工程材料与成形工艺概念定义原理规律小结
- 格式:doc
- 大小:487.50 KB
- 文档页数:7
材料成型原理及工艺材料成型是指将原料通过一定的工艺过程,使其获得所需形状的过程。
在材料成型中,最常见的方式包括热成型、冷成型和粉末冶金成型等。
这些成型工艺的原理和应用在各个领域都有广泛的应用。
热成型是指通过加热材料使其软化并塑性变形以达到所需形状的一种成型方法。
主要包括热压成型、热拉伸成型、热挤压成型等。
其原理是通过加热使材料达到一定的软化点或熔点,然后通过外力施加,使材料塑性变形并成型。
热成型适用于塑料、玻璃、金属等材料的成型,并且可以制造复杂形状的产品。
冷成型是通过机械力作用在室温下进行的成型方法。
冷成型主要包括挤压成型、压铸成型、冷轧成型等。
其中,冷挤压是常见的一种冷成型方式,主要应用于金属材料的成型。
其原理是通过施加机械力,使材料在室温下产生塑性变形,并达到所需形状。
具有高精度、高效率的特点。
粉末冶金成型是一种将粉末材料在一定温度下进行成型的方法。
其主要过程包括压制和烧结两个过程。
首先将粉末材料经过一定的工艺处理得到一定的物理性质,然后该粉末被用来制造一种新型的成型工艺。
原理是通过压制使粉末粒子结合,并在一定的温度下进行烧结,最终得到所需形状的产品。
其优点是可以制造复杂形状的产品,同时可以利用废料进行再利用。
在材料成型过程中,还有一些辅助工艺和辅助设备的应用,以实现更好的成型效果。
例如模具是实现材料成型的重要工具,通过对模具进行设计和制造,可以获得不同形状和尺寸的产品。
在热成型过程中,需要控制加热温度、保持时间、冷却速率等参数,以确保产品的质量。
在冷成型过程中,需要选择合适的冷却介质和冷却方式,以使产品达到所需的硬度和强度。
在粉末冶金成型过程中,需要控制压制力、压制时间和烧结温度等参数,以实现产品的致密度和力学性能。
总结起来,材料成型的原理和工艺非常丰富多样,根据不同材料和产品的要求选择合适的成型方式可以实现高效率、高质量的制造。
随着科技的进步和工艺的改进,材料成型在各个行业的应用也越来越广泛。
2017-2018学年第一学期工程材料及成形工艺学习心得时光飞逝,转眼间我已是大三学生的一员了,距离毕业的时间已寥寥无几,课程也变得更加“高深莫测”,开始接触更多的专业课程。
这学期我们学习了《工程材料及成形工艺》这门课程。
作为测控技术与仪器专业的学生,我深知这门课程对我们的重要性,也对这门课程产生了极大的兴趣。
刚开课时,老师就给我们讲了这门课的重要性:身为测控专业的学生,以后绝对离不开质检方面的工作,而了解工程材料各方面的性能是必不可少的知识。
这门课程的知识点很多也很碎,老师为了让我们更好的记忆,在课堂上耐心的为我们讲解各个知识点,用生动形象的语言和例子更好的诠释知识点,是原本可能会枯燥乏味的死记硬背变得鲜活起来。
课后,老师还会给我们布置下一堂课要记忆的重点,督促我们不要松懈。
而第二堂课会让我们默写上节课的重点,循环记忆。
在老师的引导下,我们记得更牢固,学的更扎实。
人类生活在材料组成的世界里,材料是我们赖以生存并得以发展的物质基础。
而工程材料属于材料中的人造材料,主要指用于机械工程、建筑工程以及航空等领域的材料。
既然工程材料这么重要,当然首先要了解下它的分类了。
一:工程材料的分类工程材料按其化学组成分类,可以分为金属材料、高分子材料、无机非金属材料、复合材料四类。
金属材料常指工业上所使用的金属或合金的总称。
金属及合金具有下列共同的特性:①固体状态下具有晶体结构;②具有独特的金属光泽且不透明;③是电和热的良导体;④强度高。
由于金属材料具有良好的力学性能、物理性能、化学性能及加工工艺性能,能采用较简单和经济的方法制成零件,因此金属材料是目前应用最广泛的材料。
无机非金属材料主要指水泥、玻璃、陶瓷材料和耐火材料等。
它们不可燃,不老化,而且硬度高,耐压性能良好,稳定性高,在电力、建筑、机械等领域有广泛应用。
复合材料是由两种以上物理、化学性质不同的物质经人工合成的多相材料。
复合材料的组成包括基体和增强材料两个部分。
工程材料与成形技术基础的感想
在学习工程材料与成形技术基础的过程中,我收获了很多知识和体会。
首先,我深刻认识到了材料的重要性。
不同的材料具有不同的特点和用途,对于不同的工程项目,需要选用不同的材料。
了解材料的特性和性能,可以帮助我们更好地选择和使用材料,提高工程的质量和效率。
其次,我学习了成形技术的基本原理和方法。
成形技术是制造过程中非常重要的一环,它能够将材料加工成所需的形状和尺寸,为后续的加工和使用奠定基础。
掌握成形技术的基本原理和方法,可以帮助我们更好地理解制造过程,提高工艺的稳定性和效率。
最后,我认识到了实践的重要性。
学习知识不是为了停留在书本上,而是要应用到实际中去。
在课堂上,我们不仅学习了理论知识,还进行了实验和实践练习,这让我更加深入地了解了材料和成形技术的基础知识。
总之,学习工程材料与成形技术基础是我大学学习生涯中的一次宝贵经历。
通过这门课程的学习,我不仅扩展了知识面,还学会了更多的思考和应用能力。
我相信,这些知识和经验将会在我今后的学习和工作中发挥重要作用。
- 1 -。
材料成型技术基础知识点总结材料成型技术是指利用压力、温度和时间等因素,通过给予物质以一定的形状,以获得具备特定功能和要求的制品的一种技术方法。
材料成型技术在各个行业的制造过程中起着重要的作用。
下面将对材料成型技术的基础知识点进行总结。
1.材料成型的分类:材料成型可分为热成型和冷成型两类。
热成型是指在高温下进行的成型过程,包括热压、热拉伸、热挤压等。
冷成型是指在常温下进行的成型过程,包括冷弯、冷挤压、冷拔等。
2.材料成型的原理:材料成型的基本原理是通过对材料施加力和热量,使其发生塑性变形,进而得到所需形状和尺寸的制品。
材料成型的力学过程包括拉伸、挤压、弯曲、剪切等。
热量作用主要是为了降低材料的硬度,提高其变形能力。
3.材料成型工艺:材料成型的工艺包括模具设计、加工设备的选择与调试、成型过程的操作等。
模具是材料成型的关键工具,模具的设计要考虑到材料的特性、形状和尺寸的要求。
加工设备的选择与调试要根据材料的成型要求和加工量来确定。
成型过程的操作要严格控制力和热的加工参数,保证制品的质量。
4.材料成型的性能影响因素:材料成型的性能受到许多因素的影响,包括材料的物理和化学性质、成型工艺的参数、设备的性能等。
材料的性能对成型工艺的选择和制品的质量有着重要影响。
成型工艺的参数如温度、压力、速度等也会对成品的性能产生影响。
设备的性能如精度、刚度、压力等也会影响到成型的结果。
5.材料成型的应用:材料成型技术广泛应用于诸多领域,如汽车制造、航空航天、电子、建筑等。
汽车制造中的车身、发动机零部件等都需要经过冲压成型、挤压成型等工艺。
航空航天中的飞机壳体、涡轮叶片等也需要通过成型工艺进行制作。
电子产品中的外壳、散热器等也需要通过成型技术来获得所需的形状。
建筑领域中的钢结构、混凝土构件等亦需要经过成型工艺来生产。
综上所述,材料成型技术是制造过程中不可或缺的一部分。
通过了解材料成型的分类、原理、工艺、性能影响因素和应用,可以更好地理解和应用材料成型技术,提高制品的质量和生产效率。
成型工艺知识点总结导言成型工艺是工业生产中的重要环节,它涉及到物料的加工、塑造和成型,是制造行业不可或缺的一部分。
成型工艺有着广泛的应用,包括塑料制品、金属制品、陶瓷制品等领域。
在制造过程中,选择合适的成型工艺对产品的质量、成本和生产效率有着重要的影响。
本文将对成型工艺的基本原理、常见成型工艺及其特点进行总结,以期为相关领域的从业人员和学生提供参考。
一、成型工艺的基本原理1. 成型工艺的定义及概念成型工艺是指在加工过程中,通过一定的工艺方法,将原料或半成品加工成具有一定形状和尺寸的制品的过程。
成型工艺通常包括塑压、挤压、注射、吹塑、挤塑、模压、窑烧、铸造等多种方法,其中采用的方法取决于原料的性质、产品的形状和尺寸等因素。
2. 成型工艺的基本原理成型工艺的基本原理是利用压力、温度和形状等条件,对原料进行加工和塑造,使其变成具有一定形状和尺寸的制品。
通常成型工艺包括材料的预处理、模具的设计和制造、成型工艺参数的选择和调整等环节。
3. 成型工艺的特点(1)成型是将原料或半成品加工塑造成具有一定形状和尺寸的产品的过程,常用于各种工业制品的生产。
(2)成型工艺通常包括压力成型、热成型、化学成型等多种方法,其中的原理和操作要点各不相同。
(3)成型工艺能够加工各种类型的原料,包括金属、塑料、陶瓷等多种材料,广泛应用于制造行业。
二、常见成型工艺及其特点1. 塑料成型工艺(1)塑压成型:将塑料颗粒在高温状态下压缩成型,适用于生产各种复杂的塑料制品,如家具、玩具等。
(2)注射成型:将加热熔融的塑料通过注射器注射到模具中,经冷却后成型,适用于大批量生产各种塑料制品。
(3)吹塑成型:将加热熔融的塑料颗粒挤出后通过气流吹塑成型,适用于生产塑料瓶、奶瓶等空心制品。
2. 金属成型工艺(1)锻造:将金属材料置于锻模中,在一定的温度条件下施加冲击力进行成型,适用于生产各种金属制品。
(2)压铸:将金属材料在高压下注入模具中进行成型,适用于生产大批量复杂的金属制品。
工程材料与成型技术工程材料与成型技术是一门研究各种材料的物理、化学和力学性质,以及各种成型技术的原理和应用的学科。
它的目的是为工程设计和制造提供材料和加工方法的理论基础和实践指导。
工程材料的分类包括金属材料、非金属材料、复合材料和智能材料等。
其中,金属材料具有良好的导电性、热导性和机械强度,广泛应用于建筑、机械制造和航空航天等领域。
非金属材料包括塑料、橡胶、陶瓷和玻璃等,具有较好的隔热、耐腐蚀、耐磨损等性能,广泛应用于化工、电子、医疗等领域。
复合材料是多种材料的组合,具有高强度、高刚性和轻量化的特点,被广泛应用于航空航天、汽车、体育器材等领域。
智能材料是指能对外界刺激做出反应的材料,包括形状记忆合金、超导体、压电材料和光电材料等,被广泛应用于电子、信息等领域。
成型技术是根据材料的性质和加工要求,采用适当的加工方法将材料加工成所需形状的技术。
主要包括铸造、锻造、冲压、挤压、注塑和热处理等。
其中,铸造是最古老的加工方法,适用于大批量生产各种形状的金属铸件;锻造是将金属材料加热至一定温度后进行压制、挤压或拉伸等加工方法;冲压是将金属材料在模具中通过冲击力和压力加工成所需形状的方法,适用于大批量生产各种形状的板材件和异型件;挤压是将金属材料加热至一定温度后,在特定的模具上施加压力挤出成形的方法,可连续生产各种不同形状的杆条、管材等;注塑是将塑料加热至液态后,通过注射机将其注入模具中,冷却后得到所需形状的塑料制品;热处理是通过加热、保温和冷却等工艺,改变材料的组织和性能,使其符合要求的工作条件。
工程材料与成型技术的发展,不仅推动了工业技术的进步,也改善了人们的生活质量。
机械工程材料成型及工艺151. 引言机械工程材料成型及工艺是机械工程领域中的重要研究方向。
它涉及到材料的选择、设计、加工、成型等诸多方面,对于机械工程的发展具有重要的意义。
本文将介绍机械工程材料成型及工艺的基本概念、原理和应用,并对其中的一些常见成型工艺进行详细阐述。
2. 基本概念与原理2.1 材料成型的概念材料成型是指将原材料通过加工和成型工艺,使其形成具有一定形状和尺寸的零部件或产品的过程。
通过合理的选择成型材料和工艺参数,可以满足产品的设计要求,并保证产品的质量和可靠性。
2.2 材料成型的原理材料成型的原理包括力学原理、热学原理和变形学原理等。
力学原理是通过施加力或应力来改变材料的形状和尺寸;热学原理是利用加热或冷却使材料发生相应的物理和化学变化;变形学原理是通过变形来改变材料的形状和尺寸。
3. 常见的材料成型工艺3.1 锻造工艺3.1.1 概念锻造是将金属材料置于锻模内,通过受力变形来改变其形状和尺寸的工艺。
常见的锻造工艺包括自由锻造、模锻和轧锻等。
锻造的原理是利用受力变形来改变材料的形状和尺寸。
在锻造过程中,材料经过加热处理后,放入锻模内,在受力作用下发生塑性变形,最终形成锻件。
3.2 拉伸工艺3.2.1 概念拉伸工艺是将金属材料置于拉伸机上,通过施加拉力来改变其形状和尺寸的工艺。
拉伸工艺常用于制造金属丝、金属板等产品。
拉伸工艺的原理是利用拉力的作用使材料发生塑性变形,最终形成拉伸件。
在拉伸过程中,材料受到拉力作用,原材料的横截面积减小,长度增加。
3.3 冲压工艺3.3.1 概念冲压工艺是利用冲压机将板材置于模具中,通过冲击荷载来改变其形状和尺寸的工艺。
冲压工艺常用于制造大批量的金属零部件。
冲压工艺的原理是利用冲击荷载对板材进行冲击,使其发生塑性变形,最终形成冲压件。
在冲压过程中,冲头对板材施加冲击荷载,使板材受力变形,并通过模具的空腔形状得到所需的产品。
4. 应用案例4.1 汽车制造中的材料成型与工艺在汽车制造中,材料成型与工艺起到至关重要的作用。
材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。
常见的成形方法包括压力成形、热成形、热力复合成形等。
不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。
2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。
常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。
这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。
3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。
常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。
热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。
4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。
常见的热力复合成形技术包括焊接、热压焊、热胶合等。
这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。
5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。
工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。
工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。
6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。
工具设计包括毛坯设计、凸模设计、模具结构设计等。
材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。
7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。
常用的监测和控制技术包括传感器、自动控制系统等。
这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。
工程材料与成形技术基础概念定义原理规律小结一、材料部分材料在外力作用下抵抗变形和断裂的能力称为材料的强度。
材料在外力作用下显现出的塑性变形能力称为材料的塑性。
拉伸过程中,载荷不增加而应变仍在增大的现象称为屈服。
拉伸曲线上与此相对应的点应力σS ,称为材料的屈服点。
拉伸曲线上D 点的应力σb 称为材料的抗拉强度,它表明了试样被拉断前所能承载的最大应力。
硬度是指材料抵抗其他硬物压入其表面的能力,它是衡量材料软硬程度的力学性能指标。
一般情况下,材料的硬度越高,其耐磨性就越好。
韧性是指材料在塑性变形和断裂的全过程中吸收能量的能力,它是材料塑性和强度的综合表现。
材料在交变应力作用下发生的断裂现象称为疲劳断裂。
疲劳断裂可以在低于材料的屈服强度的应力下发生,断裂前也无明显的塑性变形,而且经常是在没有任何先兆的情况下突然断裂,因此疲劳断裂的后果是十分严重的。
在晶体中,原子(或分子)按一定的几何规律作周期性地排列;晶体表现出各向异性;具有的凝固点或熔点。
而在非晶体中,原子(或分子)是无规则地堆积在一起。
常见的有体心立方晶格、面心立方晶格和密排六方晶格。
体心立方晶格的致密度比面心立方晶格结构的小。
金属的结晶都要经历晶核的形成和晶核的长大两个过程。
由两种或两种以上的金属、或金属与非金属,经熔炼、烧结或其他方法组合而成并具有金属特性的物质称为合金;合金中具有同一化学成分且结构相同的均匀部分称为相。
通过溶入溶质元素形成固溶体,使金属材料的变形抗力增大,强度、硬度升高的现象称为固溶强化,它是金属材料强化的重要途径之一。
(马氏体型转变、合金化)金属自液态经冷却转变为固态的过程是原子从排列不规则的液态转变为排列规则的晶态的过程,称为金属的结晶过程。
金属从一种固态过渡为另一种固态的转变即相变,称为二次结晶或重结晶。
实验证明,在一般的情况下,晶粒长大对材料力学性能不利,使强度、塑性、韧性下降。
晶粒越细,金属的强度、塑性和韧性就越好。
因此,晶粒细化是提高金属力学性能的最重要途径之一。
相图:是表示合金在缓慢冷却的平衡状态下相或组织与温度、成分间关系的图形,又称为平衡相图或状态图。
二元合金系中两组元在液态和固态下均能无限互溶,并由液相结晶出单相固溶体的相图称为二元匀晶相图。
在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的过程称为共晶转变。
合金系的两组元在液态下无限互溶,在固态下有限互溶,并在凝固过程中发生共晶转变的相图称为二元共晶相图。
共晶反应:()1148C E 3F A +Fe C C L Ld −−−→←−−−在一定温度下,已结晶的一定成分的固相与剩余的一定成分的液相发生转变生成另一固相的过程称为包晶转变。
两组元在液态下无限互溶,固态下有限互溶,并发生包晶转变的构成的相图,叫二元包晶相图。
在恒定的温度下,一个有特定成分的固相分解成另外两个与母相成分不相同的固相的转变称为共析转变,发生共析转变的相图称为共析相图。
共析反应:()7273C S P K A P F Fe C −−−→+←−−−铁碳相图:(要掌握)铁素体-碳溶于α-Fe 中的间隙固溶体,以符号F 表示。
体心立方晶格奥氏体-碳溶于γ-Fe 中的间隙固溶体,以符号A 表示。
面心立方晶格渗碳体-是一种具有复杂晶格结构的间隙化合物,分子式为Fe3C。
珠光体—是铁素体和渗碳体组成的两相机械混合物,常用符号P表示。
莱氏体-是奥氏体和渗碳体组成的两相机械混合物,常用符号L d表示。
一般机械零件和建筑结构主要选用低碳钢和中碳钢制造。
如果需要塑性、韧性好的材料,就应选用碳质量分数小于0.25%的低碳钢;若需要强度、塑性及韧性都好的材料,应选用碳质量分数为0.3%~0.55%的中碳钢;而一般弹簧应选用碳质量分数为0.6%~0.85%的钢。
对于各种工具,主要选用高碳钢来制造,其中需要具有足够的硬度和一定的韧性的冲压工具,可选用碳质量分数为0.7%~0.9%的钢制造;需要具有很高硬度和耐磨性的切削工具和测量工具,一般可选用碳质量分数为 1.0%~1.3%的钢制造。
钢在高温时为奥氏体组织,而奥氏体的强度低、塑性好,有利于塑性变形。
因此,钢材的轧制或锻压,一般都是选择在奥氏体区的适当温度范围内进行。
钢在热处理时,首先要将工件加热,使之转变成奥氏体组织,这一过程也称为奥氏体化。
奥氏体晶粒越细,其冷却产物的强度、塑性和韧性越好。
随着合金中碳质量分数的增加,合金的熔点越来越低,所以铸钢的熔化温度与浇注温度都要比铸铁高得多。
共晶成分的铁碳合金,不仅其结晶温度最低,其结晶温度范围亦最小(为零)。
因此,共晶合金有良好的铸造性能。
热处理是将金属或合金在固态下经过加热、保温和冷却等三个步骤,以改变其整体或表面的组织,从而获得所需性能的一种工艺。
C曲线(等温转变曲线,也称为“TTT”曲)表明了过冷奥氏体转变温度、转变时间和转变产物之间的关系。
左边一条为转变开始线,右边一条为转变终了线。
1.珠光体型转变——高温转变(A1~550℃):珠光体(P)、索氏体(S)和托氏体(T)。
2.贝氏体型转变——中温转变(550℃~Ms)下贝氏体强度和硬度高(50—60HRC),并且具有良好的塑性和韧度。
3.马氏体型转变——低温转变(Ms~M f) 马氏体是碳在α-Fe中的过饱和固溶体。
产生很强的固溶强化效应,使马氏体具有很高的硬度。
在c曲线的下面还有两条水平线,上面一条为马氏体转变开始的温度线(以Ms表示),下面一条为马氏体转变终了的温度线(以Mf表示)。
退火:将钢加热到一定温度并保温一定时间.然后随炉缓慢冷却的热处理工艺。
降低硬度、改善切削加工性能,消除残余应力。
正火:将钢加热到Ac3(对于亚共析钢)或A Ccm(对于过共析钢)点以上30-50℃,保温一定时间后,在空气中冷却,从而得到珠光体类组织的热处理工艺。
提高钢的强度和硬度。
淬火是以获得马氏体组织为目的的热处理工艺,最常用的淬火冷却介质是水和油。
提高钢的硬度和耐磨性;获得优异综合力学性能。
回火:将淬火钢重新加热到Ac1以下某一温度,经适当保温后冷却到室温的热处理工艺。
过冷奥氏体的连续冷却转变曲线(CCT曲线) Ps和Pf分别为过冷奥氏体转变为珠光体的开始线和终了线,两线之间为转变的过度区,KK'线为转变的终止线,当冷却到达此线时,过冷奥氏体便终止向珠光体的转变,一直冷到Ms点又开始发生马氏体转变。
v1相当于炉冷(退火),转变产物为珠光体。
v2和v3相当于以不同速度的空冷(正火),转变产物为索氏体和托氏体。
v4相当于油冷,转变产物为托氏体、马氏体和残余奥氏体。
V5相当于水冷,转变产物为马氏体和残留奥氏体。
调质处理:淬火后再进行高温回火处理。
调质处理得到的是回火索氏体组织,具有良好的综合力学性能。
力学性能与正火相比,不仅强度高,而且塑性和韧性也较好。
冷处理:把淬冷至室温的钢继续冷却到-70—80℃(或更低的温度)保持一段时间,使残余奥氏体转变为马氏体。
时效:将淬火后的金属工件,置于室温或低温加热下保持适当时间,以提高金属强度(和硬度)的热处理工艺。
表面淬火:将工件表面层淬硬到一定深度,而心部仍保持未淬火状态的一种局部淬火法。
表面硬度高、耐磨性好,而心部韧性好。
化学热处理:将工件置于一定的介质中加热和保温,使介质中的活性原子渗人工件表层,改变其表面层的化学成分、组织和性能的热处理工艺。
分为渗碳、氮化、碳氮共渗、渗硼、渗铝等。
主要目的是提高工件的表面硬度、耐磨性以及疲劳强度,有时也用于提高零件的抗腐蚀性、抗氧化性。
可控气氛热处理:向炉内通人一种或几种一定成分的气体,通过对这些气体成分的控制,使工件在热处理过程中不发生氧化和脱碳。
形变热处理:将形变与相变结合在一起的一种热处理新工艺。
能获得形变强化与相变强化的综合作,是一种既可以提高强度,又可以改善塑性和韧性的最有效的方法。
激光热处理:(1)激光加热表面淬火;(2)激光表面合金化。
气相沉积技术:利用气相中发生的物理、化学反应,生成的反应物在工件表面形成一层具有特殊性能的金属或化合物的涂层。
钢的牌号:普通碳素结构钢如Q235—A。
优质碳素结构钢:两位数字表示平均碳质量分数,单位为万分之一如钢号45。
碳素工具钢:“T”后跟碳质量分数的千分之几如“T8”。
铸钢ZG270--500表示屈服强度为270MPa、抗拉强度为500MPa的铸钢。
合金结构钢该类钢的钢号由“数字+合金元素+数字”三部分组成。
前两位数字表示钢中平均碳质量分数的万分之几;合金元素用化学元素符号表示,元素符号后面的数字表示该元素平均质量分数。
当其平均质量分数<1.5%时,一般只标出元素符号而不标数字。
合金工具钢:编号前用一位数字表示平均碳质量分数的千分数,如9CrSi钢,表示平均碳质量分数为0.9%(当平均碳质量分数≥1%时,不标出其碳质量分数),合金元素Cr、Si的平均质量分数都小于1.5%的合金工具钢。
高速钢(高合金工具钢)的钢号中一般不标出碳质量分数,仅标出合金元素的平均质量分数的百分数,如W6Mo5Cr4V2。
滚动轴承钢高碳铬轴承钢属于专用钢,该类钢在钢号前冠以“G”,其后为Cr+数字来表示,数字表示铬质量分数的千分之几。
例如GCrl5钢,表示的平均质量分数铬为1.5%的滚动轴承钢。
特殊性能钢特殊性能钢的碳质量分数也以千分之几表示。
如“9Crl8"表示该钢平均碳质量分数为0.9%;1Cr18Ni9Ti表示该钢平均碳质量分数为0.1%左右,铬平均质量分数铬为18%,镍平均质量分数铬为9%,钛平均质量分数铬为1%左右。
但当钢的碳质量分数≤0.03%及≤0.08%时,钢号前应分别冠以00及0表示。
如00Crl8Nil0,0Crl9Ni9等。
合金元素在钢中的作用:1.强化铁素体--溶于铁素体,产生固溶强化作用;2.形成合金碳化物;3.阻碍奥氏体晶粒长大;4、提高钢的淬透性;5.提高回火稳定性。
渗碳钢通常是指经渗碳、淬火、低温回火后使用的钢,碳在0.10%~0.25%之间。
调质钢一般指经过调质处理后使用的碳素结构钢和合金结构钢,碳0.27%~0.50%之间。
铸铁是碳质量分数大于2.11%的铁碳合金。
主要由铁、碳、硅、锰、硫、磷以及其他微量元素组成。
铸铁具有优良的铸造性、切削加上性、减摩性、吸震性和低的缺口敏感性,加之其熔炼铸造工艺简单,价格低廉,所以铸铁是机械制造业中最重要的材料之一。
铸铁力学性能标注部分为一组数据时表示其抗拉强度值;为两组数据时,第一组表示抗拉强度值,第二组表示伸长率值,两组数字之间用“—”隔开。
有色金属及其合金又称非铁材料,是指除铁、铬、锰之外的其他所有金属材料。
纯铝为面心立方晶格,无同素异构转变。
纯铝不能热处理强化,冷加工是提高纯铝强度的唯一手段。
铝合金的强化:固态铝无同素异构转变,因此不能象钢一样借助于热处理相变强化。