2016-2017学年高一数学人教A版必修一 习题 第二章 基本初等函数(Ⅰ) 2 章末高效整合 Word版含答案
- 格式:doc
- 大小:162.00 KB
- 文档页数:6
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分) 1.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x ;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个解析: 由指数函数的定义可判定,只有②正确. 答案: B2.当a >0,且a ≠1时,函数f (x )=a x +1-1的图象一定过点( )A .(0,1)B .(0,-1)C .(-1,0)D .(1,0)解析: 当x =-1时,显然f (x )=0,因此图象必过点(-1,0). 答案: C3.函数y =16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4)D .(0,4)解析: 要使函数有意义,则16-4x ≥0.又因为4x >0,∴0≤16-4x <16,即函数y =16-4x的值域为[0,4).答案: C4.函数f (x )=πx 与g (x )=⎝⎛⎭⎫1πx的图象关于( ) A .原点对称 B .x 轴对称 C .y 轴对称D .直线y =-x 对称解析: 设点(x ,y )为函数f (x )=πx 的图象上任意一点,则点(-x ,y )为g (x )=π-x =⎝⎛⎭⎫1πx 的图象上的点.因为点(x ,y )与点(-x ,y )关于y 轴对称,所以函数f (x )=πx 与g (x )=⎝⎛⎭⎫1πx的图象关于y 轴对称,选C.答案: C二、填空题(每小题5分,共15分)5.已知函数f (x )=2a x-1+3(a >0且a ≠1),若f (1)=4,则f (-1)=________. 解析: 由f (1)=4得a =3,把x =-1代入f (x )=23x -1+3得到f (-1)=0,故答案为0. 答案: 06.函数y =2a x -2+1(a >0,且a ≠1)的图象过定点________.解析: 令x -2=0,解得x =2,则y =3. 所以过定点(2,3). 答案: (2,3)7.已知f (x )=a x +b 的图象如图,则f (3)=________. 解析: 由题意知,f (x )的图象过点(0,-2)和(2,0),∴⎩⎨⎧ a 0+b =-2,a 2+b =0,∴⎩⎨⎧a =3(a >0),b =-3.∴f (x )=(3)x -3.∴f (3)=(3)3-3=33-3. 答案: 33-3三、解答题(每小题10分,共20分) 8.设f (x )=3x ,g (x )=⎝⎛⎭⎫13x .(1)在同一坐标系中作出f (x )、g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? 解析: (1)函数f (x )与g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3; f (π)=3π,g (-π)=⎝⎛⎭⎫13-π=3π;f (m )=3m ,g (-m )=⎝⎛⎭⎫13-m =3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.9.求下列函数的定义域和值域: (1)y =21x-1;(2)y =⎝⎛⎭⎫132x 2-2. 解析: (1)要使y =21x -1有意义,需x ≠0,则21x ≠1;故21x -1>-1且21x -1≠0,故函数y=21x-1的定义域为{x |x ≠0},函数的值域为(-1,0)∪(0,+∞).(2)函数y =⎝⎛⎭⎫132x 2-2的定义域为实数集R ,由于2x 2≥0,则2x 2-2≥-2.故0<⎝⎛⎭⎫132x 2-2≤9,所以函数y =⎝⎛⎭⎫132x 2-2的值域为(0,9].。
第5课时 对数函数的初步应用一、课前准备 1.课时目标(1)能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质.(2)加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,渗透运用定义、数形结合、分类讨论等数学思想.(3)重点:对数函数的特性以及函数的通性在解决有关问题中的灵活应用.2.基础预探1、积、商、幂、方根的对数(,M N 都是正数,0,1a a >≠) (1)log ()a M N ⋅= (可推广12log ()a k N N N ⋅⋅⋅= (k N +∈))(2)log aMN= (3)log na M =2、对数函数log (0,1,0)a y x a a x =>≠>的图象与性质定义 log (0,1,0)a y x a a x =>≠>底数1a > 01a <<图象定义域 值域 单调性公共点函数值特点()0,1x y ∈∈时, ;[)1,x y ∈+∞∈时, ;()0,1x y ∈∈时, ;[)1,x y ∈+∞∈时,;对称性函数log a y x =与1log ay x =的图象关于 对称.3.函数3log (2)y x =+的图象是由函数3log y x =的图象 得到。
4. 函数3log (2)3y x =-+的图象是由函数3log y x =的图象 得到。
5. 函数log ()a y x b c =++(0,1a a >≠)的图象是由函数log a y x =的图象 得到; 当 时先向右平移| b|个单位,再向上平移c 个单位得到; 当 时先向左平移 b 个单位,再向下平移|c |个单位得到; 当0,0b c <<时 得到。
二、基本知识习题化1. 下列函数与y x =有相同图象的一个函数是( )A. 2y x = B. 2x y x=C. log (01)a x y a a a =>≠且D. log x a y a = 2. 函数12log (32)y x =-的定义域是( ).A. [1,)+∞B. 2(,)3+∞C. 2[,1]3D. 2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg(8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 .6. 右图是函数1log a y x =,2log a y x =3log a y x =, 4log a y x = 的图象,则底数之间的关系为 .三、学习引领1、理解对数函数log (0,1)a y x a a =>≠,应注意以下三个方面:(1)定义域:因为对数函数log a y x =是由指数函数xy a =变化而来的,对数函数的自变量x 恰好对应指数函数的函数值y ,所以对数函数log a y x =的定义域是指数函数xy a =的值域,即0x >。
第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 指数与指数幂的运算基础达标1.(2013·沈阳高一检测)化简3a a的结果是( ).A.a B.a C.a2 D.3 a解析答案 B2.若有意义,则x的取值范围是( ).A.x∈R B.x∈R且x≠1 2C.x>12D.x<12解析=14(1-2x)3,∴1-2x>0,得x<12.答案 D3.计算得( ).解析 原式答案 A 4.化简-x 3x的结果是________.解析 由题意知x <0,∴-x 3x =--x 3x 2=--x .答案 --x5.若 4a 2-4a +1=1-2a ,则a 的取值范围是________. 解析4a 2-4a +1= (2a -1)2=|2a -1|=1-2a ,∴2a -1≤0,∴a ≤12.答案 ⎝⎛⎦⎥⎤-∞,126.计算:(0.25)-0.5+-6250.25=________.解析 原式=+=2+3-5=0.答案 07.计算下列各式的值: (1) ÷105;(2)(a >0,b >0).解能力提升8.下列说法中正确的个数为( ).①na n =a ;②若a ∈R ,则(a 2-a +1)0=1;③ 3x 4+y 3= +y ;④3-5=6(-5)2.A .0B .1C .2D .3解析 ①中,若n 为偶数,则不一定成立,故①是错误的;②中,因为a 2-a+1=+34≠0,所以(a 2-a +1)0=1是正确的;③是错误的;④左边为负数,而右边为正数,错误. 答案 B9.若10x =2,10y =3,则=________.解析 由10x =2,10y =3,得,102y =(10y )2=32,∴.答案 22910.已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -ba +b的值. 解 ∵a ,b 是方程x 2-6x +4=0的两根, ∴a +b =6,ab =4.⎝ ⎛⎭⎪⎫a -b a +b 2=a +b -2ab a +b +2ab =6-246+24=15.a-b a+b =15=55.∵a>b>0,∴a>b,∴。
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).函数=(+)+(-)-的定义域是( ).(-).(-).(].()解析:由题意得(\\(+>,->,))解之,得-<<.答案:.函数=(+)+的图象过定点( ).().().(-).(-)解析:令+=,得=-,得=,∴函数的图象过定点(-).答案:.已知幂函数()满足=,则()的图象所分布的象限是( ).第一、三象限.第一、二象限.只在第一象限.第一、四象限解析:设()=,则=,=-.∴()=-,因此()的图象在第一、二象限.答案:.已知=,=,则等于( )..解析:∵=,=,∴=,=,∴==.答案:.已知()=-(≤≤,为常数)的图象经过点(),则()的值域为( ).[].[].[,+∞).[] 解析:由()过定点()可知=,因()=-在[]上是增函数,()=()=,()=()=,可知正确.答案:.设=,=,=,则( ).<<.<<.<<.<<解析:∵=<=,<=<=,=>=,∴>>.答案:.已知()=(+)(>,且≠),若∈(-)时,()<,则()是( ).减函数.增函数.不单调的函数.常数函数解析:∵∈(-)时,+∈(),此时,()<.∴>.∴()在定义域(-,+∞)上是增函数.答案:.设()=,∈,那么()是( ).奇函数且在(,+∞)上是增函数.偶函数且在(,+∞)上是增函数.奇函数且在(,+∞)上是减函数.偶函数且在(,+∞)上是减函数解析:∵(-)=-==(),∴()是偶函数.∵>,∴()=在(,+∞)上是减函数,故选.答案:.函数=+的图象关于直线=对称的图象大致是( )解析:∵=+的图象过点()且单调递减,故它关于直线=对称的图象过点()且单调递减,故选.答案:.已知函数()是奇函数,当>时, ()=(>且≠),且=-,则的值为( )..解析:∵==(-)=-()=-=-,∴=,解得=±,又>,∴=.。
课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
高一数学人教a 版必修一_习题_第二章_基本初等函数(ⅰ)_2.1.2.2_word 版有答案一、选择题(每小题5分,共20分)1.若a =⎝⎛⎭⎫34-13,b =⎝⎛⎭⎫34-14,c =⎝⎛⎭⎫32-14,则a 、b 、c 的大小关系是( ) A .c <a <b B .c <b <aC .a <b <cD .b <c <a解析: 由y =⎝⎛⎭⎫34x 在R 上单调递减,知⎝⎛⎭⎫34-14<⎝⎛⎭⎫34-13,而⎝⎛⎭⎫32-14<1<⎝⎛⎭⎫34-14,所以⎝⎛⎭⎫32-14<⎝⎛⎭⎫34-14<⎝⎛⎭⎫34-13.即c <b <a .答案: B2.函数y =⎝⎛⎭⎫121-x 的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)解析: 定义域为R .设u =1-x ,则y =⎝⎛⎭⎫12u .∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u 在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x 在(-∞,+∞)上是增函数.答案: A3.已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析: ∵0<a <1,∴y =a x 的图象不经过三、四象限.∵b <-1,∴y =a x +b 的图象不经过第一象限.答案: A4.已知f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是() A .a >0 B .a >1C .a <1D .0<a <1解析: ∵f (-2)=a 2,f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,故0<a <1.选D.答案: D二、填空题(每小题5分,共15分)5.已知函数y =f (x )的定义域为(1,2),则函数y =f (2x )的定义域为________.解析: 由函数的定义,得1<2x <2⇒0<x <1,所以应填(0,1).答案: (0,1)6.满足方程4x +2x -2=0的x 值为________.解析: 设t =2x (t >0),则原方程化为t 2+t -2=0,∴t =1或t =-2.∵t >0,∴t =-2舍去.∴t =1,即2x =1,∴x =0.答案: 07.定义运算a ⊗b =⎩⎪⎨⎪⎧b (a ≥b ),a (a <b ),则函数f (x )=3-x ⊗3x 的值域为________.解析: 由题设可得f (x )=3-x ⊗3x =⎩⎪⎨⎪⎧3-x (x >0),3x (x ≤0),其图象如图实线所示,由图知函数f (x )的值域为(0,1]. 答案: (0,1]三、解答题(每小题10分,共20分)8.比较下列各组值的大小:(1)1.8-0.1,1.8-0.2;(2)1.90.3,0.73.1;(3)a 1.3,a 2.5(a >0,且a ≠1).解析: (1)由于1.8>1,所以指数函数y =1.8x ,在R 上为增函数.所以1.8-0.1>1.8-0.2.(2)因为1.90.3>1,0.73.1<1,所以1.90.3>0.73.1.(3)当a >1时,函数y =a x 是增函数,此时a 1.3<a 2.5,当0<a <1时,函数y =a x 是减函数,此时a 1.3>a 2.5,故当0<a <1时,a 1.3>a 2.5,当a >1时,a 1.3<a 2.5.9.已知函数f (x )=a x 在x ∈[-2,2]上恒有f (x )<2,求a 的取值范围.解析: 当a >1时,函数f (x )=a x 在[-2,2]上单调递增,此时f (x )≤f (2)=a 2,由题意可知a 2<2,即a <2,所以1<a < 2.当0<a <1时,函数f (x )=a x 在[-2,2]上单调递减,此时f (x )≤f (-2)=a -2, 由题意可知a -2<2,即a >22,所以22<a <1. 综上所述,所求a 的取值范围是⎝⎛⎭⎫22,1∪(1,2). 能力测评10.函数y =a x 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( )A .6B .1C .3 D.32解析: 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2.因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3.答案: C11.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.解析: 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.答案: 1912.已知函数f (x )=ax 2-1(a >0且a ≠1).(1)若函数f (x )的图象经过点P (3,4),求a 的值;(2)判断并证明函数f (x )的奇偶性;(3)比较f (-2)与f (-2.1)的大小,并说明理由.解析: (1)∵函数f (x )的图象经过点P (3,4),∴f (3)=a 2=4,∴a =2.(2)函数f (x )为偶函数.∵函数f (x )的定义域为R ,且f (-x )=a (-x )2-1=ax 2-1=f (x ),∴函数f (x )为偶函数.(3)∵y =x 2-1在(-∞,0)上单调递减,∴当a >1时,f (x )在(-∞,0)上单调递减,∴f (-2)<f (-2.1);当0<a <1时,f (x )在(-∞,0)上单调递增,∴f (-2)>f (-2.1).13.已知函数f (x )=1+22x-1. (1)求函数f (x )的定义域;(2)证明函数f (x )在(-∞,0)上为减函数.解析: (1)由f (x )=1+22x-1可得,2x -1≠0,所以x ≠0.所以函数f (x )的定义域为{x |x ∈R 且x ≠0}.(2)设x1,x2∈(-∞,0)且x1<x2.f(x1)-f(x2)=22x1-1-22x2-1=2(2x2-2x1)(2x1-1)(2x2-1)因为x1,x2∈(-∞,0)且x1<x2,所以2x2>2x1且2x1<1,2x2<1.所以f(x1)-f(x2)>0,即f(x1)>f(x2).以函数f(x)在(-∞,0)上为减函数.。
高一数学人教a 版必修一_习题_第二章_基本初等函数(ⅰ)_2.1.1_word 版有答案一、选择题(每小题5分,共20分)1.下列运算结果中正确的为( )A .a 2·a 3=a 6B .(-a 2)3=(-a 3)2C .(a -1)0=1D .(-a 2)3=-a 6解析: a 2·a 3=a 5,(-a 2)3=(-1)3·(a 2)3=-a 6,而(-a 3)2=a 6,∴在a ≠0时(-a 2)3≠(-a 3)2;若a =1,则(a -1)0无意义,所以只有D 正确.答案: D2.⎝⎛⎭⎫1120-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( ) A .-13B.13C.43D.73解析: 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73. 答案: D3.将⎝⎛⎭⎪⎫x 13·3x -2-85化成分数指数幂为( ) A .x -13B .x 415C .x -415D .x 25解析: 原式=⎝⎛⎭⎫x 16·x -23×12-85=⎝⎛⎭⎫x 16-13-85=x -16×⎝⎛⎭⎫-85=x 415. 答案: B4.下列说法中,正确说法的个数为( )①n a n =a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2. A .0B .1C .2D .3解析: ①中,若n 为偶数,则不一定成立,故①是错误的;②中,因为a 2-a +1=⎝⎛⎭⎫a -122+34≠0,所以(a 2-a +1)0=1是正确的;③是错误的;④左边为负数,而右边为正数,是错误的,故选B.答案: B二、填空题(每小题5分,共15分)5.[(-5)4]14-150的值是________. 解析: [(-5)4]14-150=(54)14-150=5-1=4. 答案: 46.设α、β为方程2x 2+3x +1=0的两个根,则⎝⎛⎭⎫14α+β=________________________________________________________________________.解析: 由根与系数关系得α+β=-32,所以⎝⎛⎭⎫14α+β=⎝⎛⎭⎫14-32=(2-2)-32=23=8. 答案: 87.已知x 2-4x +4+y 2+6y +9=0,则y x 的值为________.解析: 因为x 2-4x +4+y 2+6y +9=0, 所以(x -2)2+(y +3)2=0,即|x -2|+|y +3|=0,所以x =2,y =-3.即y x =(-3)2=9.答案: 9三、解答题(每小题10分,共20分)8.计算下列各式(式中字母都是正数):(1)⎝⎛⎭⎫2a 23b 12⎝⎛⎭⎫-6a 12b 13÷⎝⎛⎭⎫-3a 16b 56; (2)⎝⎛⎭⎫m 14n -388. 解析: (1)⎝⎛⎭⎫2a 23b 12⎝⎛⎭⎫-6a 12b 13÷⎝⎛⎭⎫-3a 16b 56 =[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4ab 0=4a ;(2)⎝⎛⎭⎫m 14n -388=⎝⎛⎭⎫m 148⎝⎛⎭⎫n -388=m 2n -3 =m 2n 3. 9.计算:(1)⎝⎛⎭⎫2140.5-0.752+6-2×⎝⎛⎭⎫827-23; (2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫8116-34.解析: (1)⎝⎛⎭⎫2140.5-0.752+6-2×⎝⎛⎭⎫827-23=⎣⎡⎦⎤⎝⎛⎭⎫32212-⎝⎛⎭⎫342+136×⎣⎡⎦⎤⎝⎛⎭⎫233-23=32-⎝⎛⎭⎫342+136×⎝⎛⎭⎫23-2 =32-916+136×94=1.(2)823-(0.5)-3+⎝⎛⎭⎫13-6×⎝⎛⎭⎫8116-34=()2323-(2-1)-3+⎝⎛⎭⎫3-12-6×⎣⎡⎦⎤⎝⎛⎭⎫324-34=22-23+33×⎝⎛⎭⎫32-3=4-8+27×827=4.。
函数的应用1.题型为选择题或填空题,主要考查零点个数的判断及零点所在区间.2.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.[典题示例] 函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤0,x -2+ln x ,x >0的零点个数为________.[解析] 令f (x )=0,得到⎩⎪⎨⎪⎧x 2-1=0,x ≤0,解得x =-1;或⎩⎪⎨⎪⎧x -2+ln x =0,x >0,在同一个直角坐标系中画出y =2-x 和y =ln x 的图象,观察交点个数,如图所示.函数y =2-x 和y =ln x ,x >0,在同一个直角坐标系中交点个数是1,所以函数f (x )在x <0时的零点有一个,在x >0时零点有一个,所以f (x )的零点个数为2.[答案] 2 [类题通法]确定函数零点个数的方法(1)解方程f (x )=0有几个根.(2)利用图象找y =f (x )的图象与x 轴的交点或转化成两个函数图象的交点个数. (3)利用f (a )·f (b )与0的关系进行判断.[题组训练]1.函数f (x )=lg x -9x 的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9)D .(9,10)解析:选D ∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0,f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0, ∴f (9) · f (10)<0.函数的零点问题∴f (x )=lg x -9x的零点的大致区间为(9,10).2.已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12x -2在(0,+∞)是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12-1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫120<0, f (3)=ln 3-⎝⎛⎭⎫121>0, ∴x 0∈(2,3).3.函数y =⎝⎛⎭⎫12|x |-m 有两个零点,则m 的取值范围是________. 解析:在同一直角坐标系内,画出y 1=⎝⎛⎭⎫12|x |和y 2=m 的图象,如图所示,由于函数有两个零点,故0<m <1.答案:(0,1)1.通过对近几年高考试题的分析可以看出,对函数的实际应用问题的考查,更多地以实际生活为背景,设问新颖、灵活;题型以解答题为主,难度中等偏上;主要考查建模能力,同时考查分析问题、解决问题的能力.2.函数实际应用的示意图[典题示例] 某网店经营的某消费品的进价为每件12元,周销售量p (件)与销售价格x (元)的关系,如图中折线所示,每周各项开支合计为20元.(1)写出周销售量p (件)与销售价格x (元)的函数关系式; (2)写出利润周利润y (元)与销售价格x (元)的函数关系式;函数的应用(3)当该消费品销售价格为多少元时,周利润最大?并求出最大周利润. [解] (1)由题设知,当12≤x ≤20时,设p =ax +b ,则⎩⎪⎨⎪⎧12a +b =26,20a +b =10,∴a =-2,b =50. ∴p =-2x +50,同理得,当20<x ≤28时,p =-x +30,所以p =⎩⎪⎨⎪⎧-2x +50,12≤x ≤20,-x +30,20<x ≤28.(2)当12≤x ≤20时,y =(x -12)(-2x +50)-20=-2x 2+74x -620; 当20<x ≤28时,y =(x -12)(-x +30)-20=-x 2+42x -380.∴y =⎩⎪⎨⎪⎧-2x 2+74x -620,12≤x ≤20,-x 2+42x -380,20<x ≤28. (3)当12≤x ≤20时,y =-2x 2+74x -620, ∴x =372时,y 取得最大值1292. 当20<x ≤28时,y =-x 2+42x -380, ∴x =21时,y 取得最大值61. ∵1292>61,∴该消费品销售价格为372时,周利润最大,最大周利润为1292. [类题通法]建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示. (2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域. (3)求解函数模型,并还原为实际问题的解.[题组训练]1.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速率越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的是序号是________.解析:由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1),反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.答案:②③2.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .若5分钟后甲桶和乙桶的水量相等,又过了m 分钟后甲桶中的水只有a8升,则m的值为( )A .7B .8C .9D .10解析:选D 令18a =a e nt ,即18=e nt ,由已知得12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.3.某企业决定从甲、乙两种产品中选择一种投资生产,打入国际市场,已知投资生产这两种产品的有关数据如表:时需上交0.05x 2万美元的特别关税.(1)写出该厂分别投资生产甲、乙两种产品的年利润y 1,y 2与生产相应产品的件数x (x ∈N)之间的函数关系式;(2)分别求出投资生产这两种产品的最大年利润.解:(1)由题知y 1=10x -(20+ax )=(10-a )x -20,0≤x ≤200且x ∈N ;y 2=18x -(40+8x )-0.05x 2=-0.05x 2+10x -40=-0.05(x-100)2+460,0≤x ≤120且x ∈N.(2)∵3≤a ≤8,∴10-a >0, ∴y 1=(10-a )x -20为增函数. 又0≤x ≤200,x ∈N ,∴x =200时y 1取最大值,即生产甲产品的最大年利润为(10-a )×200-20=1 980-200a (万美元).又y 2=-0.05(x -100)2+460,0≤x ≤120,x ∈N ,∴x =100时y 2取最大值,即生产乙产品的最大年利润为460万美元.1.已知函数f (x )=⎩⎪⎨⎪⎧x (x +4),x <0,x (x -4),x ≥0,则该函数的零点的个数为( )A .1B .2C .3D .4解析:选C 当x <0时,令x (x +4)=0,解得x =-4;当x ≥0时,令x (x -4)=0,解得x =0或4.综上,该函数的零点有3个.2.函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)解析:选A f (1)=ln 2-2=ln 2e 2<ln 1=0,f (2)=ln 3-1=ln 3e>ln 1=0,所以函数f (x )=ln(x +1)-2x的零点所在的大致区间是(1,2).3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设该家具的进货价是x 元,由题意得132(1-10%)-x =x ·10%,解得x =108元.4.下列函数:①y =lg x ;②y =2x ;③y =x 2;④y =|x |-1,其中有2个零点的函数是( ) A .①② B .③④ C .②③D .④解析:选D 分别作出这四个函数的图象,其中④y =|x |-1的图象与x 轴有两个交点,即有2个零点,选D.5.已知函数f (x )在区间[a ,b ]上是单调函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根解析:选B 由于f (a )f (b )<0,则f (a )<0<f (b )或f (b )<0<f (a ),又函数f (x )在区间[a ,b ]上是单调函数,则至多有一个实数x 0∈[a ,b ],使f (x 0)=0,即方程f (x )=0在区间[a ,b ]内至多有一实根.6.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A .2 B .3C .4D .与a 的值有关解析:选A 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.7.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.解析:由题意,S =(4+x )⎝⎛⎭⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:18.某学校要装备一个实验室,需要购置实验设备若干套,与厂家协商,同意按出厂价结算,若超过50套就可以每套比出厂价低30元给予优惠.如果按出厂价购买应付a 元,但再多买11套就可以按优惠价结算,恰好也付a 元(价格为整数),则a 的值为________.解析:设按出厂价y 元购买x (x ≤50)套应付a 元, 则a =xy .再多买11套就可以按优惠价结算恰好也付a 元,则a =(x +11)(y -30),其中x +11>50.∴xy =(x +11)(y -30)(39<x ≤50).∴3011x =y -30.又x ∈N ,y ∈N(因价格为整数),39<x ≤50, ∴x =44,y =150,a =44×150=6 600. 答案:6 6009.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________. 解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.答案:(1,+∞)10.某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在规定的时间内,产量减少3件.如果在规定的时间内,最低档次的产品可生产60件.(1)请写出规定时间内产品的总利润y 与档次x 之间的函数关系式,并写出x 的定义域; (2)在规定的时间内,生产哪一档次产品的总利润最大?并求出最大利润.解:(1)由题意知,生产第x 个档次的产品每件的利润为8+2(x -1)元,该档次的产量为60-3(x -1)件.则规定时间内第x 档次的总利润y =(2x +6)(63-3x )=-6x 2+108x +378,其中x ∈{x ∈N *|1≤x ≤10}.(2)y =-6x 2+108x +378=-6(x -9)2+864,则当x =9时,y 有最大值为864.故在规定的时间内,生产第9档次的产品的总利润最大,最大利润为864元.11.A 、B 两城相距100 km ,在两地之间距A 城x km 处D 地建一核电站给A 、B 两城供电,为保证城市安全.核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城为10亿度/月.(1)求x 的范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电费用最小. 解:(1)x 的取值范围为[10,90].(2)y =0.25×20x 2+0.25×10(100-x )2=5x 2+52(100-x )2(10≤x ≤90).(3)由y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003. 则当x =1003km 时,y 最小. 故当核电站建在距A 城1003km 时,才能使供电费用最小.12.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解:设该单位每月获利为S 元, 则S =100x -y=100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元才能不亏损.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( ) A .A ⊆B B .A ∩B ={2} C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}解析:选D A 显然错误;A ∩B ={2,3},B 错;A ∪B ={1,2,3,4},C 错,故选D. 2.(2017·山东高考)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1)解析:选D 由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}.3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=( ) A .0 B .1 C .2D .3解析:选C ∵f (2)=log 3(22-1)=1. ∴f (f (2))=f (1)=2e 1-1=2.4.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x解析:选A ∵y =x-1是奇函数,y =log 12x 不具有奇偶性,故排除B 、D ,又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C ,只有选项A 符合题意.5.函数y =log 2|1-x |的图象是( )解析:选D 函数y =log 2|1-x |可由下列变换得到: y =log 2x →y =log 2|x |→y =log 2|x -1|→y =log 2|1-x |.故选D.6.已知幂函数y =f (x )的图象过点⎝⎛⎭⎫12,22,则log 2f (2)的值为( )A.12 B .-12C .2D .-2解析:选A 设f (x )=x α,则22=⎝⎛⎭⎫12α,∴α=12,f (2)=212,所以log 2f (2)=log 2212=12. 7.函数f (x )=lg x -1x 的零点所在的区间是( ) A .(0,1) B .(1,10) C .(10,100)D .(100,+∞)解析:选B ∵f (1)=-1<0,f (10)=1-110=910>0,f (100)=2-1100>0, ∴f (1)·f (10)<0,由函数零点存在性定理知,函数f (x )=lg x -1x 的零点所在的区间为(1,10).8.设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选B ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 9.如右图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中整体水面上升高度h 与注水时间t 之间的函数关系大致是下列图象中的( )解析:选B 开始一段时间,水槽底部没有水,烧杯满了之后,水槽中水面上升先快后慢.故选B.10.已知函数f (x )=1+x 21-x 2,则有( )A .f (x )是奇函数,且f ⎝⎛⎭⎫1x =-f (x ) B .f (x )是奇函数,且f ⎝⎛⎭⎫1x =f (x ) C .f (x )是偶函数,且f ⎝⎛⎭⎫1x =-f (x ) D .f (x )是偶函数,且f ⎝⎛⎭⎫1x =f (x ) 解析:选C ∵f (-x )=f (x ), ∴f (x )是偶函数,排除A 、B.又f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=1+x 2x 2-1=-f (x ),故选C. 11.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( ) A .(-∞,2] B .(-∞,2) C .[2,+∞)D .(2,+∞)解析:选A 因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2.12.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:选C 作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6.于是lg a +lg b =0. 故ab =1.因而abc =c .由图知10<c <12,故abc ∈(10,12).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.设U =R ,已知集合A ={x |x >1},B ={x |x >a },且(∁U A )∪B =R ,则实数a 的取值范围是________.解析:∵A ={x |x >1}, ∴∁U A ={x |x ≤1}.由B ={x |x >a },(∁U A )∪B =R 可知a ≤1. 答案:(-∞,1]14.调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2 mg/mL.某人喝酒后,其血液中酒精含量将上升到3 mg/mL ,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过________小时他才可以驾驶机动车.(精确到小时)解析:设n 小时后他才可以驾驶机动车,由题意得3(1-0.5)n ≤0.2,即2n ≥15,解得n ≥log 215,故至少经过4小时他才可以驾驶机动车.答案:415.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于________. 解析:∵0<1,∴f (0)=20+1=2.∵2>1,∴f (2)=4+2a ,∴f (f (0))=f (2)=4+2a =4a ,∴a =2.答案:216.已知函数f (x )=lg(2x -b )(b 为常数),若x ∈[1,+∞)时,f (x )≥0恒成立,则b 的取值范围是________.解析:∵要使f (x )=lg(2x -b )在x ∈[1,+∞)上,恒有f (x )≥0,∴有2x -b ≥1在x ∈[1,+∞)上恒成立,即2x ≥b +1恒成立.又∵指数函数g (x )=2x 在定义域上是增函数.∴只要2≥b +1成立即可,解得b ≤1.答案:(-∞,1]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |2<2x <8},B ={x |a ≤x ≤a +3}.(1)当a =2时,求A ∩B ;(2)若B ⊆∁R A ,求实数a 的取值范围.解:(1)当a =2时,A ={x |2<2x <8}=(1,3),B ={x |a ≤x ≤a +3}=[2,5],故A ∩B =[2,3).(2)∁R A =(-∞,1]∪[3,+∞).故由B ⊆∁R A 知,a +3≤1或a ≥3,故实数a 的取值范围为(-∞,-2]∪[3,+∞).18.(本小题满分12分)已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2).(1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域;(3)在(2)的条件下,求g (x )的单调减区间.解:(1)由已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2),则2=log a 4,即a 2=4,又a >0且a ≠1,所以a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x ).由⎩⎪⎨⎪⎧1-x >0,1+x >0,得-1<x <1,定义域为(-1,1).(3)g (x )=log 2(1-x )+log 2(1+x )=log 2(1-x 2),其单调减区间为[0,1).19.(本小题满分12分)若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ⎝⎛⎭⎫x y =f (x )-f (y ).(1)求f (1)的值;(2)若f (6)=1,解不等式f (x +3)-f ⎝⎛⎭⎫13<2.解:(1)在f ⎝⎛⎭⎫x y =f (x )-f (y )中,令x =y =1,则有f (1)=f (1)-f (1),∴f (1)=0.(2)∵f (6)=1,∴f (x +3)-f ⎝⎛⎭⎫13<2=f (6)+f (6).∴f (3x +9)-f (6)<f (6),即f ⎝⎛⎭⎫x +32<f (6).∵f (x )是定义在(0,+∞)上的增函数,∴⎩⎪⎨⎪⎧ x +3>0,x +32<6.解得-3<x <9, 即不等式的解集为(-3,9).20.(本小题满分12分)随着新能源的发展,电动汽车在全社会逐渐普及开来,据某报记者了解,某市电动汽车国际示范区运营服务公司逐步建立了全市乃至全国的分时租赁服务体系,为新能源汽车分时租赁在全国的推广提供了可复制的市场化运营模式.现假设该公司有750辆电动汽车供租赁使用,管理这些电动汽车的费用是每日1 725元.调查发现,若每辆电动汽车的日租金不超过90元,则电动汽车可以全部租出;若超过90元,则每超过1元,租不出的电动汽车就增加3辆.设每辆电动汽车的日租金为x (元)(60≤x ≤300,x ∈N *),用y (元)表示出租电动汽车的日净收入(日净收入等于日出租电动汽车的总收入减去日管理费用).(1)求函数y =f (x )的解析式;(2)试问当每辆电动汽车的日租金为多少元时,才能使日净收入最多?解:(1)当60≤x ≤90,x ∈N *时,y =750x -1 725;当90<x ≤300,x ∈N *时,y =[750-3(x -90)]x -1 725,故f (x )=⎩⎪⎨⎪⎧750x -1 725,60≤x ≤90,x ∈N *,-3x 2+1 020x -1 725,90<x ≤300,x ∈N *. (2)对于y =750x -1 725,60≤x ≤90,x ∈N *,∵y 在[60,90](x ∈N *)上单调递增,∴当x =90时,y max =65 775.对于y =-3x 2+1 020x -1 725=-3(x -170)2+84 975,90<x ≤300,x ∈N *,当x =170时,y max =84 975.∵84 975>65 775,∴当每辆电动汽车的日租金为170元时,日净收入最多.21.(本小题满分12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式;(3)若x ∈A ,f (x )∈[-7,3],求区间A .解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6.(2)设x <0,则-x >0,∴f (-x )=2-x -1, ∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1, ∴f (x )=⎩⎪⎨⎪⎧2x -1,x ≥0,-2-x +1,x <0.(3)作出函数f (x )的图象,如图所示.根据函数图象可得f (x )在R 上单调递增,当x <0时,-7≤-2-x +1<0, 解得-3≤x <0;当x ≥0时,0≤2x -1≤3,解得0≤x ≤2;∴区间A 为[-3,2].22.(本小题满分12分)对于函数f (x )=a -2b x+1(a ∈R ,b >0,且b ≠1). (1)探索函数y =f (x )的单调性;(2)求实数a 的值,使函数y =f (x )为奇函数;(3)在(2)的条件下,令b =2,求使f (x )=m (x ∈[0,1])有解的实数m 的取值范围.解:(1)函数f (x )的定义域为R ,设x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫a -2bx 1+1-⎝⎛⎭⎫a -2bx 2+1=2(bx 1-bx 2)(bx 1+1)(bx 2+1).当b >1时,由x 1<x 2,得bx 1<bx 2,从而bx 1-bx 2<0,于是f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),此时函数f (x )在R 上是单调增函数; 当0<b <1时,由x 1<x 2,得bx 1>bx 2,从而bx 1-bx 2>0,于是f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2), 此时函数f (x )在R 上是单调减函数.(2)函数f (x )的定义域为R ,由f (0)=0得a =1. 当a =1时,f (x )=1-2b x +1=b x -1b x +1, f (-x )=1-2b -x +1=b -x -1b -x +1=1-b x 1+b x . 满足条件f (-x )=-f (x ),故a =1时,函数f (x )为奇函数.(3)f (x )=1-22x+1, ∵x ∈[0,1],∴2x ∈[1,2],2x +1∈[2,3],22x+1∈⎣⎡⎦⎤23,1, ∴f (x )∈⎣⎡⎦⎤0,13, 要使f (x )=m (x ∈[0,1])有解,则0≤m ≤13,即实数m 的取值范围为⎣⎡⎦⎤0,13.。
高中数学学习材料金戈铁骑整理制作第11讲 §2.1.1 指数与指数幂的运算¤学习目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算.¤知识要点:1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈. n 次方根具有如下性质:(1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零.(2)n 次方根(*1,n n N >∈且)有如下恒等式:()n n a a =;,||,n n a n a a n ⎧=⎨⎩为奇数为偶数;np n mp m a a =,(a ≥0). 2. 规定正数的分数指数幂:mn m na a = (0,,,1a m n N n *>∈>且); 11m nm nmna aa-==.¤例题精讲:【例1】求下列各式的值:(1)3n nπ-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33n n ππ-=-();当n 为偶数时,3|3|3n nπππ-=-=-().(2)2()||x y x y -=-.当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-.【例2】已知221na =+,求33n n n na a a a--++的值. 解:332222()(1)1121122121n n n n n n n n nn n na a a a a a a a a a a a ------++-+==-+=+-+=-+++. 【例3】化简:(1)211511336622(2)(6)(3)a b a b a b -÷-; (2)3322114423()a b ab ba b a⋅(a >0,b >0); (3)243819⨯.解:(1)原式=2111150326236[2(6)(3)]44a bab a +-+-⨯-÷-==.(2)原式=1312322123[()](/)a b ab ab b a ⋅⋅=1136322733a b a b a b⋅=104632733a b a b=a b. (3)原式=2212124444244332323[(3)]3333⨯⨯⨯=⨯=⨯221111446336444(33)(3)(3)3333=⨯=⨯=⨯=.点评:根式化分数指数幂时,切记不能混淆,注意将根指数化为分母,幂指数化为分子,根号的嵌套,化为幂的幂. 正确转化和运用幂的运算性质,是复杂根式化简的关键.【例4】化简与求值:(1)642642++-; (2)11111335572121n n +++⋅⋅⋅++++-++.解:(1)原式=22222222(2)2222(2)+⨯⨯++-⨯⨯+ =22(22)(22)++- =2222++-=4. (2)原式=3153752121315375(21)(21)n n n n ---+--+++⋅⋅⋅+---+-- =1(3153752121)2n n -+-+-+⋅⋅⋅++--=1(211)2n +-.点评:形如A B ±的双重根式,当2A B -是一个平方数时,则能通过配方法去掉双重根号,这也是双重根号能否开方的判别技巧. 而分母有理化中,常常用到的是平方差公式,第2小题也体现了一种消去法的思想. 第(1)小题还可用平方法,即先算得原式的平方,再开方而得.第11练 §2.1.1 指数与指数幂的运算※基础达标1.化简1327()125-的结果是( ). A. 35 B. 53C. 3D.52.下列根式中,分数指数幂的互化,正确的是( ). A. 12()(0)x x x -=-> B.1263(0)y y y =< C.33441()(0)xx x-=> D.133(0)x x x -=-≠3.下列各式正确的是( ). A. 35351a a-= B.3322x x = C. 111111()824824a a aa-⨯⨯-⋅⋅= D. 112333142(2)12xx x x---=- 4.计算1()02(4)12(15)221--++---,结果是( ).A.1B. 22C. 2D. 122-5.化简111113216842(12)(12)(12)(12)(12)-----+++++,结果是( ).A. 11321(12)2---B. 1132(12)---C. 13212--D. 1321(12)2-- 6.化简36639494()()a a 的结果是 .7.计算2110332464()( 5.6)()0.125927--+--+= .※能力提高8.化简求值:(1)211132221566()(3)13a b a b a b -; (2)34a a a .9.已知1122x x -+=3,求下列各式的值:(1)1x x -+;(2)33222223x x x x --++++.※探究创新10.已知函数11331()()5f x x x -=-,11331()()5g x x x -=+.(1)判断()f x 、()g x 的奇偶性;(2)分别计算(4)5(2)(2)f f g -和(9)5(3)(3)f f g -,并概括出涉及函数()f x 和()g x 对所有不为0的实数x 都成立的一个等式,并加以证明.第12讲 §2.1.2 指数函数及其性质(一)¤学习目标:理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,探索并理解指数函数的单调性与特殊点,掌握指数函数的性质.¤知识要点:1. 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .2. 以函数2x y =与1()2x y =的图象为例,观察这一对函数的图象,可总结出如下性质:定义域为R ,值域为(0,)+∞;当0x =时,1y =,即图象过定点(0,1);当01a <<时,在R 上是减函数,当1a >时,在R 上是增函数.¤例题精讲:【例1】求下列函数的定义域: (1)132xy -=; (2)51()3xy -=; (3)1010010100x x y +=-.解:(1)要使132xy -=有意义,其中自变量x 需满足30x -≠,即3x ≠. ∴ 其定义域为{|3}x x ≠.(2)要使51()3xy -=有意义,其中自变量x 需满足50x -≥,即5x ≤. ∴ 其定义域为{|5}x x ≤. (3)要使1010010100x x y +=-有意义,其中自变量x 需满足101000x -≠,即2x ≠. ∴其定义域为{|2}x x ≠.【例2】求下列函数的值域:(1)2311()3x y -=; (2)421x x y =++解:(1)观察易知2031x ≠-, 则有203111()()133x y -=≠=. ∴ 原函数的值域为{|0,1}y y y >≠且. (2)2421(2)21x x x x y =++=++. 令2x t =,易知0t >. 则22131()24y t t t =++=++.结合二次函数的图象,由其对称轴观察得到213()24y t =++在0t >上为增函数,所以221313()(0)12424y t =++>++=. ∴ 原函数的值域为{|1}y y >.【例3】(05年福建卷.理5文6)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ).A .1,0a b ><B .1,0a b >>C .01,0a b <<>D .01,0a b <<<线位置解:从曲线的变化趋势,可以得到函数()f x 为减函数,从而0<a <1;从曲b <0. 看,是由函数(01)x y a a =<<的图象向左平移|-b |个单位而得,所以-b >0,即所以选D.点评:观察图象变化趋势,得到函数的单调性,结合指数函数的单调性,得到参数a 的范围. 根据所给函数式的平移变换规律,得到参数b 的范围. 也可以取x =1时的特殊点,得到01b a a -<=,从而b <0.【例4】已知函数23()(0,1)x f x a a a -=>≠且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.解:(1)当230x -=,即23x =时,2301x a a -==. 所以,该函数的图象恒过定点2(,1)3.(2)∵ 23u x =-是减函数,∴ 当01a <<时,()f x 在R 上是增函数;当1a >时,()f x 在R 上是减函数.点评:底数两种情况的辨析,实质就是分类讨论思想的运用. 而含参指数型函数的研究,要求正确处理与参数相关的变与不变.第12练 §2.1.2 指数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.40.60.50.5>C. 0.10.10.750.75-<D. 1.6 1.4(3)(3)> 2.已知0c <,在下列不等式中成立的是( ).A. 21c >B. 1()2c c >C. 12()2c c <D. 12()2c c > 3.函数y =a x +1(a >0且a ≠1)的图象必经过点( ).A.(0,1)B. (1,0)C.(2,1)D.(0,2) 4.设,a b 满足01a b <<<,下列不等式中正确的是( ). A. a b a a < B. a b b b < C. a a a b < D. b b b a <5.世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).A. 新加坡(270万)B. 香港(560万)C. 瑞士(700万)D. 上海(1200万)6.某地现有绿地100平方公里,计划每年按10%的速度扩大绿地,则三年后该地的绿地为_____平方公里.7.函数21232x x y --=的定义域为 ;函数2231()2xx y -+=的值域为 .※能力提高8.已知,a b 为不相等的正数,试比较a b a b 与b a a b 的大小.9.若已知函数23()(0,1)x f x a a a -=>≠且,()x g x a =. (1)求函数()f x 的图象恒过的定点坐标;(2)求证:1212()()()22x x g x g x g ++≤.※探究创新 10.讨论函数21(01)xy a a a +=>≠,且的值域.第13讲 §2.1.2 指数函数及其性质(二)¤学习目标:在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. 掌握指数函数的性质及应用.¤知识要点:以函数2x y =与1()2x y =的图象为例,得出这以下结论: (1)函数()y f x =的图象与()y f x =-的图象关于y 轴对称.(2)指数函数(0,1)x y a a a =>≠且的图象在第一象限内,图象由下至上,底数由下到大. ¤例题精讲:【例1】按从小到大的顺序排列下列各数:23,20.3,22,20.2.解:构造四个指数函数,分别为3x y =,0.3x y =,2x y =,0.2x y =,它们在第一象限内,图象由下至上,依次是0.2x y =,0.3x y =,2x y =,3x y =. 如右图所示.由于20x =>,所以从小到大依次排列是:20.2,20.3,22,23.点评:利用指数函数图象的分步规律,巧妙地解决了同指数的幂的大小比较问题. 当然,我们在后面的学习中,可以直接利用幂函数的单调性来比较此类大小.【例2】已知21()21x x f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.解:(1)()f x 的定义域为R .∵ 21(21)21221()()21(21)21221x x x x x xx x x x f x f x ---------====-=-++++. ∴ ()f x 为奇函数.(2)设任意12,x x R ∈,且12x x <,则121212*********(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++.由于12x x <,从而1222x x <,即12220x x -<.∴ 12()()0f x f x -<,即12()()f x f x <. ∴ ()f x 为增函数.点评:在这里,奇偶性与单调性的判别,都是直接利用知识的定义来解决. 需要我们理解两个定义,掌握其运用的基本模式,并能熟练的进行代数变形,得到理想中的结果.【例3】求下列函数的单调区间:(1)223x x y a +-=; (2)10.21x y =-.解:(1)设2,23u y a u x x ==+-.由2223(1)4u x x x =+-=+-知,u 在(,1]-∞-上为减函数,在[1,)-+∞上为增函数. 根据u y a =的单调性,当1a >时,y 关于u 为增函数;当01a <<时,y 关于u 为减函数. ∴ 当1a >时,原函数的增区间为[1,)-+∞,减区间为(,1]-∞-; 当01a <<时,原函数的增区间为(,1]-∞-,减区间为[1,)-+∞. (2)函数的定义域为{|0}x x ≠. 设1,0.21x y u u ==-. 易知0.2x u =为减函数. 而根据11y u =-的图象可以得到,在区间(,1)-∞与(1,)+∞上,y 关于u 均为减函数. ∴在(,0)-∞上,原函数为增函数;在(0,)+∞上,原函数也为增函数.点评:研究形如()(01)f x y a a a =>≠,且的函数的单调性,可以有如下结论:当1a >时,函数()f x y a =的单调性与()f x 的单调性相同;当01a <<时,函数()f x y a =的单调性与()f x 的单调性相反. 而对于形如()(01)x y a a a ϕ=>≠,且的函数单调性的研究,也需结合x a 的单调性及()t ϕ的单调性进行研究. 复合函数(())y f x ϕ=的单调性研究,遵循一般步骤和结论,即:分别求出()y f u =与()u x ϕ=两个函数的单调性,再按口诀“同增异减”得出复合后的单调性,即两个函数同为增函数或者同为减函数,则复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 为何有“同增异减”?我们可以抓住 “x 的变化→()u x ϕ=的变化→()y f u =的变化”这样一条思路进行分析.第13练 §2.1.2 指数函数及其性质(二)※基础达标1.如果指数函数y =(2)x a -在x ∈R 上是减函数,则a 的取值范围是( ). A .a >2 B .a <3 C .2<a <3D .a >32.使不等式31220x -->成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1(,)3-+∞3.某工厂去年12月份的产值是去年元月份产值的m 倍,则该厂去年产值的月平均增长率为( ). A. mB.12mC. 121m - D.111m -4.函数2651()()3xx f x -+=的单调递减区间为( ).A. (,)-∞+∞B. [3,3]-C. (,3]-∞D. [3,)+∞5.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月) 的关系:t y a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等.其中正确的是( ).A. ①②③B. ①②③④C. ②③④D. ①②6.我国的人口约13亿,如果今后能将人口数年平均增长率控制在1%,那么经过x 年后我国人口数为y 亿,则y 与x 的关系式为 .7.定义运算()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数()12x f x =*的值域为 .※能力提高 8.已知(21)1()(21)1x x f x --=-+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.9.求函数2233x x y -++=的定义域、值域并指出单调区间.※探究创新 10.函数23()2xax f x --=是偶函数. (1)试确定a 的值及此时的函数解析式;(2)证明函数()f x 在区间(,0)-∞上是减函数;(3)当[2,0]x ∈-时,求函数23()2xax f x --=的值域.2 1 0 y/m 2 t/月2 3814第14讲 §2.2.1 对数与对数运算(一)¤学习目标:理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题.¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.解:(1)21log 7128=-; (2)3log 27a =; (3)lg 0.11=-; (4)51()322-=; (5)3100.001-=; (6) 4.606100e =. 【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)ln e .解:(1)设lg 0.001x =,则100.001x =,即31010x -=,解得3x =-. 所以,lg0.0013=-.(2)设4log 8x =,则48x =,即2322x =,解得32x =. 所以,43log 82=. (3)设ln e x =,则x e e =,即12xe e =,解得12x =. 所以,1ln 2e =.【例3】求证:(1)log n a a n =; (2)log log log a a a MM N N-=.证明:(1)设log n a a x =,则n x a a =,解得x n =.所以log n a a n =.(2)设log a M p =,log a N q =,则p a M =,q a N =.因为pp q q M a a N a-==,则log log log aa a M p q M N N =-=-. 所以,log log log a a a MM N N-=.点评:对数运算性质是对数运算的灵魂,其推导以对数定义得到的指对互化关系为桥梁,结合指数运算的性质而得到. 我们需熟知各种运算性质的推导.【例4】试推导出换底公式:log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >). 证明:设log c b m =,log c a n =,log a b p =, 则m c b =,n c a =,p a b =. 从而()n p m c b c ==,即np m =. 由于log log 10c c n a =≠=,则m p n=.所以,log log log c a c bb a=. 点评:换底公式是解决对数运算中底数不相同时的核心工具. 其推导也密切联系指数运算性质,牢牢扣住指对互化关系.第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. 123 C. 122D. 133 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:3log 81= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)22log8; (2)9log 3.9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤学习目标:通过阅读材料,了解对数的发现历史以及对简化运算的作用;理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题.¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例1】化简与求值:(1)221(lg 2)lg2lg5(lg 2)lg212++-+;(2)2log (4747)++-.解:(1)原式=2211(lg2)lg2lg5(lg 21)22++-=211lg 2lg2lg5(lg 21)42+--=2111lg 2lg2lg5lg21422+-+=1lg2(lg22lg52)14+-+=1lg2(lg1002)10114-+=+=.(2)原式=1222log (4747)⨯++-=221log (4747)2++-=221log (4747247)2++-+-=21log 142.【例2】若2510a b ==,则11a b+= . (教材P 83 B 组2题)解:由2510a b ==,得2log 10a =,5log 10b =. 则251111lg 2g5lg101log 10log 10a b +=+=+==. 【例3】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 . 解:(1)由lg lg(3)1x x ++=,得lg[(3)]lg10x x +=, 即(3)10x x +=,整理为23100x x +-=. 解得x =-5或x =2. ∵ x >0, ∴ x =2.(2)设lg x t =,则原方程化为20t at b ++=,其两根为1122lg ,lg t x t x ==. 由121212lg lg lg()lg10b t t x x x x b +=+===,得到1210b x x =.点评:同底法是解简单对数方程的法宝,化同底的过程中需要结合对数的运算性质. 第2小题巧妙利用了换元思想和一元二次方程根与系数的关系.【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值. 解:(1)原式=77777log 5log 3log 2log (532)log 30++=⨯⨯=. (2)原式左边=2222222222log 4log 5log 2006log log 3log log 3log 4log 2005log 2006mm ⋅⋅⋅=,∴ 422log 4log 2m ==, 解得16m =.点评:换底时,一般情况下可以换为任意的底数,但习惯于化为常用对数. 换底之后,注意结合对数的运算性质完成后阶段的运算.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.1logn n++(1n n +-)等于( ). A. 1B. -1C. 2D. -2 2.25log ()(5)a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3lg 2lg 5log 1++的结果是( ).A.12B. 1C. 2D.10 4.已知32()log f x x =, 则(8)f 的值等于( ).A. 1B. 2C. 8D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg 2lg50+⋅= .7.若3a =2,则log 38-2log 36= . ※能力提高8.(1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值;(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.9.在不考虑空气阻力的条件下,火箭的最大速度(/)v m s 和燃料的质量()M kg 、火箭(除燃料外)的质量()m kg 的关系是2000ln(1)Mv m=+. 当燃料质量是火箭质量的多少倍时,火箭的最大速度可达到10/km s ?※探究创新10.(1)设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.(2)若a 、b 、c 都是正数,且至少有一个不为1,1x y z y z x z x y a b c a b c a b c ===,讨论x 、y 、z 所满足的关系式.第16讲 §2.2.2 对数函数及其性质(一)¤学习目标:通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3. 解:(1)∵ 0.9log y x =在(0,)+∞上是减函数,且0.90.80.7>>, ∴ 0.90.91log 0.8log 0.7<<.又 0.80.8log 0.9log 0.81<=, 所以0.80.90.9log 0.9log 0.8log 0.7<<. (2)由 333log 1log 2log 3<<,得30log 21<<. 又22log 3log 21>=,441log log 103<=, 所以4321log log 2log 33<<. 【例2】求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log (4)3y x =-. 解:(1)由22log (35)0log 1x -≥=,得351x -≥,解得2x ≥. 所以原函数的定义域为[2,)+∞.(2)由0.5log (4)30x -≥,即30.50.5log (4)3log 0.5x ≥=,所以3040.5x <≤,解得1032x <≤. 所以,原函数的定义域为1(0,]32. 【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围. 解:∵ [2,1]x ∈--, ∴ 132x ≤+≤当1a >时,log 1log (3)log 2a a a x ≤+≤,即0()log 2a f x ≤≤. ∵ |()|2f x <, ∴{1log 22a a ><, 解得2a >.当01a <<时,log 2log (3)log 1a a a x ≤+≤,即log 2()0a f x ≤≤. ∵ |()|2f x <, ∴{01log 22a a <<>-, 解得202a <<.综上可得,实数a 的取值范围是2(0,)(2,)2+∞. 点评:先对底数a 分两种情况讨论,再利用函数的单调性及已知条件,列出关于参数a 的不等式组,解不等式(组)而得到参数的范围. 解决此类问题的关键是合理转化与分类讨论,不等式法求参数范围.【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.解:当1a >时,原不等式化为2704102741x x x x +>⎧⎪->⎨+>-⎪⎩,解得144x <<.当01a <<时,原不等式化为 2704102741x x x x +>⎧⎪->⎨+<-⎪⎩,解得4x >.所以,当1a >时,x 的取值范围为1(,4)4;当01a <<时,x 的取值范围为(4,)+∞.点评:结合单调性,将对数不等式转化为熟悉的不等式组,注意对数式有意义时真数大于0的要求. 当底数a 不确定时,需要对底数a 分两种情况进行讨论.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).A B C D 3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y =2x4.函数12log (1)y x =-的定义域是( ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2] 5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<< 6.函数3log y x =的定义域为 . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()34log 11xf x x x -=++-; (2)21log (45)y x =--.9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.※探究创新10.若,a b 为不等于1的正数,且a b <,试比较log a b 、1log a b 、1log b b.第17讲 §2.2.2 对数函数及其性质(二)¤学习目标:掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y =a x 与对数函数y =log ax 互为反函数. (a > 0, a ≠1)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.xy1 1oxy o 1 1oy x11 oy x1 12. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.解:先求定义域,由320x ->, 解得32x <. 设332,(,)2t x x =-∈-∞,易知为减函数. 又∵ 函数0.3log y t =是减函数,故函数0.3log (32)y x =-在3(,)2-∞上单调递增.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<变量x解:在同一坐标系中分别画出40.4,3,log x x y y y x ===的图象,分别作出当自取3,0.4,0.3时的函数值.观察图象容易得到:30.44log 0.30.43<<. 故选C.【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系? 解:在指数函数x y a =的图象上任取一点00(,)M x y ,则00x y a =. 由指对互化关系,有00log a y x =.所以,点00'(,)M y x 在对数函数log a y x =的图象上. 因为点00(,)M x y 与点00'(,)M y x 关于直线y x =对称,所以指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象关于直线y x =对称. 点评:两个函数的对称性,由任意点的对称而推证出来. 这种对称性实质是反函数的图象特征,即函数x y a =与log (0,1)a y x a a =>≠互为反函数,而互为反函数的两个函数图象关于直线y x =对称.【例4】2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步.已知火箭的起飞重量M 是箭体(包括搭载的飞行器)的重量m 和燃料重量x 之和.在不考虑空气阻力的条件下,假设火箭的最大速度y 关于x 的函数关系式为:[ln()ln(2)]4ln 2(0)y k m x m k =+-+≠其中. 当燃料重量为(1)e m -吨(e 为自然对数的底数, 2.72e ≈)时,该火箭的最大速度为4(km/s ).(1)求火箭的最大速度(/)y km s 与燃料重量x 吨之间的函数关系式()y f x =;(2)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s ,顺利地把飞船发送到预定的轨道?解:(1)依题意把(1),4x e m y =-=代入函数关系式[ln()ln(2)]4ln 2y k m x m =+-+,解得8k =. 所以所求的函数关系式为8[ln()ln(2)]4ln 2,y m x m =+-+ 整理得8ln().m x y m+= (2)设应装载x 吨燃料方能满足题意,此时,544,8m x y =-= 代入函数关系式8544ln(),ln 1,344().544m x y x m x+===-得解得吨 所以,应装载344吨燃料方能顺利地把飞船发送到预定的轨道.点评:直接给定参数待定的函数模型时,由待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数. 一般求出函数模型后,还利用模型来研究一些其它问题. 代入法、方程思想、对数运算,是解答此类问题的方法精髓.第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称B. x 轴对称C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ). A.2B. 2C. 22D. 44.图中的曲线是log a y x =的图象,已知a 的值为2,43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.2,43,15,310 B. 2,43,310,15 C. 15,310,43,2 D. 43,2,310,155.下列函数中,在(0,2)上为增函数的是( ).A. 12log (1)y x =+ B. 22log 1y x =- C. 21log y x= D.20.2log (4)y x =-6. 函数2()lg(1)f x x x =+-是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高 8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.9.我们知道,人们对声音有不同的感觉,这与它的强度有关系. 声音的强度I 用瓦/平方米 (2/W m )表示. 但在实际测量中,常用声音的强度水平1L 表示,它们满足以下公式:1010lg IL I = (单位为分贝),10L ≥,其中120110I -=⨯,这是人们平均能听到的最小强度,是听觉的开端. 回答以下问题:(1)树叶沙沙声的强度是122110/W m -⨯,耳语的强度是102110/W m -⨯,恬静的无限电广播的强度为82110/W m -⨯. 试分别求出它们的强度水平. (2)在某一新建的安静小区规定:小区内的公共场所声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?※探究创新10. 已知函数()log (1),()log (1)a a f x x g x x =+=-其中(01)a a >≠且.(1)求函数()()f x g x -的定义域; (2)判断()()f x g x -的奇偶性,并说明理由;(3)求使()()0f x g x ->成立的x 的集合.第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象.2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;0 x C 1C 2C 4C 3 1y在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已知到今年为止,平改坡剩余面积为原来的22. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年? (3)若通过技术创新,至少保留24a m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年? 解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则2(1)2na x a -=,即110211()()22n=,解得n =5. 所以,到今年为止,该工程已经进行了5年. (3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数. 体现了代入法、方程思想等数学方法的运用.第18练 §2.3 幂函数※基础达标1.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 122.下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--3.设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c4.如图的曲线是幂函数n y x =在第一象限内的图象. 已知n 分别取2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( ).A .112,,,222-- B. 112,,2,22--C. 11,2,2,22--D. 112,,,222--5.下列幂函数中过点(0,0),(1,1)的偶函数是( ). A.12y x = B. 4y x = C. 2y x -= D.13y x =6.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .7.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x-=;⑧ 53y x =.第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-12121222()022x x x x x x a a a a a a +--==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 函数代号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 图象代号42-2510c 4c 3c 2c 1【例2】已知函数2()(0,0)1bxf x b a ax =≠>+. (1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =--∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数x y a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内? 解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈. (2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%. 由1854.8(1)y x =⨯+%≤66.8, 解得1866.8100(1) 1.154.8x ≤⨯-≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >>C. 01,0a b <<>D. 01,0a b <<<。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).若(-)≤,则的取值范围是( ).(-∞,].(].(,+∞).[,+∞)解析:(-)≤<-≤,解得<≤,∴的取值范围是(].故选.答案:.函数()=的单调递增区间是( ).(].[,+∞).(,+∞)解析:()的图象如图所示,由图象可知单调递增区间为[,+∞).答案:.函数=的图象的对称性为( ).关于轴对称.关于直线=对称.关于轴对称.关于原点对称解析:==,所以(-)==-=-(),又因为函数的定义域为(-),关于原点对称,则函数为奇函数,∴函数图象关于原点对称.答案:.已知实数=,=,=,则,,的大小关系为( ).<<.<<.<<.<<解析:由题知,=>,==,=<,故<<.答案:二、填空题(每小题分,共分).比较大小:();().解析:()因为函数=在(,+∞)上是增函数,且>,所以>.()因为函数=在(,+∞)上是减函数,且>,所以<.答案:()> ()<.已知函数()=(-)(≥)的值域是[,+∞),则的值为.解析:∵≥,∴()≥(-),又∵()≥,(-)=,即=.答案:.函数()=(>,且≠)在[]上的最大值为,则=.解析:当>时,()的最大值是()=,则=,∴=>.∴=符合题意;当<<时,()的最大值是()=.则=,∴=>.∴=不合题意.综上知=.答案:三、解答题(每小题分,共分).设()=(\\(-,(<((-(,(≥())求不等式()>的解集.解析:当<时,->,解得>,此时不等式的解集为();当≥时,有(-)>,此不等式等价于(\\(->,->,))解得>,此时不等式的解集为(,+∞).综上可知,不等式()>的解集为()∪(,+∞)..已知函数()=(-).()求函数()的定义域、值域;()若∈,求函数()的值域.解析:()由->得,>,函数()的定义域是,值域是.()令=-,则由∈知,∈[].因为函数=在[]上是减函数,所以=∈[-].所以函数()在∈上的值域为[-].能力测评.若函数()=+(+)在[]上的最大值和最小值之和为,则的值为( )。
必修1第二章《基本初等函数》班级姓名序号得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是() A .()m nm na a+=B .11mm aa=C .log log log ()a a a m n m n ÷=-D 43()mn = 2.函数y A .(1,2)3A .1B 4.若x ∈A .2x5.函数y A .(3,(2,3)(3,5)D .,2)(5,)+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是()A .减少C .减少4%.不增不减 7.若100A .0B 8.函数f A 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是()A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.若2log (2)y ax =-(0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是() A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625⨯⨯=. 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,,,则1[(3f f =. 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -=.14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a =. 15.已知01a <<,给出下列四个关于自变量x 的函数:①y 16.(Ⅰ)(Ⅱ)17.((Ⅰ(Ⅱ18.((ⅡT ,S T .19.(4log 1x x ≥⎩(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.20.(13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题16.((1718(Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]ST =-,(2,3]S T =-.19.解:(Ⅰ)11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x =(Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()(24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当当t =21.解:(Ⅱ22x ∴f ∴f ∴(∴f t ⇔3∴k 的取值范围是1(,)3-∞-.。
高一数学人教a 版必修一_习题_第二章_基本初等函数(ⅰ)_2.2.2.2_word 版有答案一、选择题(每小题5分,共20分)1.若lg(2x -4)≤1,则x 的取值范围是( )A .(-∞,7]B .(2,7]C .[7,+∞)D .(2,+∞)解析: lg(2x -4)≤1,0<2x -4≤10,解得2<x ≤7,∴x 的取值范围是(2,7].故选B.答案: B2.函数f (x )=|log 12x |的单调递增区间是( ) A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞) D .[1,+∞)解析: f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).答案: D3.函数y =lg ⎝⎛⎭⎫2x +1-1的图象的对称性为( ) A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称解析: y =lg ⎝⎛⎭⎫2x +1-1=lg 1-x 1+x,所以f (-x )=lg 1+x 1-x =-lg 1-x 1+x =-f (x ),又因为函数的定义域为(-1,1),关于原点对称,则函数为奇函数,∴函数图象关于原点对称.答案: D4.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a解析: 由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c <b <a .答案: D二、填空题(每小题5分,共15分)5.比较大小:(1)log 22________log 23;(2)log 0.50.6________log 0.50.4.解析: (1)因为函数y =log 2x 在(0,+∞)上是增函数,且2>3,所以log 22>log 2 3.(2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且0.6>0.4,所以log 0.50.6<log 0.50.4.答案: (1)> (2)<6.已知函数f (x )=lg(2x -b )(x ≥1)的值域是[0,+∞),则b 的值为________.解析: ∵x ≥1,∴f (x )≥lg(2-b ),又∵f (x )≥0,lg(2-b )=0,即b =1.答案: 17.函数f (x )=log a x (a >0,且a ≠1)在[2,3]上的最大值为1,则a =________.解析: 当a >1时,f (x )的最大值是f (3)=1,则log a 3=1,∴a =3>1.∴a =3符合题意;当0<a <1时,f (x )的最大值是f (2)=1.则log a 2=1,∴a =2>1.∴a =2不合题意.综上知a =3.答案: 3三、解答题(每小题10分,共20分)8.设f (x )=⎩⎪⎨⎪⎧2e x -1, (x <2)log 3(x 2-1), (x ≥2)求不等式f (x )>2的解集. 解析: 当x <2时,2e x -1>2, 解得x >1,此时不等式的解集为(1,2);当x ≥2时,有log 3(x 2-1)>2,此不等式等价于⎩⎪⎨⎪⎧x 2-1>0,x 2-1>32, 解得x >10,此时不等式的解集为(10,+∞).综上可知,不等式f (x )>2的解集为(1,2)∪(10,+∞).9.已知函数f (x )=log 12(2x -1). (1)求函数f (x )的定义域、值域;(2)若x ∈⎣⎡⎦⎤1,92,求函数f (x )的值域. 解析: (1)由2x -1>0得,x >12, 函数f (x )的定义域是⎝⎛⎭⎫12,+∞,值域是R .(2)令u =2x -1,则由x ∈⎣⎡⎦⎤1,92知,u ∈[1,8]. 因为函数y =log 12u 在[1,8]上是减函数, 所以y =log 12u ∈[-3,0].所以函数f (x )在x ∈⎣⎡⎦⎤1,92上的值域为[-3,0]. 能力测评10.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14B.12C .2D .4解析: 当a >1时,a +log a 2+1=a ,log a 2=-1,a =12,与a >1矛盾;当0<a <1时,1+a +log a 2=a ,log a 2=-1,a =12. 答案: B11.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (log 18x )>0的解集为________.解析: ∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称.∵f (x )在[0,+∞)上为增函数,∴f (x )在(-∞,0]上为减函数,由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0. ∴f ⎝⎛⎭⎫log 18x >0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12. ∴x ∈⎝⎛⎭⎫0,12∪(2,+∞). 答案: ⎝⎛⎭⎫0,12∪(2,+∞) 12.已知函数f (x )=lg |x |,(1)判断f (x )的奇偶性;(2)画出f (x )的图象草图;(3)利用定义证明函数f (x )在(-∞,0)上是减函数.解析: (1)要使函数有意义,x 的取值需满足|x |>0,解得x ≠0,即函数的定义域是(-∞,0)∪(0,+∞). ∵f (-x )=lg|-x |=lg |x |=f (x ),∴f (-x )=f (x ).∴函数f (x )是偶函数.(2)由于函数f (x )是偶函数,则其图象关于y 轴对称,将函数y =lg x 的图象对称到y 轴的左侧与函数y =lg x的图象合起来得函数f (x )的图象,如图所示.(3)证明:设x 1,x 2∈(-∞,0),且x 1<x 2, 则f (x 1)-f (x 2)=lg |x 1|-lg |x 2|=lg|x 1||x 2|=lg ⎪⎪⎪⎪x 1x 2, ∵x 1,x 2∈(-∞,0),且x 1<x 2.∴|x 1|>|x 2|>0.∴⎪⎪⎪⎪x 1x 2>1.lg ⎪⎪⎪⎪x 1x 2>0. ∴f (x 1)>f (x 2).∴函数f (x )在(-∞,0)上是减函数.13.已知f (x )=log a (a -a x )(a >1).(1)求f (x )的定义域和值域;(2)判断并证明f (x )的单调性.解析: (1)由a >1,a -a x >0,即a >a x ,得x <1. 故f (x )的定义域为(-∞,1).由0<a -a x <a ,可知log a (a -a x )<log a a =1. 故函数f (x )的值域为(-∞,1).(2)f (x )在(-∞,1)上为减函数,证明如下: 任取1>x 1>x 2,又a >1,∴ax 1>ax 2,∴a -ax 1<a -ax 2,∴log a (a -ax 1)<log a (a -ax 2),即f (x 1)<f (x 2),故f (x )在(-∞,1)上为减函数.。
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =log 13(1+x )+(1-x )-12的定义域是( )A .(-1,0)B .(-1,1)C .(0,1)D .(0,1]解析: 由题意得⎩⎪⎨⎪⎧1+x >0,1-x >0,解之,得-1<x <1.答案: B2.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1)D .(-1,1)解析: 令x +2=1,得x =-1,得y =1,∴函数的图象过定点(-1,1). 答案: D3.已知幂函数f (x )满足f ⎝⎛⎭⎫13=9,则f (x )的图象所分布的象限是( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .只在第一象限解析: 设f (x )=x n ,则⎝⎛⎭⎫13n =9,n =-2. ∴f (x )=x -2,因此f (x )的图象在第一、二象限.答案: A4.已知log 2m =2.013,log 2n =1.013,则nm 等于( )A .2 B.12 C .10D.110解析: ∵log 2m =2.013,log 2n =1.013, ∴m =22.013,n =21.013,∴n m =21.01322.103=12.答案: B5.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析: 由f (x )过定点(2,1)可知b =2,因f (x )=3x-2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9,可知C 正确.答案: C6.设a =log 123,b =⎝⎛⎭⎫130.2,c =212,则( ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c解析: ∵a =log 123<log 121=0,0<b =⎝⎛⎭⎫130.2<⎝⎛⎭⎫130=1, c =212>20=1,∴c >b >a . 答案: A7.已知f (x )=log a (x +1)(a >0,且a ≠1),若x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数D .不单调的函数解析: ∵x ∈(-1,0)时,x +1∈(0,1),此时,f (x )<0.∴a >1.∴f (x )在定义域(-1,+∞)上是增函数.答案: A8.设f (x )=⎝⎛⎭⎫12|x |,x ∈R ,那么f (x )是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数解析: ∵f (-x )=⎝⎛⎭⎫12|-x |=⎝⎛⎭⎫12|x |=f (x ),∴f (x )是偶函数. ∵x >0,∴f (x )=⎝⎛⎭⎫12x 在(0,+∞)上是减函数,故选D. 答案: D9.函数y =⎝⎛⎭⎫12x +1的图象关于直线y =x 对称的图象大致是( )解析: ∵y =⎝⎛⎭⎫12x+1的图象过点(0,2)且单调递减,故它关于直线y =x 对称的图象过点(2,0)且单调递减,故选A.答案: A10.已知函数f (x )是奇函数,当x >0时, f (x )=a x (a >0且a ≠1),且f ⎝⎛⎭⎫log 124=-3,则a 的值为( )A. 3 B .3 C .9D.32解析: ∵f ⎝⎛⎭⎫log 124=f ⎝⎛⎭⎫log 214=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.(2015·安徽卷)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 解析: lg 52+2 lg 2-⎝⎛⎭⎫12-1=lg 5-lg 2+2lg 2-2 =(lg 5+lg 2)-2=1-2=-1. 答案: -112.函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析: 列出函数有意义的限制条件,解不等式组.要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1].答案: (0,1]13.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析: 利用指数函数、对数函数的性质求解.当x ≥1时,log 12x ≤log 121=0,∴当x ≥1时,f (x )≤0.当x <1时,0<2x <21,即0<f (x )<2.因此函数f (x )的值域为(-∞,2).答案: (-∞,2)14.函数f (x )=a x -2+1的图象一定过定点P ,则P 点的坐标是________.解析: ∵y =a x 恒过定点(0,1), ∴函数f (x )=a x -2+1恒过定点(2,2).答案: (2,2)三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0;(2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+lne -lg 1.解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1=22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2 =(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(本小题满分12分)已知函数g (x )是f (x )=a x (a >0且a ≠1)的反函数,且g (x )的图象过点⎝⎛⎭⎫22,32.(1)求f (x )与g (x )的解析式;(2)比较f (0.3),g (0.2)与g (1.5)的大小.解析: (1)∵函数g (x )是f (x )=a x (a >0且a ≠1)的反函数, ∴g (x )=log a x (a >0且a ≠1).∵g (x )的图象过点⎝⎛⎭⎫22,32,∴log a 22=32, ∴a 32=22,解得a =2.∴f (x )=2x ,g (x )=log 2x .(2)∵f (0.3)=20.3>20=1,g (0.2)=log 20.2<0, 又g (1.5)=log 21.5<log 22=1, 且g (1.5)=log 21.5>log 21=0, ∴0<g (1.5)<1, ∴f (0.3)>g (1.5)>g (0.2).17.(本小题满分12分)已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3].(1)求函数f (x )的最大值和最小值;(2)若实数a 满足:f (x )-a ≥0恒成立,求a 的取值范围. 解析: (1)f (x )=(2x )2-4·2x -6(0≤x ≤3). 令t =2x ,∵0≤x ≤3,∴1≤t ≤8.令h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数. ∴f (x )min =h (2)=-10,f (x )max =h (8)=26. (2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立, ∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10. 故a 的取值范围为(-∞,-10].18.(本小题满分14分)已知f (x )是定义在R 上的偶函数,且x ≤0时,f (x )=log 12(-x +1).(1)求f (0),f (1); (2)求函数f (x )的解析式;(3)若f (a -1)<-1,求实数a 的取值范围. 解析: (1)因为当x ≤0时,f (x )=log 12(-x +1),所以f (0)=0.又函数f (x )是定义在R 上的偶函数,所以f (1)=f (-1)=log 12[-(-1)+1]=log 122=-1,即f (1)=-1.(2)令x >0,则-x <0,从而f (-x )=log 12(x +1)=f (x ),∴x >0时,f (x )=log 12(x +1).∴函数f (x )的解析式为f (x )=⎩⎨⎧log 12(x +1),x >0,log 12(-x +1),x ≤0.(3)设x 1,x 2是任意两个值,且x 1<x 2≤0,则-x 1>-x 2≥0,∴1-x 1>1-x 2>0.∵f (x 2)-f (x 1)=log 12(-x 2+1)-log 12(-x 1+1)=log 121-x 21-x 1>log 121=0,∴f (x 2)>f (x 1),∴f (x )=log 12(-x +1)在(-∞,0]上为增函数.又f (x )是定义在R 上的偶函数, ∴f (x )在(0,+∞)上为减函数.∵f (a -1)<-1=f (1),∴|a -1|>1,解得a >2或a <0. 故实数a 的取值范围为(-∞,0)∪(2,+∞).。