验乙醇中是否含有水分,常用的方法有下列两种:⑴取一支干燥洁净的试管,加入制得的无水乙醇2mL,随即加入少量的无水硫酸铜粉末,如果乙醇含有水分则无水硫酸铜变成蓝色硫酸铜。⑵取一支干燥洁净的试管,加入制得的无水乙醇2mL,随即加入几粒干燥的高锰酸钾,若乙醇中含有水分,则呈紫红色溶液。 4. 如果液体具有恒定的沸点,那么能否认为它是单纯物质? 答:不能。因为共沸混合物也具有恒定的沸点。

精馏实验报告

实验名称:精馏实验 一、 实验目的 ① 测定精馏塔在全回流及部分回流条件下的全塔效率。 ② 测定精馏塔在全回流条件下的单板效率。 ③ 测定精馏塔在全回流条件下塔体浓度(温度)分布。 ④ 测定再沸器的传热膜系数。 二、 实验器材 精馏实验装置(北京化工大学制) 三、 实验原理 在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。通常回流比取最小回流比的1.2~2.0倍。 1. 塔板效率 板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。通常用塔板效率来表示塔板上传质的完善程度。 塔板效率是体现塔板性能及操作状况的主要参数。影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。 (1)总板效率E (或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。 e N N E 式中 E ——总板效率 N ——理论板数 e N ——实际板数 (2)单板效率 ,反映单独的一块板上传质的效果,是评价塔板式性能 优劣的重要数据,常有于塔板的研究。

相关主题
文本预览
相关文档 最新文档