2012学年第一学期徐汇区高三年级数学学科
- 格式:doc
- 大小:423.00 KB
- 文档页数:6
2012学年第二学期徐汇区高三年级数学学科学习能力诊断卷 (理科试卷)(考试时间:120分钟,满分150分) 2013.4一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若函数()(0,1)xf x a a a =>≠的反函数图像过点(2,1)-,则a = . 2.已知函数[]13(),8,64f x x x =∈的值域为A ,集合43|01x x B x x⎧-⎫=<⎨⎬⎩⎭,则A B = . 3.已知(,0)2πα∈-,且4cos 5α=,则tan 2α=___________.4.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为__________(结果保留π).5.已知32i x =--(i 为虚数单位)是一元二次方程20x ax b ++= (,a b 均为实数)的一个根,则a b +=__________.6.如图给出的是计算1111352013++++的值的一个程序框图,图中空白执行框内应填入i = .7. 在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程是__________.8. 将参数方程212cos x y θθ⎧=⎪⎨=+⎪⎩(θ为参数,R θ∈)化为普通方程,所得方程是_____ _____.9. 在二项式63()()ax a R x+∈的展开式中,常数项的值是20-,则23lim()n n a a a a →∞++++= .10.一质地均匀的正方体三个面标有数字0,另外三个面标有数字1.将此正方体连续抛掷两次,若用随机变量ξ表示两次抛掷后向上面所标有的数字之积,则数学期望ξE =___________.11.已知椭圆2212516x y +=内有两点()()1,3,3,0,A B P 为椭圆上一点,则PA PB +的最大值为 .12.如图,O 为直线02013A A 外一点,若0123452013,,,,,,,A A A A A A A 中任意相邻两点的距离相第6题图第12题图A 02013等,设02013,OA a OA b ==,用,a b 表示0122013OA OA OA OA ++++,其结果为 . 13.设函数()f x x x =,将()f x 向左平移a (0)a >个单位得到函数()g x ,将()f x 向上平移a (0)a >个单位得到函数()h x ,若()g x 的图像恒在()h x 的图像的上方,则正数a 的取值范围为 .14.如图,现将一张正方形纸片进行如下操作:第一步,将纸片以D 为顶点,任意向上翻折,折痕与BC 交于点1E ,然后复原,记11CDE α∠=;第二步,将纸片以D 为顶点向下翻折,使AD 与1E D 重合,得到折痕2E D ,然后复原,记22ADE α∠=;第三步,将纸片以D 为顶点向上翻折,使CD 与2E D 重合,得到折痕3E D ,然后复原,记33CDE α∠=;按此折法从第二步起重复以上步骤……,得到12,,,,n ααα,则lim n n α→∞= .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知,a b 为实数,命题甲:2ab b >,命题乙:110b a<<,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.已知函数()1,00,01,0x f x x x >⎧⎪==⎨⎪-<⎩,设2()()F x x f x =⋅,则()F x 是 ( )A.奇函数,在(,)-∞+∞上单调递减B.奇函数,在(,)-∞+∞上单调递增C.偶函数,在(),0-∞上递减,在()0,+∞上递增D.偶函数,在(),0-∞上递增,在()0,+∞上递减17.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 (0C)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;则肯定进入夏季的地区有 ( ) A. 0个 B. 1个 C. 2个 D. 3个18. 如图所示,向量BC 的模是向量AB 的模的t 倍,AB BC 与的夹角为θ,那么我们称向量AB 经过一次(),t θ变换得到向量BC .在直角坐标平面内,设起始向量()14,0OA =,向量1OA 经过1n -次12,23π⎛⎫⎪⎝⎭变换得到的向量为()1*,1n n A A n N n -∈>,其中*12,,()i i i A A A i N ++∈为逆时针排列,记i A 坐标为()(),*i i a b i N ∈,则下列命题中不正确...的是( )A. 2b =3130k k b b +-=()*k N ∈ C. 31310k k a a +--=()*k N ∈D. ()()43180k k k k a a a a +++-+-=()*k N ∈三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,且sin cos cos sin 2A C A C +=,若b =ABC ∆的面积ABC S ∆=,求a c +的值. 20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为k .轮船的最大速度为15海里/小时.当船速为10海里/小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元.假定运行过程中轮船以速度v 匀速航行.(1)求k 的值;(2)求该轮船航行100海里的总费用W (燃料费+航行运作费用)的最小值.21.(本题满分14分) 本题共有2个小题,第1小题满分6分, 第2小题满分8分.如图,已知111ABC A B C -是正三棱柱,它的底面边长和侧棱长都是2,D 为侧棱1CC 的中点.(1)求异面直线1A D 与BC 所成角的大小(结果用反三角函数值表示); (2)求直线11A B 到平面DAB 的距离.DBCAB 1C 1A 1第21题图22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}*()n a n N ∈的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为0,公差为12的等差数列.(1)求数列{}n a 的通项公式; (2)设()*42()15n an b n N =⋅-∈,对任意的正整数k ,将集合{}21221,,k k k b b b -+中的三个元素排成一个递增的等差数列,其公差为k d ,求证:数列{}k d 为等比数列; (3)对(2)题中的k d ,求集合{}1,k k x d x d x Z +<<∈的元素个数.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题有三个问题情形,每位考生只能选择一个作答,若多答,只对所答情形中最前面的一个记分,情形一、二、三满分依次为5分、6分、8分.已知双曲线C 的中心在原点,()1,0D 是它的一个顶点,d =(1,2)是它的一条渐近线的一个方向向量.(1) 求双曲线C 的方程;(2) 若过点(3,0-)任意作一条直线与双曲线C 交于,A B 两点 (,A B 都不同于点D ),求证:DA DB ⋅为定值;(3) 对于双曲线:22221(0,0,)x y a b a b a b-=>>≠,E 为它的右顶点,,M N 为双曲线上的两点(都不同于点E ),且EM EN ⊥,那么直线MN 是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).情形一:双曲线22221(0,0,)x y a b a b a b-=>>≠及它的左顶点;情形二:抛物线22(0)y px p =>及它的顶点;情形三:椭圆22221(0)x y a b a b+=>>及它的顶点.5cos θ==(理)参考答案一.填空题:(本题共有14题,每小题4分)1.12 2.[)2,3 3. 247- 4. 12π 5. 19 6.2i + 7. cos 3ρθ= 8. 23y x =-+(x ≤≤) 9. 14- 10. 1411.15 12.1007()a b +13.2a > 14.6π二.选择题:(本题共有4小题,每小题5分) 15. B 16. B 17. C 18.D 三.解答题 19.(本题12分) 解:由条件可得sin()2A C +=,……………2分 即sin B =,……………4分 1sin 2ABC S ac B ∆=3.ac ∴=………………………………8分 由余弦定理B ac c a b cos 2222-+=,得22()22cos ,b a c ac ac B =+--………………10分 于是,217()23(1).2a c =+-⋅+4a c ∴+=. ………………………………………12分 20.(本题14分)本题共有2小题,第(1)小题6分,第(2)小题8分. 解:(1)由题意得燃料费21W kv =,………………………………2分把v =10,196W =代入得0.96k =.………………………………………………6分 (2)21001001500.96W v v v ⨯=⋅+,……………………………………9分 =150********v v+≥=,………………………11分其中等号当且仅当1500096v v=时成立,解得12.515v ==<,……………13分所以,该轮船航行100海里的总费用W 的最小值为2400(元). ……………………………14分21.(本题14分)本题共有2题,第(1)小题6分,第(2)小题8分. 解:(1)方法一:以11A B 中点O 为坐标原点,如图建立空间直角坐标系.………1分 由题意得()()()(11,0,0,0,1,3,1,2,0,A D B C -则()(11,1,3,A D BC =-=. .............3分 设θ为向量1A D BC 与的夹角,则1222,2ABDS ∆=⋅⋅=,.....5分异面直线1A D 与BC所成角的大小为arccos . ...... 6分 方法二:取1B B 中点E ,连结1,A E DE .//DE CB ………………………………….2分1A DE ∴∠(或其补角)为异面直线1A D BC 与所成的角. ……3分由题意得:在11Rt A B E ∆中,1A E =在11Rt A C D ∆中,1A D =;……………………4分在等腰三角形1A DE 中,………5分所以异面直线1A D 与BC 所成角的大小为分(2)方法一:由题意可得11//A B ABD 平面,所以,11A B 到平面DAB 的距离即为1A 到平面DAB 的距离,设为h . …………….8分 设平面ABD 的法向量为n ,(),,1n x y =, 由()()()1(1,0,0),1,2,0,0,1,3,1,2,0A A D B -得()()(1200113AB AD A D =-=--=-,,,,,,,…………………11分,即()0,3,1n =. ……………………………………………………12分 所以故直线11A B 到平面DAB …………………………………14分 方法二:由题意可得11//A B ABD 平面,所以,11A B 到平面DAB 的距离即为1A 到平面DAB 的距离,设为h .…………….8分 由题意得12A D AD BD AB ====, 等腰ADB ∆底边AB 2=,则12AA B S ∆=,D BC1A 200000x x AB n x y y AD n ⎧-==⎧⎧⋅=⎪⎪⎪⇒⇒⎨⎨⎨--+==⎪⎪⋅=⎪⎩⎩⎩10n A D h n+⋅===112cos DEA DE A D ∠==且D 到平面11ABB A12分 由11A ABD D A AB V V --=得……………………………………………………………13分,则h =所以,直线11A B 到平面DAB.……………14分22.(本题满分16分) 本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分, 第(3)小题满分6分. 解:(1)由条件得10(1)2n S n n =+-,即(1)2n nS n =-,…………………………..2分 所以,*1()n a n n N =-∈. ……………………………………………………..4分(2) 由(1)可知1*4(2)()15n n b n N -=⋅-∈ 所以,22222144(2)21515k k k b ---=-=⋅,2121244(2)21515k k k b --=-=-⋅,222144(2)21515k k k b +=-=⋅,…………………………..7分由212212k k k b b b -+=+及22121k k k b b b -+<<得22121,,k k k b b b -+依次成递增的等差数列, …………………………..8分所以22221214442215155kk k k k k d b b -+-=-=⋅-⋅=,…………………………..9分 满足14k kd d +=为常数,所以数列{}k d 为等比数列. …………………………..10分 (3)①当k 为奇数时,112211223101555(1)4(51)55515555(1)5k k k k k k kk k k k k k k k k k C C d C C C --------+-+--====-+-+--,…………………………..12分同样,可得111122011114(51)15555(1)555k k k k k k k k k k k d C C C ++--++++-===-+-+-+,所以,集合{}1,k k x d x d x Z +<<∈的元素个数为111()()155k k d d +--++133(41)55k k k d d ++=-+=;……..13分②当k 为偶数时,同理可得集合{}1,kk x dx d x Z +<<∈的元素个数为11133ABD A AB S h S ∆∆⋅⋅=3(41)5k ⋅-. .…..16分 23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题有三个问题情形,每位考生只能选择一个作答,若多答,只对所答情形中最前面的一个记分,情形一、二、三满分依次为5分、7分、8分。
2012学年第一学期徐汇区高三年级数学学科学习能力诊断卷 (理科)(考试时间:120分钟,满分150分) 2013.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.方程组2132x y x y -=⎧⎨+=-⎩的增广矩阵是__________________.2. 已知幂函数()f x 的图像过点18,2⎛⎫ ⎪⎝⎭,则此幂函数的解析式是()f x =_____________.3.若θ为第四象限角,且4sin 25πθ⎛⎫+=⎪⎝⎭,则sin 2θ=___________. 4.若抛物线22(0)y px p =>的焦点与双曲线221610x y -=的右焦点重合,则实数p 的值是 .5.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如右图所示,则()f x = _________.6.若(1,2)n =-是直线l 的一个法向量,则直线l 的倾斜角的大小为_________________.(结果用反三角函数值表示)7.不等式21200210321x x +-≥的解为 . 8.高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是 .(结果用最简分数表示)9.如图所示的程序框图,输出b 的结果是_________.10.已知等比数列}{n a 的首项11=a ,公比为(0)q q >,前n 项和为n S ,若1lim1=+∞→nn n S S ,则公比q 的取值范围是 .11. 若平面向量i a 满足 1(1,2,3,4)i a i == 且10(1,2,3)i i a a i +⋅==,则1234a a a a +++ 可能的值有____________个.12.在ABC ∆中,060A ∠= ,M 是AB 的中点,若2,AB BC ==,D 在线段AC 上运动,则DB DM ⋅的最小值为____________.13.函数{}()min 2f x x =-,其中{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若动直线y m =与函数()y f x =的图像有三个不同的交点,它们的横坐标分别为123,,x x x ,则123x x x ⋅⋅是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.14.已知线段010A A 的长度为10,点129,,,A A A 依次将线段010A A 十等分.在0A 处标0,往右数1点标1,再往右数2点标2,再往右数3点标3……(如图),遇到最右端或最左端返回,按照0A →10A →0A →10A → 的方向顺序,不断标下去,那么标到2010这个数时,所在点上的最小数为_____________.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.下列排列数中,等于*(5)(6)(12)(13,)n n n n n N ---≥∈ 的是 ( )(A)712n P - (B) 75n P - (C) 85n P - (D) 812n P -16.在ABC ∆中,“cos sin cos sin A A B B +=+”是“090C ∠=”的 ( )(A) 充分非必要条件 (B) 必要非充分条件 (C) 充要条件(D) 既不充分也不必要条件17.若函数21()ax f x x-=在()0,+∞上单调递增,那么实数a 的取值范围是 ( )(A)0a ≥(B)0a >(C)0a ≤(D) 0a <18.对于直角坐标平面xOy 内的点(,)A x y (不是原点),A 的“对偶点”B 是指:满足1OA OB =且在射线OA 上的那个点. 若,,,P Q R S 是在同一直线上的四个不同的点(都不是原点),则它们的“对偶点”'''',,,P Q R S ( )(A) 一定共线 (B) 一定共圆(C) 要么共线,要么共圆 (D) 既不共线,也不共圆三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)已知集合3{|0}4x A x x -=<-,实数a 使得集合{}|()(5)0B x x a x =-->满足A B ⊆, 求a 的取值范围.20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数)(x f =21log 1x x +-. (1)判断函数)(x f 的奇偶性,并证明;(2)求)(x f 的反函数)(1x f -,并求使得函数12()()log g x f x k -=-有零点的实数k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. (理)某种型号汽车四个轮胎半径相同,均为40R cm =,同侧前后两轮胎之间的距离(指轮胎中心之间距离)为280l cm = (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路ABC (如图(1)所示,其中ABC α∠=(34παπ<<)),且前轮E 已在BC 段上时,后轮中心在F 位置;若前轮中心到达G 处时,后轮中心在H 处(假定该汽车能顺利驶上该上坡路). 设前轮中心在E 和G 处时与地面的接触点分别为S 和T ,且60BS cm =,100ST cm =. (其它因素忽略不计)(1)如图(2)所示,FH 和GE 的延长线交于点O ,求证:40cot602OE α=+(cm);(2)当α=56π时,后轮中心从F处移动到H处实际移动了多少厘米? (精确到1cm)22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.已知椭圆2222:1(0)x yC a ba b+=>>的一个焦点为(1,0)F,点()-在椭圆C上,点T满足2OT OF=(其中O为坐标原点),过点F作一直线交椭圆于P、Q两点.(1)求椭圆C的方程;(2)求PQT∆面积的最大值;(3)设点P'为点P关于x轴的对称点,判断P Q'与QT的位置关系,并说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.对于数列{}n x ,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数a ,公比为正整数(1)q q >的无穷等比数列{}n a 的子数列问题. 为此,他任取了其中三项,,()k m n a a a k m n <<. (1) 若,,()k m n a a a k m n <<成等比数列,求,,k m n 之间满足的等量关系;(2) 他猜想:“在上述数列{}n a 中存在一个子数列{}n b 是等差数列”,为此,他研究了k n a a +与2m a 的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;(3) 他又想:在首项为正整数a ,公差为正整数d 的无穷等差数列中是否存在成等比数列的无穷子数列?请你就此问题写出一个正确命题,并加以证明.。
2014学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)2015.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知3sin 5θ=-,则cos2θ=__ ___. 2.若实数,x y 满足4xy =,则224x y +的最小值为 .3.设是虚数单位,复数z 满足(2)5i z +⋅=,则z = .4.函数2()2(0)f x x x =-<的反函数1()fx -= . 5.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为.6.若正四棱柱1111ABCD A B C D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________.(结果用反三角函数值表示)7.设数列{}n a 的前n 项和为n S ,若11a =,*110()2n n S a n N +-=∈,则{}n a 的通项公式为 . 8.若全集U R =,不等式11111x x +≥-的解集为A ,则U A C = . 9.已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =u r 的直线过点(0,4)P ,则圆C 上的点到直线的距离的最大值为 .10.如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与 BD 相交于O ,设AB a =u u u r r ,DC b =u u u r r ,用,a b r r 表示BO uuu r ,则BO uuu r = .11.已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像.若()y g x =的图像上各最高点到点(0,3)的距离的最小值为,则ϕ的值为 .12.已知函数222111()1()()(1)2222015n n n f x x n =+++++++L ,其中*n N ∈. 当1 2 3 n =L ,,,时,()n f x 的零点依次记作123 x x x L ,,,,则lim n n x →∞= . 13.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x x f x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是 .14.设集合(){}{}12310,,,,|1,0,1,1,2,3,,10iA x x x x x i =∈-=L L ,则集合A 中满足条件“1231019x x x x ≤++++≤L ”的元素个数为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15. “14a ≥”是“实系数一元二次方程20x x a ++=有虚数根”的( ) (A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件16.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中一定能推出m β⊥的是 ( )(A )αβ⊥且m α⊂≠(B )αβ⊥且α//m (C )n m //且n β⊥ (D )m n ⊥且//n β17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n 类*()n N ∈,分别编号为1,2,,n L ,买家共有m 名*(,)m N m n ∈<,分别编号为1,2,,m L .若1,1,10,ij i j a i m j n i j ⎧=≤≤≤≤⎨⎩第名买家购买第类商品第名买家不购买第类商品,则同时购买第1类和第2类商品的人数是( )(A )1112121222m m a a a a a a +++++++L L (B )1121112222m m a a a a a a +++++++L L(C )1112212212m m a a a a a a +++L (D )1121122212m m a a a a a a +++L18.对于方程为||1x +||1y =1的曲线C 给出以下三个命题:(1)曲线C 关于原点中心对称;(2)曲线C 既关于x 轴对称,也关于y 轴对称,且x 轴和y 轴是曲线C 仅有的两条对称轴;(3)若分别在第一、第二、第三、第四象限的点M,N,P,Q 都在曲线C 上,则四边形MNPQ 每一条边的边长都大于2.其中正确的命题是( )(A)(1)(2) (B)(1)(3) (C)(2)(3) (D)(1)(2)(3)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分. 已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf . (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f .20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()22()x x f x k k R -=+⋅∈.(1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,某传动装置由两个陀螺12,T T 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13,且12,T T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan 3θ=.若陀螺2T 中圆锥的底面半径为()0r r >.(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆222:1x y a γ+=(常数1a >)的左顶点为R ,点(,1),(,1)A a B a -,O 为坐标原点.。
2010学年第一学期徐汇区高三年级数学学科学习能力诊断卷 (文科试卷)(考试时间:120分钟,满分150分) 2011.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、函数12log (1)y x =-的定义域为 。
2、抛物线24y x =的准线方程是 。
3、方程4220xx+-=的解是 。
4、若3sin 5θ=-,则行列式cos sin sin cos θθθθ= 。
5、已知向量(2,3),(4,7)a b ==-,则向量b 在向量a 的方向上的投影为 。
6、若1nx x ⎛⎫- ⎪⎝⎭展开式的第4项含3x ,则n 的值为 。
7、已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是 。
8、若函数()()(2)f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析式()f x = 。
9、一颗骰子投两次, 记第一次得到的数值为a , 第二次得到的数值为b , 将它们作为关于x y 、的二元一次方程组322ax by x y +=⎧⎨+=⎩,的系数, 则方程组有唯一解的概率为 。
(用数字作答)10、已知函数()y f x =存在反函数1()y fx -=,若函数(1)y f x =+的图象经过点(3,1),则函数1()y fx -=的图象必经过点 。
11、若函数)1l g ()(2--=ax x x f 在区间),1(+∞上是增函数,则a 的取值范围是 。
12、在数列{}n a 中,13a =,点*(1,)n n N >∈在直线0x y --=上,则2lim(1)n n a n →∞+= 。
13、已知x 是1,2,3,x ,5,6,7这七个数据的中位数,且1,3,2,x y -这四个数据的平均数为1,则1y x-的最小值为 。
14、定义平面向量之间的一种运算“*”如下:对任意的(,),(,)a m n b p q == ,令*a b m q np =-。
2012学年第一学期徐汇区高三年级数学学科学习能力诊断卷 (理)(考试时间:120分钟,满分150分) 2013.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.方程组2132x y x y -=⎧⎨+=-⎩的增广矩阵是__________________.【答案】211132-⎛⎫⎪-⎝⎭【解析】根据增广矩阵的定义可知方程组的增广矩阵为211132-⎛⎫⎪-⎝⎭。
2. 已知幂函数()f x 的图像过点18,2⎛⎫ ⎪⎝⎭,则此幂函数的解析式是()f x =_____________.【答案】13x-【解析】设幂函数为()f x x α=,则由1(8)2f =得182α=,即3122α-=,所以31α=-,13α=-,所以13()f x x -=。
3.(理)若θ为第四象限角,且4sin()25πθ+=,则sin 2θ=___________. 【答案】2425-【解析】由4sin()25πθ+=得4cos 5θ=,因为θ为第四象限角,所以3sin 5θ=-,所以3424sin 22sin cos 2()5525θθθ==⨯-⨯=-。
4.若抛物线22(0)y px p =>的焦点与双曲线221610x y -=的右焦点重合,则实数p 的值是 . 【答案】8【解析】抛物线的焦点坐标为(,0)2p ,在双曲线中22610a b ==,,所以22216c a b =+=,所以4c =,即双曲线的右焦点为(4,0),所以482pp ==,。
5.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如右图所示,则()f x =_________.【答案】()2sin4f x x π=【解析】由图象可知26242T A ==-=,,即周期8T =,由28T πω==得,4πω=,所以()2sin()4f x x πϕ=+,有(2)2f =得,(2)2sin(2)24f πϕ=⨯+=,即sin()12πϕ+=,所以22k k Z ππϕπ+=+∈,,所以k k Z ϕπ=∈,,因为2πϕ<,所以0ϕ=,所以()2sin 4f x x π=。
2011学年第一学期徐汇区高三年级数学学科学习能力诊断卷 (文科试卷)(考试时间:120分钟,满分150分) 2012.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、已知角α的顶点在原点,始边与x 轴的正半轴重合,若角α的终边经过点(3,4)P -, 则cos α=2、 函数2log ()1y x m =-+的反函数的图象经过点(1,3),则实数m =3、 若全集{}{}{}|13,,1,2,3,1,3U U x x x Z A C B =-<∈==-,则A B ⋂= 4、从一堆苹果中任取5只,称得它们的质量分别为(单位:克)125、124、122、123、126,则该样本方差2s =5、一平面截一球得到直径为6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是3cm 6、已知tan()24x π+=,则tan tan 2xx的值为7、根据右图所示的程序框图,输出结果i =8、从{}1,2,3,4,5中随机选取一个数为a ,从{}1,2,3中随机选取一个数为b ,则b a >的概率是 (结果用数值表示) 9、若1()2nx x+的展开式中前三项的系数依次成等差数列,则展开式中4x 项的系数为10、已知函数2()1f x x =-的定义域为D ,值域为{}1,0,1,-,试确定这样的集合D 最多有 个11、在ABC ∆中,角,,A B C 所对的边分别为,,,6a b c AB AC ⋅= ,向量(cos ,sin )m A A =与向量(4,3)n =-相互垂直。
若7b c +=,则a 的值为12、已知函数()log (0,1)a f x x x b a a =+->≠,当234a b <<<<时,函数()f x 的零点*0(,1)()x n n n N ∈+∈,则n =13、已知各项为正数的等比数列765{}:2,n a a a a =+满足若存在两项、使得1=,则14mn+的最小值为14、如图所示:在AOB ∆中,,3,2,3AOB OA OB BH OA π∠===⊥于H ,M 为线段BH 上的点,且5,4MO MA BM xBO yBA ⋅=-=+ 若,则x y +的值等于二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
第8题图QPOBA2012学年第二学期徐汇、松江、金山区高三年级数学学科学习能力诊断卷 (文科试卷)(考试时间:120分钟,满分150分) 2013.4一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若函数()(0,1)x f x a a a =>≠的反函数图像过点(2,1)-,则a = . 2.若直线1:210l x my ++=与直线2:31l y x =-平行,则m = . 3.若正整数n 使得行列式1623nnn=-,则7n P = . 4.已知函数13(),(1,27)f x x x =∈的值域为A ,集合{}220,B xx x x R =-<∈,则B A = .5.已知(,0)2πα∈-,且4cos 5α=,则sin 2α=___________.6.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为__________(结果保留π).7.已知32i x =--(i 为虚数单位)是一元二次方程20x ax b ++= (,a b 均为实数)的一个根,则a b +=__________. 8.如图给出的是计算1111352013++++的值的一个程序框图, 图中空白执行框内应填入i = .9.某国际体操比赛,我国将派5名正式运动员和3名替补运动员 参加, 最终将有3人上场比赛,其中甲、乙两名替补运动员均 不上场比赛的概率是 (结果用最简分数表示).10.满足条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤-00212y x y x y x 的目标函数22y x P +=的最大值是 .11. 在二项式63(()ax a R x+∈的展开式中,常数项的值是20-,则23lim()n n a a a a →∞++++= .12.已知椭圆2212516x y +=内有两点()()1,3,3,0,A B P 为椭圆上一点,则PA PB +的最大值为 .α1α2第三步第二步第一步E 3DCBAE 2E 2ABCDE 1E 1DCB A α1α3第14题图13.如图,有以下命题成立:设点,P Q 是线段AB 的三等分点,则有OP OQ OA OB +=+.将此命题推广,设点12345,,,,A A A A A 是线段AB 的六等分点,则()12345OA OA OA OA OA OA OB ++++=+ .14.如图,对正方形纸片ABCD 进行如下操作:第一步,过点D 任作一条直线与BC 边相交于点1E , 记11CDE α∠=;第二步,作1ADE ∠的平分线交AB 边于点2E ,记22ADE α∠=;第三步,作2CDE ∠的平分线交BC 边于点3E ,记33CDE α∠=;按此作法从第二步起重复以上步骤……,得到12,,,,n ααα,则用n α和1n α+表示的递推关系式是1n α+= .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知,a b 为实数,命题甲:2ab b >,命题乙:110b a<<,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.已知函数()1,00,01,0x f x x x >⎧⎪==⎨⎪-<⎩,设2()()F x x f x =⋅,则()F x 是 ( )A.奇函数,在(,)-∞+∞上单调递减B.奇函数,在(,)-∞+∞上单调递增HLLYBQ 整理 供“高中试卷网( )”·3·C.偶函数,在(),0-∞上递减,在()0,+∞上递增D.偶函数,在(),0-∞上递增,在()0,+∞上递减17.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( )A .B .C .D .18.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 (0C)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数): ① 甲地:5个数据的中位数为24,众数为22; ② 乙地:5个数据的中位数为27,总体均值为24;③ 丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;则肯定进入夏季的地区有 ( ) A. 0个 B. 1个 C. 2个 D. 3个三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)在ABC ∆中,,,a b c 分别是角,,A B C的对边,且sin cos cos sin A C A C +=若b ABC ∆的面积ABC S ∆=,求a c +的值.344A 1C 1B 1ACB第21题图20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为k .轮船的最大速度为15海里/小时.当船速为10海里/小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元.假定运行过程中轮船以速度v 匀速航行. (1)求k 的值;(2)求该轮船航行100海里的总费用W (燃料费+航行运作费用)的最小值.21.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,已知111ABC A B C -是正三棱柱,它的底面边长和侧棱长都是2.(1)求异面直线1AC 与11B C 所成角的大小(结果用反三角函数值表示); (2)求三棱锥1C ABC -的体积1C ABC V -.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知双曲线C 的中心在原点,()1,0D 是它的一个顶点,d=是它的一条渐近线的一个方向向量.HLLYBQ 整理 供“高中试卷网( )”·5·(1) 求双曲线C 的方程;(2) 若过点(3,0-)任意作一条直线与双曲线C 交于,A B 两点 (,A B 都不同于点D ),求DA DB ⋅的值;(3) 对于双曲线Γ:22221(0,0,)x y a b a b a b-=>>≠,E 为它的右顶点,,M N 为双曲线Γ上的两点(,M N 都不同于点E ),且EM EN ⊥,求证:直线MN 与x 轴的交点是一个定点.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}*()n a n N ∈的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为0,公差为12的等差数列. (1)求数列{}n a 的通项公式; (2)设()*42()15n an b n N =⋅-∈,对任意的正整数k ,将集合{}21221,,k k k b b b -+中的三个元素排成 一个递增的等差数列,其公差为k d ,求k d ;(3)对(2)题中的k d ,设1(1,5)A d ,2(2,5)B d ,动点,M N 满足MN AB =,点N 的轨迹是函数()y g x =的图像,其中()g x 是以3为周期的周期函数,且当(]0,3x ∈时, ()lg g x x =,动点M 的轨迹是函数()f x 的图像,求()f x .A 1C 1B 1ACB(文)参考答案一.填空题:(本题共有14题,每小题4分)1.12 2.23- 3. 42 4.(1,2) 5. 2425- 6. 12π 7. 19 8. 2i + 9. 514 10. 4 11. 14- 12.15 ; 13.52;14.24n πα-二.选择题:(本题共有4小题,每小题5分) 15.B 16. B 17. B 18. C 三.解答题 19.(本题12分)解:由条件可知sin()A C +=,……………2分即sin 2B =,……………4分1sin 2ABC S ac B ∆== 3.ac ∴=………………………………8分 由余弦定理B ac c a b cos 2222-+=,得22()22cos ,b a c ac ac B =+--………………10分于是,217()23(1).2a c =+-⋅+4a c ∴+=. ………………………………………12分 20.(本题14分)本题共有2小题,第(1)小题6分,第(2)小题8分. 解:(1)由题意得燃料费21W kv =,………………………………2分把v =10,196W =代入得k =0.96.………………………………………………6分(2)21001001500.96W v v v ⨯=⋅+,……………………………………9分=15000962400v v+≥=,………………………11分 其中等号当且仅当1500096v v=时成立,解得12.515v ==<,……………13分 所以,该轮船航行100海里的总费用W 的最小值为2400(元). ……………………14分21.(本题12分)本题共有2题,第(1)小题6分,第(2)小题8分. (1)11//C B CB ,……………………………………… 1分连接1A B ,则1ACB ∠为异面直线111AC B C 与所成角. ………3分HLLYBQ 整理 供“高中试卷网( )”·7·由题意得11AC A B ==……………………………………4分………5分所以,异面直线1AC 与11B C 所成角的大小为……………………………………6分(2)由题意得,11C ABC C ABC V V --=…………………………………………………………9分ABC ∆的面积2122ABC S h CC ∆====,……………………………………12分1123C ABC V -∴==,三棱锥1C ABC -………………………………………14分22.(本题满分16分) 本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分, 第(3)小题满分6分.解:(1)设双曲线C 的方程为22221(0,0)x y a b a b -=>>,则1a =,…….2分又b a =,得b =C 的方程为2212y x -=. ………….4分 (2) 当直线AB 垂直于x 轴时,其方程为3x =-,,A B 的坐标为(3-,4)、(3-,4-),(4,4),(4,4)DA DB =-=--,所以DA DB ⋅=0. ………………..6分当直线AB 不与x 轴垂直时,设此直线方程为(3)y k x =+,由22(3)22y k x x y =+⎧⎨-=⎩得2222(2)6920k x k x k ----=. 设1122(,),(,)A x y B x y ,则212262k x x k +=-, 2122922k x x k--⋅=-,……………..8分 故212121212(1)(1)(1)(1)(3)(3)DA DB x x y y x x k x x ⋅=--+=--+++22222211112cos 2AC BC A B ACB AC BC+-+-∠===⋅arccos 42221212(1)(31)()91k x x k x x k =++-+++.……....9分22292(1)2k k k --=+-+2226(31)2k k k--+291k +=0 .综上,DA DB ⋅=0. ………………10分 (3) 设直线MN 的方程为:x my t =+,由222222x my t b x a y a b=+⎧⎨-=⎩,得22222222()2()0b m a y b mty b t a -++-=, 设1122(,),(,)M x y N x y ,则2122222b mt y y b m a -+=-, 22212222()b t a y y b m a -=-,…………12分由EM EN ⊥,得1212()()0x a x a y y --+=,1212()()0my t a my t a y y +-+-+= 即221212(1)()()()0m y y m t a y y t a ++-++-=,………………14分222222222222()2(1)()()0b t a b mtm m t a t a b m a b m a-+--+-=--, 化简得, 2222()a ab t a b +=-或t a = (舍), ……………………………………….15分 所以,直线MN 过定点(2222()a ab a b +-,0). ………………………………..16分23.(本题满分18分) 本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分, 第(3)小题满分8分. 解: (1)由条件得10(1)2n S n n =+-,即(1)2n nS n =-…………………………..2分 所以*1()n a n n N =-∈. ……………………………………………………..4分(2) 由(1)可知1*4(2)()15n n b n N -=⋅-∈, 所以22222144(2)21515k k k b ---=-=⋅,2121244(2)21515k k k b --=-=-⋅ 222144(2)21515k k k b +=-=⋅. …………………………..7分由212212k k k b b b -+=+及22121k k k b b b -+<<得22121,,k k k b b b -+依次成递增的等差数列, …………………………..9分HLLYBQ 整理 供“高中试卷网( )”·9·所以22221214442215155kk k k k k d b b -+-=-=⋅-⋅=. …………………………..10分 (3)由(2)得(1,4),(2,16)A B ,即(1,12)MN AB ==…………………..12分 当33(1)()m x m m Z <≤+∈时,033x m <-≤,由()g x 是以3为周期的周期函数得,()(3)lg(3)g x g x m x m =-=-,即()lg(3)g x x m =-(333())m x m m Z <≤+∈. ………………..14分 设(,)M x y 是函数()y f x =图象上的任意点,并设点N 的坐标为(,)N N x y , 则112N N x x y y -=⎧⎨-=⎩. ………………..16分而lg(3)N N y x m =-(333())N m x m m Z <≤+∈,于是,12lg(13)y x m +=+-(3133())m x m m Z <+≤+∈,所以,()lg(13)12f x x m =+--(3132())m x m m Z -<≤+∈. ……………..18分。
2011学年第二学期徐汇区高三年级数学学科学习能力诊断卷 (文科试卷)(考试时间:120分钟,满分150分) 2012.4一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、已知2111n na n n=+,则=∞→n n a lim . 2、在ABC ∆中,已知22sin 3cos 0A A -=,则角A 的大小为 . 3、若直线l 的法向量)2,1(=,且经过点)1,0(M ,则直线l 的方程为 . 4、已知集合7|03x A x x -⎧⎫=>⎨⎬-⎩⎭,函数2lg(68)y x x =-+-的定义域为集合B ,则A B ⋂= .5、某区有200名学生参加数学竞赛,随机抽取10名学生成绩如下:则总体标准差的点估计值是 .(精确到0.01)6、若函数)(x g y =图像与函数)1()1(2≤-=x x y 的图像关于直线x y =对称,则(4)g =________. 7、若bi ia-=-11,其中b a ,都是实数,i 是虚数单位,则bi a += 8、2531()x x+的二项展开式中,常数项的值是 .9、在等比数列{}n a 中,0>n a ,若127816a a a a ⋅⋅⋅⋅=,则54a a +的最小值为 .10、如图:已知三棱柱111ABC A B C -的侧棱与底面边长都相等,过顶点1A 作底面ABC 的垂线,若垂足为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为 . 11、5名学生报名参加两项社会实践活动,每个学生都要报名且只报一项,那么每项活动都至少有两名学生报名的概率为___________.(结果用最简分数表示)12、已知点(0,2)A ,抛物线22(0)y px p =>的焦点为F ,准线为l ,线段FA 交抛物线于点B ,过B 作准线l 的垂线,垂足为M ,若AM MF ⊥,则p = .成 绩 人 数40 1150 60 221370 80 90 AA 1BCC 1B 1第10题13、已知O 为坐标原点,点()1,1A -,若点(),M x y 为平面区域 213x y x y +≤⎧⎪≥⎨⎪≥-⎩内的一个动点,则OA OM ⋅的最大值与最小值之差为______________.14、若函数()y f x =(x R ∈)满足()()2f x f x -=,且[]1,1x ∈-时,()21f x x =-,函数()lg(1)110001x x g x x x x ->⎧⎪⎪=-<⎨⎪⎪≤≤⎩,则函数()()()h x f x g x =-在区间[]5,6-内的零点的个数为_______.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、条件甲:函数)(x f 的图像关于原点对称;条件乙:函数)(x f 是奇函数,则甲是乙的( )(A )充分非必要条件(B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件 16、以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) (A )2220x y x ++= (B )220x y x ++= (C )220x y x +-= (D )2220x y x +-=17、设(,1)(2,)(4,5)A a B b C 、、为坐标平面上三点, O 为坐标原点.若OA uu r 与OBuu u r 在OC uuu r上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 18、若框图所给的程序运行的结果为90S =,那么判断框中应填入的关于k 的判断条件错.误.的是( ) (A )8k = (B )8k ≤ (C )9k < (D )9k =三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19、(本题满分12分)第(1)小题满分4分,第(2)小题满分8分.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且32,35,6π===B b a . (1)求A sin ;(2)求A C B 2cos )cos(++的值.第18题图20、(本题满分14分)第(1)小题满分6分,第(2)小题满分8分.在长方体1111ABCD A BC D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图所示的几何体111ABCD AC D -,且这个几何体的体积为10. (1)求棱1A A 的长;(2)求此几何体的表面积,并画出此几何体的主视图和俯视图(写出各顶点字母).21、(本题满分14分)第(1)小题满分6分,第(2)小题满分8分. 已知函数22()32log ,()log f x x g x x =-=.(1)当[]1,4x ∈时,求函数[]()()1()h x f x g x =+⋅的值域;(2)如果对任意的[]1,4x ∈,不等式2()()f x f k g x ⋅>⋅恒成立,求实数k 的取值范围.ABCD 1A 11D22、(本题满分16分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知点12,F F 为双曲线222:1(0)y C x b b-=>的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线于点M ,且01230MF F ∠=,圆O 的方程为222x y b +=. (1)求双曲线C 的方程;(2)若双曲线C 上的点到两条渐近线的距离分别为12,d d ,求12d d ⋅的值;(3)过圆O 上任意一点00(,)P x y 作切线l 交双曲线C 于,A B 两个不同点,求OA OB ⋅uu r uu u r的值 23、(本题满分18分)第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如果存在常数a 使得数列{}n a 满足:若x 是数列{}n a 中的一项,则a x -也是数列{}n a 中的一项,称数列{}n a 为“兑换数列”,常数a 是它的“兑换系数”.(1)若数列:1,2,4,(4)m m >是“兑换系数”为a 的“兑换数列”,求m 和a 的值; (2)若有穷递增数列......{}n b 是“兑换系数”为a 的“兑换数列”,求证:数列{}n b 的前n 项和2n nS a =⋅; (3)已知有穷等差数列......{}n c 的项数是00(3)n n ≥,所有项之和是B ,试判断数列{}n c 是否是“兑换数列”?如果是的,给予证明,并用0n 和B 表示它的“兑换系数”;如果不是,说明理由.2011学年第二学期徐汇区高三年级数学学科学 习 能 力 诊 断 卷文科试卷参考答案及评分标准(2012.4)一. 填空题: 1.1- 2.3π3.220x y +-= 4. ()3,4 5.17.64 6.1- 78. 10 9. 10.3411.5812.8 14.9 二.选择题: 15.C 16.D 17.A 18.D三.解答题:19.解:(1)在ABC ∆中,由正弦定理得BbA a sin sin =将32,35,6π===B b a 代入上式得,32sin35sin 6π=A…………………2分解得53sin =A ;………………………………………………4分 (2)ABC ∆中,π=++CB A ,且B 为钝角,所以54cos =A …………………6分 54cos )cos(-=-=+A C B ……………………………………………8分257sin 212cos 2=-=A A ……………………………………………10分所以2513257542cos )cos(-=+-=++A C B …………………………………12分20.解: (1)设1AA h =,则111111111110ABCD AC D ABCD A B C D B A B C V V V ---=-=--------------------2’ 1110222210323hh h ∴⨯⋅-⨯⨯⨯⨯==,解得:3h =-----------------------6’(2)13=2232232222S ⋅⋅+⋅⋅⋅+⋅⋅+表24=’ 主视图与俯视图各得2分.21.解: (1)22()(42log )log 2(log h x x x =-⋅=-因为[]1,4x ∈,所以[]2log 0,2x ∈,…………………故函数()h x 的值域为[]0,2…………………6分 (2)由2()()f x f k g x ⋅>⋅得222(34log )(3log )log x x k x -->⋅令2log t x =,因为[]1,4x ∈,所以[]2log 0,2t x =∈所以(34)(3)t t k t -->⋅对一切的[]0,2t ∈恒成立…………………8分 ① 当0t =时,k R ∈;…………………9分② 当(]0,2t ∈时,(34)(3)t t k t --<恒成立,即9415k t t<+-…………………11分因为9412t t +≥,当且仅当94t t =,即32t =时取等号…………………12分所以9415t t+-的最小值为3-…………………13分综上,(),3k ∈-∞-…………………14分22.解:(1)设2,F M的坐标分别为0)y -------------------1分因为点M 在双曲线C 上,所以220211y b b+-=,即20y b =±,所以22M F b =------------2分 在21Rt MF F ∆中,01230MF F ∠=,22MF b =,所以212MF b =------------3分由双曲线的定义可知:2122MF MF b -==故双曲线C 的方程为:2212y x -=-------------------4分 (2)由条件可知:两条渐近线分别为120;0l y l y -=+=-------------------5分设双曲线C 上的点00(,)Q x y ,则点Q到两条渐近线的距离分别为12d d ==-------------------7分所以22001223x y d d -⋅==-------------------8分因为00(,)Q x y 在双曲线C :2212y x -=上,所以220022x y -=-------------------9分 故2200122233x y d d -⋅==-------------------10分(3)解一:因为00(,)P x y 为圆O :222x y +=上任意一点,设00,x y αα=所以切线l的方程为:cos sin x y αα+=-------------------12分 代入双曲线C :22222(cos sin )x y x y αα-==+两边除以2x ,得222(1sin )()2sin cos ()cos 20yy xxαααα+++-=-------------------13分设1122(,),(,)A x y B x y ,则1212,y y x x 是上述方程的两个根 由韦达定理知:212212cos 21sin 1y y x x αα-==-+,即12120x x y y +=-------------------15分 所以12120OA OB x x y y ⋅=+=-------------------16分解二:设1122(,),(,)A x y B x y ,切线l 的方程为:002x x y y +=-------------------12分 ①当00y ≠时,切线l 的方程代入双曲线C 中,化简得:22220000(2)4(24)0y x x x x y -+-+=所以:2001212222200004(24),(2)(2)x y x x x x y x y x ++=-=----------------------13分 又22010201201201222200000(2)(2)82142()2x x x x x y y x x x x x x y y y y x ---⎡⎤=⋅=-++=⎣⎦- 所以222200001212222222000000(24)8242()0(2)22y x x y O A O B x x y y y x y x y x +--+⋅=+=-+==--------------15分 ②当00y =时,易知上述结论也成立。
2013学年第一学期徐汇区学习能力诊断卷数学学科(文科)2014.1一.填空题:(本题满分56分,每小题4分)1.计算:.2.函数的最小正周期是_______________.3. 计算:122423432⎛⎫⎛⎫⋅+⎪ ⎪⎝⎭⎝⎭= .4.已知集合则集合=____________.5.已知,,则.(结果用反三角函数值表示)6.直线与直线,若的方向向量是的法向量,则实数.7.如果()那么共有项.8.若函数的图象经过点,则函数的反函数的图象必经过点_______.9.某小组有10人,其中血型为A型有3人,B型4人,AB型3人,现任选2人,则此2人是同一血型的概率为__________________.(结论用数值表示)10.双曲线的虚轴长是实轴长的2倍,则____________.11.函数图像的对称轴方程为________________.12.在平面直角坐标系中,动点和点、满足,则动点的轨迹方程为__________________.13.某人5次上班途中所花的时间(单位:分钟)分别为,已知这组数据的平均数为10,方差为2,则的值为___________________.14.一个五位数则称这个五位数符合“正弦规律”.那么,共有_______个五位数符合“正弦规律”.二.选择题:(本题满分20分,每小题5分)15.对于集合和,“”是“”的-----------( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件16.直线的倾斜角是 -----------------------( ) (A)(B)(C)(D)17.为了得到函数的图像,只需把函数的图像上所有的点----------------------------()(A)向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(B)向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(C)向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D)向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)18.已知集合,若对于任意,存在,使得成立,则称集合是“垂直对点集”.给出下列二个集合:①;②};则以下选项正确的是()(A)①是“垂直对点集”,②不是“垂直对点集”(B)①不是“垂直对点集”,②是“垂直对点集”(C)①②都是“垂直对点集”(D) ①②都不是“垂直对点集”三.解答题:(本大题共5题,满分74分)19.(本题满分12分)在中,,是方程的两个根,且。
2012学年第一学期徐汇区高三年级数学学科
学习能力诊断卷 (理科)
(考试时间:120分钟,满分150分) 2013.1
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
1.方程组21
32x y x y -=⎧⎨+=-⎩
的增广矩阵是__________________.
2. 已知幂函数()f x 的图像过点18,2⎛⎫
⎪⎝⎭
,则此幂函数的解析式是()f x =_____________.
3.若θ为第四象限角,且4
sin 25
πθ⎛⎫+=
⎪⎝⎭,则sin 2θ=___________. 4.若抛物线2
2(0)y px p =>的焦点与双曲线
22
1610
x y -=的右焦点重合,则实数p 的值是 .
5.函数()sin()(0,0,||)2
f x A x A π
ωϕωϕ=+>><的
部分图像如右图所示,则()f x = _________.
6.若(1,2)n =-
是直线l 的一个法向量,则直线l 的倾斜角的大小为_________________.
(结果用反三角函数值表示)
7.不等式
21
20
02103
2
1
x x +-≥的解为 . 8.高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是 .(结果用最简分数表示)
9.如图所示的程序框图,输出b 的结果是_________.
10.已知等比数列}{n a 的首项11=a ,公比为(0)q q >,前n 项和为n S ,若1lim
1
=+∞→n
n n S S ,则公比q 的取值范围是 .
11. 若平面向量i a 满足 1(1,2,3,4)i a i == 且10(1,2,3)i i a a i +⋅==
,则1234a a a a +++ 可能的值有
____________个.
12.在ABC ∆中,0
60A ∠= ,M 是AB
的中点,若2,AB BC ==,D 在线段AC 上运动,
则DB DM ⋅
的最小值为
____________.
13.函数{}
()min 2f x x =-,其中{},min ,,a a b
a b b a b ≤⎧=⎨>⎩
,若动直线y m =与函数()y f x =的
图像有三个不同的交点,它们的横坐标分别为123,,x x x ,则123x x x ⋅⋅是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.
14.已知线段010A A 的长度为10,点129,,,A A A 依次将线段010A A 十等分.在0A 处标0,往右数1点标1,再往右数2点标2,再往右数3点标3……(如图),遇到最右端或最左端返回,按照
0A →10A →0A →10A → 的方向顺序,不断标下去,
那么标到2010这个数时,所在点上的最小数为_____________.
二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应
在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.
15.下列排列数中,等于*
(5)(6)(12)(13,)n n n n n N ---≥∈ 的是 ( )
(A)712n P - (B) 75n P - (C) 85n P - (D) 8
12n P -
16.在ABC ∆中,“cos sin cos sin A A B B +=+”是“0
90C ∠=”的 ( )
(A) 充分非必要条件 (B) 必要非充分条件 (C) 充要条件
(D) 既不充分也不必要条件
17.若函数21()ax f x x
-=在()0,+∞上单调递增,那么实数a 的取值范围是 ( )
(A)0a ≥
(B)0a >
(C)0a ≤
(D) 0a <
18.对于直角坐标平面xOy 内的点(,)A x y (不是原点),A 的“对偶点”B 是指:满足1OA OB =且在射线OA 上的那个点. 若,,,P Q R S 是在同一直线上的四个不同的点(都不是原点),则它们的“对偶点”'''',,,P Q R S ( ) (A) 一定共线 (B) 一定共圆
(C) 要么共线,要么共圆 (D) 既不共线,也不共圆
三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
19.(本题满分12分)
已知集合3
{|0}4
x A x x -=<-,实数a 使得集合{}|()(5)0B x x a x =-->满足A B ⊆, 求a 的取值范围.
20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数)(x f =2
1
log 1
x x +-. (1)判断函数)(x f 的奇偶性,并证明;
(2)求)(x f 的反函数)(1x f -,并求使得函数12()()log g x f x k -=-有零点的实数k 的取值范围.
21.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. (理)某种型号汽车四个轮胎半径相同,均为40R cm =,
同侧前后两轮胎之间的距离(指轮胎中心之间距离)为280l cm = (假定四个轮胎中心构成一个矩形). 当该型号汽车开上一段上坡路ABC (如图(1)所示,其中
ABC α∠=(3
4
παπ<<)),且前轮E 已在BC 段上时,后轮中心在F 位置;若前轮中心到达G 处时,
后轮中心在H 处(假定该汽车能顺利驶上该上坡路). 设前轮中心在E 和G 处时与地面的接触点分别为
S 和T ,且60BS cm =,100ST cm =. (其它因素忽略不计)
(1)如图(2)所示,FH 和GE 的延长线交于点O ,
求证:40cot
602
OE α
=+(cm);
(2)当α=56
π时,后轮中心从F 处移动到H 处实际移动了多少厘米? (精确到1cm)
22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6
分.
已知椭圆
22
22
:1(0)
x y
C a b
a b
+=>>的一个焦点为(1,0)
F
,点(
2
-在椭圆C上,点T
满足2
OT OF
=
(其中O为坐标原点),过点F作一直线交椭圆于P、Q两点 .
(1)求椭圆C的方程;
(2)求PQT
∆面积的最大值;
(3)设点P'为点P关于x轴的对称点,判断P Q'
与QT
的位置关系,并说明理由.
23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
对于数列{}
n
x,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数a,公比为正整数(1)
q q>
的无穷等比数列{}
n
a的子数列问题. 为此,他任取了其中三项,,()
k m n
a a a k m n
<<.
(1) 若,,()
k m n
a a a k m n
<<成等比数列,求,,
k m n之间满足的等量关系;
(2) 他猜想:“在上述数列{}n a中存在一个子数列{}n b是等差数列”,为此,他研究了k n
a a
+与2
m
a的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数a,公差为正整数d的无穷等差数列中是否存在成等比数列的无穷子数列?请你就此问题写出一个正确命题,并加以证明.。