【期末复习】北师大版六年级数学(下册)知识要点归纳
- 格式:doc
- 大小:58.50 KB
- 文档页数:8
北师大版六年级下册数学知识点归纳
1.分数
-分数的概念和表示方法
-分数的大小比较和排序
-分数的加减法运算
-分数的乘法和除法运算
-分数与整数、小数之间的转换
2.小数
-小数的概念和表示方法
-小数的读法和写法
-小数的大小比较和排序
-小数的加减法运算
-小数与分数之间的转换
3.有理数
-有理数的概念和分类
-有理数的加减法运算
-有理数的乘法和除法运算
-有理数的大小比较和排序
-有理数在数轴上的表示和位置
4.百分数
-百分数的概念和表示方法
-百分数与分数、小数的关系
-百分数的转化和计算
-百分数的应用,如百分比问题和利息问题
5.数据统计与概率
-统计图表的读取和制作,如条形图、折线图、饼图等-平均数的计算和应用
-概率的基本概念和计算,如事件发生的可能性
6.几何形状与测量
-平行线和垂直线的判断
-角的概念和分类
-三角形和四边形的性质
-长度、面积和体积的计算
-运用几何知识解决实际问题
7.图形的相似与全等
-图形的相似判定和性质
-图形的全等判定和性质
-利用相似和全等关系解决问题
8.简单方程和不等式
-一元一次方程的解法和应用
-不等式的解法和应用
-运用方程和不等式解决实际问题
以上是北师大版六年级下册数学的一些主要知识点归纳。
这些知识点涵盖了分数、小数、有理数、百分数、数据统计与概率、几何形状与测量、图形的相似与全等、简单方程和不等式等内容。
通过系统学习这些知识点,学生可以提高数学运算能力、几何思维能力以及解决实际问题的能力。
北师大版小学数学六年级下册总复习公式大全一、平面图形1.长方形的周长和面积长方形的周长=(长+宽)×2 c=(a+b)×2 长方形的周长÷2-长=宽c÷2-a=b 长方形的周长÷2-宽=长c÷2-b=a长方形的面积=长×宽S=ab 长方形的面积÷长=宽S÷a=b 长方形的面积÷宽=长S÷b=b2.正方形的周长和面积正方形的周长=边长×4 c=4a 正方形的周长÷4=边长c÷4=a 正方形的面积=边长×边长S=a.a= a23.平行四边形的面积平行四边形的面积=底×高S=ah平行四边形的面积÷底=高S÷a=h 平行四边形的面积÷高=底S÷h=a4.三角形(具有稳定性)三角形的面积=底×高÷2S=ah÷2 三角形的面积×2÷底=高S×2÷a=h 三角形的面积×2÷高=底S×2÷h=a 三角形的内角和=180度。
三角形三边的关系:三角形任意两条边的和要大于第三条边,任意一条边的长要大于其它两边的差,小于两边的和。
5.梯形的面积梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 6.圆形直径=半径×2 d=2r半径=直径÷2 r= d÷2 2 直径=圆的周长÷圆周率d=c÷π半径=圆的周长÷圆周率÷2 r=c÷π÷2 圆的周长=直径×圆周率c=πd圆的周长==半径×2×圆周率c =2πr半圆的周长=周长的一半+直径半圆的周长=半径×5.14 (π+2=5.14)圆的面积=圆周率×半径2S=πr2 *圆的面积=周长的一半×半径二、立体图形1.长方体:长方体的周长=(长+宽+高)×4 C=4(a+b+h)长方体的周长÷4-宽-高=长C÷4-b -h=a 长方体的周长÷4-长-高=宽C÷4-a-h=b 长方体的周长÷4-长-宽=高C÷4-a-b=h 长方体的体积=长×宽×高公式:V=abh 长方体的体积÷宽÷高=长V÷b÷h=a 长方体的体积÷长÷高=宽V÷a÷h=b 长方体的体积÷长÷宽=高V÷a÷b=h 长方体(或正方体)的体积÷底面积=高V÷S=h 长方体(或正方体)的体积÷高=底面积V÷h=S 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:l=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
北师大版小学数学六年级下册知识点汇总
北师大版小学数学六年级下册的知识点汇总如下:
1. 乘法运算:乘法口诀表,三位数乘两位数,四位数乘两位数,两个分数的乘法,倒数相乘的乘法等。
2. 除法运算:两位数除以一位数,两位数除以两位数,有余数的除法,小数除法等。
3. 分数的运算:分数的加减乘除运算,带分数的加减运算,分数的约分与化简。
4. 小数的运算:小数的加减乘除运算,小数的四舍五入,小数与分数的相互转换。
5. 数字的整体性:数字和字母的组合,数字的位置及大小排序,数字的代表规律等。
6. 累加与累减:连续多个数的累加与累减,累加与累减的反运算。
7. 平均数与代表数:多个数的平均数的计算,代表数与代表性测验。
8. 数据的处理与分析:数据的整理与统计,数据的图表示,数据的分析与解读等。
9. 时间的认识与计算:时、分、秒之间的换算,时钟的读与画。
10. 长度、面积和体积:长度单位之间的换算,常见物体的长度、面积和体积的比较与计算。
11. 图形的认识与运用:几何图形的名称和性质,图形的分类和判断等。
12. 位置与方向:二维图形的相对位置,方向的判断与描述。
以上是北师大版小学数学六年级下册的知识点汇总,希望对您有帮助!。
北大师六年级下册知识点一、数学在北大师六年级下册的数学学习中,主要包括以下几个知识点:1. 小数与分数的转换:通过练习,学生们需要掌握将小数转换为分数,以及将分数转换为小数的方法。
例如,将0.6转换为相应的分数为3/5,将4/5转换为相应的小数为0.8。
2. 四则运算:包括加法、减法、乘法和除法。
学生们需要熟练掌握使用分数进行四则运算的方法,注意分数的通分、约分以及运算规则。
3. 图形的周长与面积:包括正方形、长方形、三角形等图形的周长和面积的计算方法。
学生们需要了解不同图形的计算公式,并能够应用于实际问题中计算。
4. 数据的统计与分析:学生们需要学会收集、整理、表示和分析数据的方法。
通过绘制条形图、折线图、饼状图等图表,学生们可以更直观地了解数据的特点。
二、语文北大师六年级下册的语文学习主要包括以下知识点:1. 词语的理解与应用:学生们需要掌握一定量的生僻字、成语、词语的意思以及正确的使用方法。
通过词语的积累和运用,能够提高语文的表达能力。
2. 阅读理解:学生们需要通过阅读不同类型的文章,包括记叙文、说明文、议论文等,提高阅读理解能力。
同时,学生们要能够根据文章的内容回答问题、归纳总结等。
3. 作文写作:学生们需要通过写作训练,提高自己的写作水平和表达能力。
包括议论文、说明文、记叙文等不同体裁的写作。
4. 古诗词的理解与背诵:学生们需要通过学习古诗词,提升对于中国传统文化的理解和欣赏能力。
同时,进行古诗词背诵,能够培养语感和语音语调的掌握能力。
三、英语在北大师六年级下册的英语学习中,主要涵盖以下几个知识点:1. 词汇量的扩充:学生们需要通过词汇的学习和记忆,不断扩大自己的单词量。
可以通过词汇卡片、单词表等工具来进行。
2. 句型的运用:学生们需要学会运用一定的句型进行英语表达,包括肯定句、否定句、疑问句等。
通过大量的口语和写作练习,提高英语句子的运用能力。
3. 阅读理解:包括短文阅读和阅读理解题目的解答。
北师大版六年级数学下册知识点归纳北师大版六年级数学下册主要包含了有理数、图形和变量、分数和小数、运算法则和计算、长度、面积和体积、数据和统计这几个知识点。
下面将对每个知识点进行归纳:一、有理数1. 正数和负数:正数是大于零的数,负数是小于零的数,0既不是正数也不是负数。
2. 数轴:用数轴表示有理数。
数轴上,正数在0的右边,负数在0的左边。
3. 比较和排序:可以通过数轴上的大小关系进行比较和排序。
二、图形和变量1. 坐标系:直角坐标系由x轴和y轴组成。
坐标系中,x轴是水平的,y轴是竖直的,它们都通过原点O。
2. 点与坐标:用点在坐标系中的位置来表示其坐标。
3. 图形的比较:可以通过图形的面积、周长和形状进行比较。
三、分数和小数1. 分数的概念:分数由一个分子和一个分母组成,分子表示整体的部分,分母表示被分成的份数。
2. 分数的大小比较:可以通过分数的大小关系进行比较和排序。
3. 小数的概念:小数是整数和分数的结合,整数部分位于小数点的左侧,小数部分位于小数点的右侧,如0.5、3.14等。
4. 分数和小数的转换:可以将分数转换为小数,也可以将小数转换为分数。
四、运算法则和计算1. 加法和减法运算:可以进行有理数的加法和减法运算。
2. 乘法和除法运算:可以进行有理数的乘法和除法运算。
3. 运算规律:加法和乘法满足交换律和结合律,减法和除法不满足交换律和结合律。
4. 计算顺序:在多个运算符存在的表达式中,先进行括号内的运算,再进行乘法和除法运算,最后进行加法和减法运算。
五、长度、面积和体积1. 长度的测量:用尺子、卷尺等工具可以测量线段的长度。
2. 面积的测量:用平方单位可以测量平面图形的面积。
3. 体积的测量:用立方单位可以测量立体图形的体积。
六、数据和统计1. 数据的收集:可以通过调查、观察等方式收集数据。
2. 数据的展示:可以用列表、频数表、条形图等方式展示数据。
3. 平均数和范围:可以通过计算平均数和范围来描述数据的中心和变化程度。
北师大版六年级数学下册知识点归纳总结目录1. 第一单元 (3)1.1 分数的概念与表示方法 (3)1.2 分数的基本性质 (4)1.3 同分母分数的比较 (5)1.4 异分母分数的转换 (6)2. 第二单元 (7)2.1 小数的概念与表示方法 (7)2.2 小数的性质 (8)2.3 小数与分数之间的联系与区别 (8)2.4 小数的四则运算 (9)3. 第三单元 (10)3.1 百分数的含义和表示方法 (10)3.2 百分数与小数的关系 (11)3.3 百分数在实际生活中的应用 (12)3.4 百分数与其他比的转换 (14)4. 第四单元 (14)4.1 方程的意义及类型 (16)4.2 解一元一次方程的方法 (17)4.3 方程的应用实例 (17)4.4 实际问题中的方程求解策略 (18)5. 第五单元 (19)5.1 平面图形的面积计算 (19)5.2 平面图形的周长计算 (21)5.3 立体图形的体积计算 (21)5.4 立体图形的表面积计算 (23)6. 第六单元 (24)6.1 数据的收集方法 (24)6.2 数据整理的方法与步骤 (26)6.3 如何制作统计表和统计图 (27)6.4 数据分析与解读 (29)7. 第七单元 (29)7.1 概率的含义及表示方法 (30)7.2 事件发生的可能性大小 (31)7.3 简单随机抽样的原理和方法 (32)7.4 概率在现实生活中的应用 (33)8. 第八单元 (35)8.1 图形的平移与旋转 (35)8.2 轴对称图形的性质 (36)8.3 中心对称图形的性质 (37)8.4 几何图形变换与对称的应用 (37)9. 第九单元 (38)9.1 实际问题中的数据收集与分析 (39)9.2 综合运用概率知识解决实际问题 (40)9.3 统计与概率综合题的典型例题解析 (41)10. 第十单元 (42)10.1 数学综合应用题的类型与解题思路 (43)10.2 数学综合应用题的解题技巧 (44)10.3 数学综合应用题的实践案例分析 (45)1. 第一单元自然数的认识与整数的认识。
北师大版六年级数学下册知识点归纳The document was prepared on January 2, 2021圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πd h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πr h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2=或S表=2πrh+2πr25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。
2.圆柱的体积=底面积×高。
如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。
3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。
(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。
新北师大版小学六年级数学下册总复习公式大全一、小学数学几何形体周长面积体积计算公式长方形的周长 =(长 +宽)× 2 c=(a+b) ×2 正方形的周长 =边长× 4 c=4a长方形的面积 =长×宽 s=ab 正方形的面积 =边长×边长 s=a.a三角形的面积 =底×高÷ 2 s=ah ÷ 2 平行四边形的面积 =底×高 s=ah梯形的面积 =(上底 +下底)×高÷ 2 s= ( a+ b) h÷2直径 =半径× 2 d=2r 半径 =直径÷ 2 r= d ÷ 2 长方体的棱长总和=(长+宽 +高)× 4圆的周长 =圆周率×直径 =圆周率×半径× 2 c= π d =2 π r 正方体的棱长总和=棱长×12圆的面积 =圆周率×半径×半径s =π rr 长方体的表面积=(长×宽+长×高 +宽×高)× 2内角和:三角形的内角和=180 度。
正方体的表面积=棱长×棱长× 6长方体的体积=长×宽×高公式: v=abh 正方体的体积=棱长×棱长×棱长公式: v=aaa长方体(或正方体)的体积=底面积×高公式: v= s h圆柱的侧面积=底面的周长乘高。
公式:s=ch= π dh=2π rh圆柱的表面积=底面的周长乘高+上下底的面积。
公式:s=ch+2s=ch+2πrr圆柱的体积:圆柱的体积等于底面积乘高。
公式:v=sh圆锥的体积=1/3 底面积×高。
公式:v=1/3sh二、单位换算(1)1公里= 1 千米 1 千米= 1000 米 1 米=10 分米 1 分米= 10 厘米 1 厘米= 10毫米(2) 1 平方米= 100 平方分米 1 平方分米= 100 平方厘米 1 平方厘米= 100 平方毫米(3) 1 立方米= 1000 立方分米 1 立方分米= 1000 立方厘米 1 立方厘米= 1000 立方毫米(4)1吨= 1000千克 1 千克=1000 克=1 公斤 =2 市斤(5) 1 公顷= 10000 平方米 1 平方千米= 100 公顷(6) 1 升= 1 立方分米= 1000 毫升 1 毫升= 1 立方厘米(7)1元=10 角 1 角=10 分 1 元=100 分( 8)1 世纪 =100 年 1 年 =12 月大月 (31 天 ) 有 :1\3\5\7\8\10\12 月小月 (30 天) 的有 :4\6\9\11 月平年2月28天, 闰年 2 月 29 天平年全年 365 天, 闰年全年 366 天1 日=24小时 1 时=60分 1 分 =60 秒 1 小时=3600 秒 1 季度= 3 个月 1 年=4季度三、数量关系计算公式方面1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1 倍数×倍数=几倍数几倍数÷ 1 倍数=倍数几倍数÷倍数=1 倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数四、算术方面1.加法交换律:两数相加交换加数的位置,和不变。
北师大版六年级下册数学知识点北师大版六年级下册数学知识点如下:
1. 分数
- 分数的概念
- 真分数、假分数、带分数
- 分数的运算(加、减、乘、除)
- 分数的大小比较
2. 小数
- 小数的概念
- 小数的读法与写法
- 小数的大小比较
- 小数的加减运算
- 小数与分数的转换
3. 百分数
- 百分数的概念
- 百分数的读法和写法
- 百分数的转化(百分数转换成小数、分数;小数和分数转换成百分数)- 百分数的应用(求百分数、定比例)
4. 数据整理与分析
- 图表的制作与解读(条形图、折线图、饼状图)
- 数据的整理与分析(数据的收集、整理、分析)
- 数据的比较和推理
5. 几何学
- 四边形的分类(正方形、长方形、平行四边形、菱形)
- 直角、钝角、锐角的概念
- 直线、线段、射线的概念
- 三角形的分类(等边三角形、等腰三角形、直角三角形)
- 平面镜像与轴对称
6. 时、钟和日历
- 时钟的读法和表示
- 时间的计算与运算(加、减)
- 日历的使用(日期的计算与推算)
7. 线段和直角坐标系
- 线段的比较和测量
- 直角坐标系的引入和使用
- 平移、转动和对称的概念
这些是北师大版六年级下册数学的主要知识点,但具体学习内容还需要参考教材。
第一单元圆柱和圆锥
1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形
(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)²h
(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)²h
复习五年级下册知识:
1、体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳物体的体积叫做物体的容积。
2、常用单位:体积单位:米3 (m3) 分米3(dm3) 厘米3 (cm3)
容积单位:升(L) 毫升(ml)
补充知识点:冰箱的容积用“升”作单位;
我们饮用的自来水用“立方米”作单位。
单位换算:(相邻单位之间的进率为1000)
(小单位化成大单位要除以进率,大单位化成小单位要乘以进率。
可以概括为:小化大除一下,大化小乘一下)
1米3=1000分米3 1分米3=1000厘米3 1升=1000毫升 1升=1分米31毫升=1厘米3
单名数与复名数之间的互化:
单名数:由一个数和一个单位名称组成的名数叫做单名数。
复名数:由两个或两个以上的数及单位名称组成的名数叫做复名数。
复名数化为单名数:8米320分米3=8020分米3=8.20米3
单名数化为复名数:3800毫升=3升800毫升 25.7立方分米=25立方分米700立方厘米
第二单元比例
1、表示两个比相等的式子叫做比例。
如:3:4=9:12 。
2、比例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
3、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
第三单元图形的运动
本册的图形变换知识在原来基础上进一步加深,要求能在方格纸上画出平移、旋转、轴对称后的图形,具体:
第一种旋转:要说明绕哪个点,顺时针还是逆时针,旋转多少度(90度、180度、270度)。
例如:将图形B绕点O 顺时针/逆时针旋转90°得到图形C;
绕中心点旋转的方向:顺时针:即顺着钟表时针走的方向,从上往右走,再往下,最后向上。
逆时针:和顺时针的方向相反,从上往左走,再往下,最后向上。
第二种平移:要说明向什么方向(上、下、左、右)平移几个。
例如:将图形A 向上/下/左/右平移 4 格得到图形B;
第三种作对称图形:要说明是关于哪条直线作哪个图形的对称图形。
例如:以直线MN 为对称轴,作图形C的轴对称图形D。
有反应。
第四单元正比例和反比例
1、生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
2、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。
判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。
正比例的图像是一条直线。
3、反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k (一定)。
判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再看这两个量的积是否一定;最后作出结
论。
反比例的图像是一条光滑曲线。
数学好玩
1、神奇的莫比乌斯带
2、用“数对”确定位置:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。
例如:小青的位置在第三组,第二个座位,用数对表示为(3,2)。
2、根据数对说出相应的实际位置:例如:某个同学在(5,6)这个位置,他的实际位置是,班上(从左往右数)第五组第六个座位。