上海沪教版六年级数学下知识点总结
- 格式:doc
- 大小:19.00 KB
- 文档页数:9
上海沪教版六年级数学下知识点总结第五章有理数5.1有理数的意义整数和分数统称为有理数有理数整数:正整数、零、负整数分数:正分数、负分数5.2正数和负数数轴:规定了原点、正方向和单位长度的直线叫数轴。
数轴的三要素:原点、单位长度、正方向。
所有的数都可以用数轴上的点来表示。
也可以用数轴来比较两个数的大小在数轴上表示的两个数,正方向的数大于负方向的数零是正数和负数的分界。
只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零。
一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值注意:1、一个正数的绝对值是它本身。
2、一个负数的绝对值是它的相反数。
3、零的绝对值是零。
4、两个负数,绝对值大的那个数反而小。
5.3有理数的加减有理数加法法则:1、同号两数相加,取原来的符号,并把绝对值相加。
2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。
3、一个数同零相加,仍得这个数。
有理数加法的运算律1、交换律:a+b=b+a2、结合律:(a+b)+ c=a+(b+c)有理数的减法法则1、减去一个数,等于加上这个数的相反数2、a-b=a+(-b)5.4有理数的乘除两数相乘的符号法则正正得正,正负得负,负正得负,负负得正。
有理数的乘法法则1、两数相乘,同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
注意连成的符号:1、几个不等于零的数相乘,积的符号由负因数的个数决定2、当负因数有奇数个时,积为负3、当负因数有偶数个时,积为正4、几个数相乘,有因数为零,积就为零有理数除法法则1、两数相除,同号得正,异号得负,并把绝对值相除。
2、零除以任何一个不为零的数,都得零。
5.5有理数的乘方求N个相同因数的积的运算,叫做乘方。
乘法的结果叫做幂。
在a n中,a叫做底数,n叫做指数,读作a的n次方,a n看做是a的n次方结果时,读作a的n次幂。
一、大数的读法和写法1.万以内数的读法和写法2.万以内数的读法和写法与整数的区别3.亿以内数的读法和写法4.带小数的数的读法和写法二、整除与整除数1.定义:如果$a$能被$b$整除,且商是整数,那么称$a$被$b$整除,$a$是$b$的倍数,$b$是$a$的因数,$b$能整除$a$。
2.整除判断法则:对于任何整数$a$和正整数$b$,有$a$能被$b$整除的充要条件是$a$的各位数字之和能被$b$整除。
3.利用整除定义进行整除的判断和运算。
4.整数的因数、倍数和约数的关系。
三、简便计算1.简算五法-数的末尾为0,可以在原数的基础上乘以一个数。
-数的末尾为5,可以把数的一半加上原数。
-能被9整除的数,其各位数字之和也能被9整除。
-能被3整除的数,其各位数字之和也能被3整除。
-把一个数的各位数字互换的次序,组成的新数是原数的倍数。
2.把分数化作有限小数-分母只包含2和5的分数化作有限小数。
-分母包含其他质数的分数化作无限小数。
四、面积1.面积的定义:面积是指平面内一个图形所占据的表面的大小。
2. 长方形的面积:$S=ab$,其中$a$和$b$分别是长方形的两条相邻边的长度。
3. 平行四边形的面积:$S=bh$,其中$b$是底边的长度,$h$是底边上的高的长度。
4. 三角形的面积:$S=\frac{1}{2}bh$,其中$b$是底边的长度,$h$是底边上的高的长度。
5.正方形的面积:$S=a^2$,其中$a$是正方形的边长。
6. 圆的面积:$S=\pi r^2$,其中$r$是圆的半径。
五、两个角的关系1.一对补角:两个角的和等于90°。
2.一对平分角:两个角的和等于180°。
3.一对相等角:两个角的度数相等。
4.互补角、对顶角、对角线的关系。
六、三角形1.三角形的边-三边相等的三角形是等边三角形。
-两边相等的三角形的基本性质。
-两边之和大于第三边。
-三角形边长的排序关系。
2.三角形的角-三角形的内角和为180°。
六年级下学期数学知识点包括:小数的加减乘除运算、图形的面积和体积、简便算法、比例与数学模型等。
以下是对每个知识点的详细介绍。
一、小数的加减乘除运算小数的加减乘除运算是六年级下学期数学的重点内容。
在进行小数的加减乘除运算时,我们可以先进行位数对齐,然后按照整数加减乘除的运算法则进行运算。
例如:1.加法运算:将小数点对齐,然后按照整数加法的运算法则进行运算,最后加上小数点。
2.减法运算:将小数点对齐,然后按照整数减法的运算法则进行运算,最后加上小数点。
3.乘法运算:将小数点后的数字按照整数乘法的运算法则进行运算,最后确定小数点的位置。
4.除法运算:将除数和被除数的小数点对齐,然后按照整数除法的运算法则进行运算,最后确定小数点的位置。
二、图形的面积和体积图形的面积和体积是六年级下学期数学的另一个重点。
面积是指二维图形所占的空间大小,而体积则是指三维图形所占的空间大小。
1.面积的计算:根据图形的不同,面积的计算方法也不同。
例如,长方形的面积等于长乘以宽,三角形的面积等于底乘以高再除以22.体积的计算:体积的计算也是根据图形的不同而不同。
例如,长方体的体积等于底面积乘以高,圆柱体的体积等于底面积乘以高等。
三、简便算法简便算法是六年级下学期数学的一项基础内容,主要包括各种运算的简便算法,例如乘法口诀、除法运算的估算等。
1.乘法口诀:通过熟练掌握乘法口诀,可以快速计算两个整数的乘积。
乘法口诀表是六年级下学期数学课上经常出现的内容。
2.除法的估算:当进行除法运算时,可以通过估算来确定结果的大小。
例如,通过估算商的整数部分,可以快速确定结果的范围。
四、比例与数学模型比例与数学模型是六年级下学期数学的一个拓展内容,主要包括比例的概念和应用、数学模型的建立和解决问题等。
1.比例的概念和应用:比例是指两个具有相同或相似关系的量之间的比值关系。
其应用可以广泛涉及生活中的各个方面,例如物品的打折销售、图画的放大和缩小等。
2.数学模型的建立和解决问题:数学模型是将实际问题抽象为数学问题的过程。
一、数值:
1、分数加减运算:进行同分母分数加减运算,求得同分母加减后的分数;
2、小数乘除法运算:乘减法的基本运算法与小数乘除法运算中的抹去法;
3、整数四则运算:熟练掌握整数的加减乘除,增加难度可以运用被加数、被减数、乘数与被乘数来确定四则运算的顺序;
4、数的阶乘:了解数阶乘的基本概念,找出规律进行运算;
5、正数的幂次:根据幂次的定义熟练掌握正数的幂次;
6、数轴:掌握数轴上的基本概念,如正负号、加减号等。
二、几何:
1、钝角的性质:了解钝角的定义,掌握钝角的性质;
2、平行四边形:了解平行四边形的定义,熟练掌握平行四边形的性质;
3、正方形:了解正方形的定义,包括边长与对角线,了解正方形的性质;
4、多边形:了解多边形的定义,掌握多边形的性质,并能针对特定多边形的求解;
5、三角形:掌握三角形的性质,包括角度关系,边长关系,以及对错角三角形的判断;
6、几何性质:能利用平行线、共线、全等、中线等几何性质求解特定图形的属性。
三、空间:
1、棱面:了解棱面的定义,掌握棱面的性质,比如棱线,边,角的个数;。
沪教版六年级下学期数学知识点梳理1.相反意义的量收入与支出;增加与减少;上升与下降; 零上与零下;高于海平面与低于海平面;前进与后退;盈利与亏损;……任意规定一方为正,则另一方为负。
2.正数与负数4.数轴的概念与画法数轴是规定了原点、正方向和单位长度的直线;数轴画法:一直线 + 三要素5.数轴的性质数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数。
6.相反数只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数;0的相反数是0.正数的相反数是负数;负数的相反数是正数;零的相反数是它本身。
7.相反数的几何意义数轴上,表示互为相反数的两个点,它们分别位于原点的两侧,而且与原点的距离相等。
10.有理数的大小比较两个负数,绝对值大的反而小;对于任意有理数的大小比较应采用:正数都大于零,负数都小于零,正数大于负数。
比较两个数的大小,还可以用“作差法”,即:11.有理数加法及加法法则把两个有理数合成一个有理数的运算,叫做有理数的加法。
分五种情况:①两个正数相加;②两个负数相加;③两个异号数相加;④有理数和零相加;⑤零和零相加。
有理数的加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得零;④一个数与零相加,仍得这个数。
注意:利用加法法则计算的步骤:先确定和的符号,再进行绝对值相加或相减。
12.有理数加法运算律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)运算律有下列规律:①互为相反数的两数可以先相加;②符号相同的数可以相加;③分母相同的数可以先相加;④几个数相加能得到整数的可以先相加。
13.有理数的减法法则及运算法则:减去一个数,等于加上这个数的相反数。
注意:两个“变”字,①改变运算符号;②改变减数的性质符号(变为相反数),牢记一个“不变”,被减数与减数的位置不变,即没有交换律。
沪教版数学六年级下册知识点沪教版数学六年级下册知识点在日常过程学习中,大家最熟悉的就是知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
掌握知识点是我们提高成绩的关键!以下是店铺帮大家整理的沪教版数学六年级下册知识点,仅供参考,欢迎大家阅读。
1.负数的由来:人们在生活中经常会遇到各种相反意义的量。
比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。
为了方便,人们就考虑了相反意义的数来表示。
于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。
可见正负数是生产实践中产生的。
2.负数的应用:负数可以广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等等的这些方面中3.负数加减乘除的计算法则:+:负数1+负数2=-|负数1+负数2|=负数负数+正数=符号取绝对值较大的加数的符号,数值取“用较大的绝对值减去较小的绝对值”的所得值-:负数1-负数2=负数1+|负数2|=负数1加上负数2的相反数,再按负数加正数的方法算负数-正数=-|正数+负数|=负数异号两数相减,等于其绝对值相加×:负数1×负数2=|负数1×负数2|=正数负数×正数=-|正数×负数|=负数÷:负数1÷负数2=|负数1÷负数2|=正数负数÷正数=-|负数÷正数|=负数总得来说,就是同数相除等于正数,异数相除等于负数。
4.正数和正整数的区别:正数包括:正整数、正分数(包括正小数)。
(且正数不包括0)辨析:零(0)既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.正整数、负整数、正分数、负分数和零(0)统称有理数。
意义(1)从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
六年级下学期数学主要包括以下几个章节:1.简便计算2.运算的应用3.数据的处理4.图形的认识与探索5.分数的认识和计算6.面积的认识和计算7.算式变形下面,我们逐个章节来进行知识点梳理。
1.简便计算:-用乘法算除法,如:13÷4×5=(13×5)÷4=65÷4=16余1-整数相乘、相除,如:(-6)×(-4)=24,(-6)÷(-3)=2-倍数与因数,如:42是6的倍数,6是42的因数-正数与负数的计算,如:6+(-4)=6-4=22.运算的应用:-解决问题,运用运算法则,如:小猴子爬树问题,分步运算得出结果-利用运算法则推理解决问题,如:通过已知的关系和条件推理出未知的数量3.数据的处理:-数据分类,如:按时间、地点、物品等对数据进行分类整理-数据统计,如:制作表格、条形图、折线图等对数据进行统计和表示-数据分析,如:观察数据图形,分析和推理相关情况4.图形的认识与探索:-图形特征,如:线段、角、面,通过观察和分析图形特点进行认识-图形的分类,如:三角形、四边形、多边形等-图形的运动,如:平移、旋转、翻转等-图形的坐标,如:直角坐标系中的点的坐标表示方法5.分数的认识和计算:-分数的基本概念,如:分数的比较大小、分数的读法、分数的意义等-分数的计算,如:分数的加减乘除运算,分数与整数的四则运算-分数的应用问题解决,如:比较分数大小、分数的约分与通分、分数的四则混合运算6.面积的认识和计算:-面积的基本概念-面积的计算,如:长方形的面积公式、平行四边形、三角形的面积公式-面积的应用问题解决,如:图形组合的面积计算、面积的单位转换7.算式变形:-翻倍法则,如:(20+15)×4=((10+10)+15)×4=(10×4)+(10×4)+(15×4)=40+40+60=140 -分配律,如:9×(43+62)=9×43+9×62=387+558=945。
沪教数学六年级下册知识点沪教版数学六年级下册的知识点涵盖了多个数学领域,包括但不限于以下几个主要部分:1. 数与代数- 整数的认识:理解整数的概念,掌握整数的比较大小和基本运算。
- 分数的加减法:学习分数的基本概念,掌握分数的加减运算规则。
- 比例:理解比例的意义,学习比例的基本性质和应用。
2. 几何与图形- 平面图形:认识和理解常见的平面图形,如三角形、四边形、圆等。
- 图形的对称性:学习图形的对称轴,掌握对称图形的识别和绘制。
- 面积的计算:学习不同图形的面积计算方法,如三角形、平行四边形、圆等。
3. 统计与概率- 数据的收集与整理:学习如何收集数据,并对数据进行分类和整理。
- 条形统计图:理解条形统计图的绘制方法和意义。
- 可能性:初步了解概率的概念,学习可能性的计算方法。
4. 实践与应用- 解决实际问题:将数学知识应用到实际生活中,解决相关问题。
- 数学建模:初步了解数学建模的概念,尝试用数学方法解决实际问题。
5. 数学思维与方法- 逻辑推理:培养逻辑思维能力,学习如何通过推理解决问题。
- 问题解决策略:学习不同的问题解决策略,如画图、列表等。
6. 数学文化与历史- 数学在日常生活中的应用:了解数学在日常生活中的重要性和应用。
- 数学史上的重要人物和事件:了解一些数学史上的重要人物和事件,增加对数学的兴趣。
通过这些知识点的学习,学生不仅能够掌握数学的基础知识,还能培养解决问题的能力,提高数学思维和创新能力。
数学是一门基础学科,对于学生未来的学习和生活都有着重要的影响。
希望每位学生都能在数学的学习中找到乐趣,不断进步。
上海沪教版六年级数学下知识点总结
上海沪教版六年级数学下知识点总结
第五章有理数有理数的意义整数和分数统称为有理数有理数
整数:正整数、零、负整数
分数:正分数、负分数正数和负数数轴:规定了原点、正方向和单位长度的直线叫数轴。
数轴的三要素:原点、单位长度、正方向。
所有的数都可以用数轴上的点来表示。
也可以用数轴来比较两个数的大小在数轴上表示的两个数,正方向的数大于负方向的数零是正数和负数的分界。
只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称为这两个数互为相反数,零的相反数是零。
一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值注意:
1、一个正数的绝对值是它本身。
2、一个负数的绝对值是它的相反数。
3、零的绝对值是零。
4、两个负数,绝对值大的那个数反而小。
有理数的加减有理数加法法则:
1、同号两数相加,取原来的符号,并把绝对值相加。
2、异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。
3、一个数同零相加,仍得这个数。
有理数加法的运算律
1、交换律:a+b=b+a
2、结合律:+ c=a+(b+c)
有理数的减法法则
1、减去一个数,等于加上这个数的相反数
2、a-b=a+(-b)
1 有理数的乘除两数相乘的符号法则正正得正,正负得负,负正得负,负负得正。
有理数的乘法法则
1、两数相乘,同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
注意连成的符号:
1、几个不等于零的数相乘,积的符号负因数的个数决定
2、当负因数有奇数个时,积为负
3、当负因数有偶数个时,积为正
4、几个数相乘,有因数为零,积就为零有理数除法法则
1、两数相除,同号得正,异号得负,并把绝对值相除。
2、零除以任何一个不为零的数,都得零。
有理数的乘方求N个相同因数的积的运算,叫做乘方。
乘法的结果叫做幂。
在an中,a叫做底数,n叫做指数,读作a的n 次方,an看做是a的n次方结果时,读作a的n次幂。
注意:
1、正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。
2、有理数混合运算的顺序:先乘方,后乘除,再加减;统计运算从左到右;如果有括号,先算小括号,后算中括号,再算大括号。
3、把一个数写成a*10n(其中1≤a<10,n是正整数,这种形式的计数方法叫做科学计数法2第六章一次方程及一次不等式方程的意义用字母x、y、等表示所要求的未知的数量,这些字母称为未知数。
含有未知数的等式叫做方程。
在方程中,所含的未知数又称为元。
为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。
如果未知数所取的某个值能使方程左右两边的值相等看,那么这个未知数的值叫做方程的解一次方程的意义只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程等式性质:
1、等式两边同时加上同一个数或一个含有字母的式子,说得结果仍是等式。
2、等式两边同时乘以同一个数,所得结果仍是等式。
去括号的法则是:
括号前带“+”号,去掉括号时括号内各项都不变符号。
括号前带“”号,去掉括号时括号内各项都改变符号。
一次方程的解法解一元一次方程的一般步骤是:
1、去分母;
2、去括号;
3、移项;
4、化成ax=b的形式
5、两边同除以未知数的系数,得到方程的解x=b/a 列方程解应用题的一般步骤是:
1、设未知数;
2、列方程;
3、解方程;
4、检验并作答。
不等式的意义及解法用不等号“<”“>”“≤”“≥”表示的关系式,叫做“不等式”。
不等式性质:
1、不等式的两边同时加上同一个数或同一个含有字母的式子,不等号的方向不变,即:
如果a>b,那么a+m>b+m 如果a<b,那么a+m<b+m
2、不等式的两边同时乘以同一个正数,不等号的方向不变,即:
如果a>b,且m>0,那么am>bm 如果a<b,且m>0,那么am<bm同一个负数,不等号的方向改变,即:
如果a>b,且m<0,那么am<bm 如果a<b,且m<0,那么am>bm 在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解。
3 一般情况下,一元一次方程的解只有一个,一元一次不等式的解可以有无数个。
不等式的解的全体叫做不等式的解集。
只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
解一元一次不等式的一般步骤与解一元一次方程类似。
不等式组几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式组。
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。
求不等式组的解集的过程叫做解不等式组。
如果各个不等式的解集没有公共部分,那么这个不等式组无解。
解一元一次不等式组的一般步骤是:
1、求出不等式组中各个不等式的解集;
2、在数轴上表示各个不等式的解集;
3、确定各个不等式解集的公共部分,就得到这个不等式组的解集。
二元一次方程含有两个未知数的一次方程叫做二元一次方程。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程的解有无数个,二元一次的解的全体叫做这个二元一次方程的解集。
几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的二元一次方程组次数都是一次,那么这样的方程组叫做二元一次方程组。
在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。
通过“代入”消去一个未知数,将方程式转化为一元一次方程,这种解法叫做代入消元法,简称代入法。
通过将两个方程相加消去一个未知数,将方程组转化为一元一次方程,这种解法叫做加减消元法。
如果方程组中有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。
注意:
1、列方程解应用题时要灵活选择未知数的个数。
2、对于含有两个未知数的应用题一般采用列二元一次方程组求解;对于含有三个未知数的应用题一般采用列三元一次方程组求解。
4第七章线段与角的画法直线的画法射线的画法线段的画法联结两点的线段的长度叫做两点之间的距离。
两条线段可以相加,它们的和也是一条线段,其长度等于这两条线段的长度的和。
将一条线段分成两条相等线段的店叫做这条线段的中点。
角的画法角是具有公共端点的两条射线组成的图形。
公共端点叫做角的顶点,两条射线叫做角的边。
角是一条射线绕着它的端点旋转到另一个位置所成的图形。
处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。
两个角可以相加,它们的和也是一个角,它的度数等于这两个角的角度的和。
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
角的测量如果两个角的度数的和是90,那么这两个角叫做互为余角,简称互余。
其中一个角成为另一个角的余角。
如果两个角的度数的和是180,那么这两个角叫做互为补角,简称互补。
其中一个角称为另一个角的补角。
注意:
1、同角的余角相等;
2、同角的补角相等;提问:
1、一个角与它的余角相等,这个角是怎样的角?是锐角
2、一个角与它的补角相等,这个角是怎样的角?是直角
3、互补的两个角能否都是锐角?不能
4、互补的两个角能否都是直角?可能
5、互补的两个角能否都是钝角?不能5第八章长方体的再认识长方体的顶点;长方体的棱;长方体的面;长方体的表面积;长方体的体积公式;
1、长方体有六个面,八个顶点,二条棱。
2、长方体的每个面都是长方形。
3、长方体的二条棱可以分为三组,每组中的四条棱的长度相等。
4、长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同。
5、第115页:长方体中棱与棱位置关系的认识:
如图:棱EH与棱EF所在的直线在同一个面内,它们有惟一的公共点,我们称这两条棱相交。
棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行。
棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面。
6、一般地,如果直线AB与直线CD在同一平面内,具有惟一公共点,那么称这两条直线的位置关系为相交,读作:直线AB 与直线CD相交。
7、如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:AB∥CD,读作:直线AB与直线CD平行。
8、如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面。
9、直线PQ垂直于平面ABCD,记住:直线PQ⊥平面ABCD,读作:直线PQ垂直于平面ABCD。
10、如何检验直线与平面垂直呢?可以用“铅垂线”检验。
如果细棒垂直于墙面,可以用“三角尺”检验。
还可以用“合页型折纸”检验直线是否垂直于平面。
1
1、直线PQ平行于平面ABCD,记作:直线PQ∥平面ABCD, 读作:直线PQ平行于平面ABC
D、
12、如何检验直线与平面平行呢?可以用“铅垂线”检验。
也可以用“长方形纸片”检验。
6全文结束》》。