PCR及分子标记
- 格式:ppt
- 大小:233.00 KB
- 文档页数:47
分⼦标记介绍分⼦标记是指可遗传的并可检测的DNA序列或蛋⽩质。
即DNA⽚段即能反映⽣物个体或种群间基因组中某种差异特征的DNA ⽚段;能受基因控制并且能够稳定遗传的,能代表个体或群体的遗传特征,并可被⽤作遗传分析的物质。
它能够直接反映基因组间DNA间的差异。
常⽤的分⼦标记有RFLP、RAPD、AFLP、SSR、ISSR、EST等。
RAPD、AFLP属于以PCR为基础的分⼦标记;RFLP属于以Southern为基础的分⼦标记;SSR、ISSR属于以重复序列为基础的分⼦标记;EST以mRNA为基础的分⼦标记。
1 主要的分⼦标记介绍1.1 限制性⽚段长度多态性(RFLP)RFLP是应⽤Southern杂交技术检测DNA在限制性内切酶酶切后形成的特定DNA⽚段的⼤⼩。
所以对于引起酶切位点变异的突变如点突变或部分DNA⽚段的缺失、插⼊、倒位⽽引起酶切位点缺失或获得等均可应⽤。
此⽅法的基本步骤包括:DNA的提取、⽤限制性内切酶酶切DNA、凝胶电泳分开DNA⽚段、把DNA⽚段转移到滤膜上、利⽤放射性标记的探针显⽰特定的DNA⽚段、分析结果。
探针⼀般选择单拷贝的。
其优点为共显性标记,稳定且可重复但耗时,昂贵且需应⽤同位素。
⽤该技术可作出植物的RFLP图谱,并应⽤于植物遗传和育种研究。
杨长红等采⽤PCR-RFLP技术,对库尔勒⾹梨等19个主要梨品种的cpDNA遗传多态性进⾏研究,其利⽤10对通⽤引物对总DNA进⾏扩增,并且采⽤7种限制性内切酶对PCR产物进⾏酶切,通过软件分析得出:7对引物(cp01、cp02、cp03、cp04、cp06、cp09、cp10)能在梨属植物上扩增出1条特异性谱带,cp09/MvaI,cp03/Hin6I的酶切位点有显著差异。
根据结果分析,库尔勒⾹梨与鸭梨、砀⼭梨、苹果梨、早酥、慈梨、⾦川雪梨、锦丰、新疆句句梨的平均距离系数较⼩,与其他梨的平均距离系数较⼤。
1.2 随机扩增多态性DNA(RAPD)RAPD是以8-10个碱基的随机寡聚核苷酸序列为引物,利⽤PCR技术⾮特异性扩增DNA⽚段,然后⽤凝胶电泳分开扩增⽚段,即得到⼀系列多态性DNA⽚段.染⾊后即可进⾏多态性分析。
分子标记1.分子标记技术及其定义1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。
所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。
广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。
通常所说的分子标记是指以DNA多态性为基础的遗传标记。
分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。
2.分子标记技术的类型分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。
2.1 建立在Southern杂交基础上的分子标记技术(1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记;(2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。
2.2 以重复序列为基础的分子标记技术(1) ( Satellite DNA ) 卫星DNA;(2) ( Minisatellite DNA ) 小卫星DNA;(3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。
2.3 以PCR为基础的分子标记技术(1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA;(2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性;(3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性;(4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性;(5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性;(6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域;(7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。
分子标记遗传标记作为识别基因型的表现形式,在生物基因研究方面起到了重要作用,目前通过遗传标记的方法定位基因位置已成为基因定位的常用方法。
遗传标记主要有形态标记(morphological marker)、细胞标记(cytological markers)、生化标记(Biochemical marker)和分子标记(molecular marker)四种类型。
形态标记、细胞标记因其自身局限性的原因,目前鲜有使用。
虽然以同工酶标记为代表的生化标记得到了广泛的发展,但由于其检测的范围狭窄、统计难度大等缺陷,目前仅在少数方面有所应用。
从20世纪70年代分子标记出现至今的40年,分子标记因其无比的优越性,使得其成为目前应用最广泛的遗传标记方法。
一、分子标记的概念分子标记是指以生物大分子的多态性为基础的一种遗传标记。
广义的分子标记是指可遗传并能检测的蛋白质或DNA序列。
而狭义的分子标记仅仅是指基于DNA分子多态性构建的标记方法。
二、分子标记的特点理想的分子标记一定要达到以下标准:1、具有高的多态性;2、共显性遗传即利用分子标记可鉴别二倍体中杂合和纯合基因型;3、能明确辨别等位基因;4、遍布整个基因组;5、除特殊位点的标记外要求分子标记均匀分布于整个基因组;6、选择中性即无基因多效性;7、检测手段简单、快速如实验程序易自动化;8、开发成本和使用成本尽量低廉;9、在实验室内和实验空间重复性好便于数据交换。
目前,在现实条件下并没有这种绝对理想的分子标记,但相比形态标记、细胞标记、生化标记,分子标记依旧有着明显的优越性:1、直接以DNA形式表现,在生物体各组织、各时期均可检测,不受环境限制;2、数量多,遍布全基因组,有近乎无限的检测座位;3、多态性高;4、表现为中性,不影响目标性状的表达;5、许多标记为共显性,能区别纯合体与杂合体。
三、分子标记的分类分子标记技术通常被分为基于分子杂交的分子标记技术(RFLP)(或叫做非PCR基础上的分子标记技术)、基于PCR技术的分子标记技术和同时基于分子杂交和PCR两种技术的分子标记技术三大类型。
AFLP分子标记实验扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性(RAPD和限制性片段长度多态性(RFLP技术上发展起来的DNA多态性检测技术,具有RFLP技术高重复性和RAPD技术简便快捷的特点,不需象RFLP 分析一样必须制备探针,且与RAPD标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD技术重复性差的缺陷。
同其他以PCR为基础的标记技术相比,AFLP技术能同时检测到大量的位点和多态性标记。
此技术已经成功地用于遗传多样性研究,种质资源鉴定方面的研究,构建遗传图谱等。
其基本原理是:以PCR(聚合酶链式反应为基础,结合了 RFLP、RAPD的分子标记技术。
把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的’接头”用与接头互补的但3-端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3-端严格配对的片段才能得到扩增,再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。
一、实验材料采用青稞叶片提取总DNA实验设备1. 美国贝克曼库尔特CEQ8000毛细管电泳系统,2. 美国贝克曼库尔特台式冷冻离心机,3. 美国MJ公司PCR仪,4. 安玛西亚电泳仪等。
三、实验试剂1. 试剂:请使用高质量产品,推荐日本东洋坊TOYOBO公司的相关产品DNA提取试剂盒;EcoRI酶,Msel酶,T4连接酶试剂盒;Taq 酶,dNTP, PCR reactio n buffer;琼脂糖电泳试剂:琼脂糖,无毒GeneFinder核酸染料替代传统EB染料;超纯水(18.2M ? • cm2. 其他实验需要物品微量移液枪(一套及相应尺寸Tip头,PCR管,冰浴等。
四、实验流程1、总DNA提取使用DNA提取试剂盒提取植物基因组DNA,通过紫外分光光度计检测或用标准品跑胶检测。
分子标记百科名片分子标记分子标记的概念有广义和狭义之分。
广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。
狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。
目录分子标记的概念理想的分子标记的要求一、基于分子杂交技术的分子标记技术二、基于PCR技术的分子标记技术三、基于限制性酶切和PCR技术的DNA标记四、基于DNA芯片技术的分子标记技术分子标记的应用领域分子标记技术的展望分子标记的概念理想的分子标记的要求一、基于分子杂交技术的分子标记技术二、基于PCR技术的分子标记技术三、基于限制性酶切和PCR技术的DNA标记四、基于DNA芯片技术的分子标记技术分子标记的应用领域分子标记技术的展望展开编辑本段理想的分子标记必须达以下几个要求:(1) 具有高的多态性;(2) 共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型;(3) 能明确辨别等位基因;(4) 遍布整个基因组;(5) 除特殊位点的标记外,要求分子标记均匀分布于整个基因组;(6) 选择中性(即无基因多效性);(7) 检测手段简单、快速(如实验程序易自动化);(8) 开发成本和使用成本尽量低廉;(9) 在实验室内和实验室间重复性好(便于数据交换)。
但是,目前发现的任何一种分子标记均不能满足以上所有要求。
此类标记技术是利用限制性内切酶解及凝胶电泳分离不同的生物 DNA 分子,然后用经标记的特异 DNA 探针与之进行杂交,通过放射自显影或非同位素显色技术来揭示 DNA 的多态性。
①限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)1974年Grodzicker等创立了限制性片段长度多态性(RFLP)技术,它是一种以DNA—DNA杂交为基础的第一代遗传标记。
RFLP基本原理:利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况。
分子标记概述遗传标记主要有四种类型: 形态标记(morphological marker)、细胞标记(cytological markers)、生化标记(Biochemical marker)和分子标记(molecular marker)。
分子标记是其中非常重要的一种,他是以个体间遗传物质核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。
早在1923年,Sax等就提出利用微效基因与主基因的紧密连锁,对微效基因进行选择的设想。
但由于形态标记数目有限,而且许多标记对育种家来说是不利性状,因而难以广泛应用。
细胞标记主要依靠染色体核型和带型,数目有限。
同工酶标记在过去的二、三十年中得到了广泛的发展与应用。
作为基因表达的产物,其结构上的多样性在一定的程度上能反映生物DNA组成上的差异和生物遗传多样性。
但由于其为基因表达加工后的产物,仅是DNA 全部多态性的一部分,而且其特异性易受环境条件和发育时期的影响;此外同工酶标记的数量有限,不能满足育种需要。
近年来,分子生物学的发展为植物遗传标记提供了一种基于DNA变异的新技术手段,即分子标记技术。
与其它标记方法相比,分子标记具有无比的优越性。
它直接以DNA形式出现,在植物体的各个组织、各发育时期均可检测到,不受季节、环境的限制,不存在表达与否的问题;数量极多,基因组变异极其丰富,分子标记的数量几乎是无限的;多态性高,利用大量引物、探针可完成覆盖基因组的分析;表现为中性,即不影响目标性状的表达,与不良性状无必然的连锁;许多标记为共显性,对隐性的性状的选择十分便利,能够鉴别出纯合的基因型与杂合的基因型,提供完整的遗传信息。
随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。
分子标记的概念有广义和狭义之分。
广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。
分子标记技术的种类根据不同的核心技术基础,DNA 分子标记技术大致可分为三类分子标记技术大致可分为三类: : : 第一类以第一类以Southern 杂交为核心杂交为核心, , , 其代表性技术为其代表性技术为RFLP ;第二类以PCR 技术为核心,如RAPD 、SSR 、AFLP 、STS 、SRAP 、TRAP 等;第三类以DNA 序列序列((mRNA 或单核苷酸多态性单核苷酸多态性))为核心,其代表性技术为EST 标记、SNP 标记等。
理想的分子标记应达到以下的要求:标记应达到以下的要求:①具有高的多态性;①具有高的多态性;①具有高的多态性;②共显性遗传;②共显性遗传;②共显性遗传;③能够明确辨别等③能够明确辨别等位基因;位基因;④分布于整个基因组中;④分布于整个基因组中;④分布于整个基因组中;⑤选择中性⑤选择中性⑤选择中性((即无基因多效性即无基因多效性));⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。
目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。
其特点比较见表一。
其特点比较见表一。
1限制性内切酶片段长度态多态性性标记(Restriction Fragment Length Polymorphism ,RFLP )19741974年,年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA 突变体时,发现了经限制性内切酶酶解后得到的DNA 片段产生了差异,由此首创了第一代DNA 分子标记技术——限制性内切酶片段长度多态性标记(RFLP )。
其原理是由于不同个体基因型中内切酶位点序列不同同个体基因型中内切酶位点序列不同((可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA 时,会产生长度不同的DNA 酶切片段,通过凝胶电泳将通过凝胶电泳将 DNA 片段按各自的长度分开,通过Southern 印迹法,将这些大小不同的DNA 片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,最后通过放射性自显影显示杂交带,最后通过放射性自显影显示杂交带,即检出即检出限制性片段长度多态性。
AFLP分子标记实验扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性(RAPD和限制性片段长度多态性(RFLP技术上发展起来的DNA多态性检测技术,具有RFLP技术高重复性和RAPD技术简便快捷的特点,不需象RFLP 分析一样必须制备探针,且与RAPD标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD技术重复性差的缺陷。
同其他以PCR为基础的标记技术相比,AFLP技术能同时检测到大量的位点和多态性标记。
此技术已经成功地用于遗传多样性研究,种质资源鉴定方面的研究,构建遗传图谱等。
其基本原理是:以PCR(聚合酶链式反应为基础,结合了 RFLP、RAPD的分子标记技术。
把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的’接头”用与接头互补的但3-端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3-端严格配对的片段才能得到扩增,再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。
一、实验材料采用青稞叶片提取总DNA实验设备1. 美国贝克曼库尔特CEQ8000毛细管电泳系统,2. 美国贝克曼库尔特台式冷冻离心机,3. 美国MJ公司PCR仪,4. 安玛西亚电泳仪等。
三、实验试剂1. 试剂:请使用高质量产品,推荐日本东洋坊TOYOBO公司的相关产品DNA提取试剂盒;EcoRI酶,Msel酶,T4连接酶试剂盒;Taq 酶,dNTP, PCR reactio n buffer;琼脂糖电泳试剂:琼脂糖,无毒GeneFinder核酸染料替代传统EB染料;超纯水(18.2M ? • cm2. 其他实验需要物品微量移液枪(一套及相应尺寸Tip头,PCR管,冰浴等。
四、实验流程1、总DNA提取使用DNA提取试剂盒提取植物基因组DNA,通过紫外分光光度计检测或用标准品跑胶检测。
一 AFLP 分子标记实验扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性 (RAPD 和限制性片段长度多态性 (RFLP 技术上发展起来的 DNA 多态性检测技术, 具有 RFLP 技术高重复性和 RAPD 技术简便快捷的特点, 不需象 RFLP 分析一样必须制备探针, 且与 RAPD 标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD 技术重复性差的缺陷。
同其他以 PCR 为基础的标记技术相比, AFLP 技术能同时检测到大量的位点和多态性标记。
此技术已经成功地用于遗传多样性研究, 种质资源鉴定方面的研究,构建遗传图谱等。
其基本原理是:以 PCR(聚合酶链式反应为基础, 结合了 RFLP 、 RAPD 的分子标记技术。
把 DNA 进行限制性内切酶酶切,然后选择特定的片段进行 PCR 扩增(在所有的限制性片段两端加上带有特定序列的“ 接头” , 用与接头互补的但 3-端有几个随机选择的核苷酸的引物进行特异 PCR 扩增, 只有那些与 3-端严格配对的片段才能得到扩增 , 再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。
一、实验材料采用青稞叶片提取总 DNA 。
二、实验设备1. 美国贝克曼库尔特 CEQ8000毛细管电泳系统,2. 美国贝克曼库尔特台式冷冻离心机,3. 美国 MJ 公司 PCR 仪,4. 安玛西亚电泳仪等。
三、实验试剂1. 试剂:请使用高质量产品,推荐日本东洋坊 TOYOBO 公司的相关产品。
DNA 提取试剂盒;EcoRI 酶,MseI 酶,T4连接酶试剂盒;Taq 酶,dNTP, PCR reaction buffer;琼脂糖电泳试剂:琼脂糖,无毒 GeneFinder 核酸染料替代传统 EB 染料; 超纯水(18.2M Ω ·cm2.其他实验需要物品微量移液枪(一套及相应尺寸 Tip 头,PCR 管,冰浴等。
分子标记技术和应用一、基于DNA杂交技术的分子标记RFLP (Restriction Fragment Length Polymorphism,DNA限制片段长度多态性) RFLP是以Southern杂交为核心,应用最早的分子标记技术。
RFLP首先是在人类基因组研究中发展起来的,主要用于遗传疾病诊断和法医鉴定,RFLP的概念由人类遗传学家Botstein等首次提出,其原理为:碱基的改变与染色体结构的变化导致生物个体或种群之间DNA片段酶切位点的变化,用限制性内切酶切割改变的DNA,将产生长短、种类、数目不同的限制性片段,这些片段经聚丙烯酰胺凝胶电泳分离后就会呈现出不同的带状分布,而具有差异的DNA片段就可通过Southern杂交检测出来。
利用RFLP技术可进行遗传图谱构建、基因定位、数量性状基因座定位(QTL)及遗传多态性分析等。
RFLP标记具有下列优点:结果可靠,这是由于限制性内切核酸酶识别序列的专一性决定的。
结果稳定,RFLP标记无表型效应,其检测不受外界条件、性别及发育阶段的影响。
RFLP标记的等位基因间是共显性的,对选择隐形基因极为有利。
RFLP标记的非等位基因之间不存在基因互作,标记互不干扰。
RFLP起源于基因组DNA的自然变异,这些变异在数量上几乎不受限制,而且可利用的探针很多,可以检测到很多遗传位点。
但RFLP标记也有自身的不足:需要大量高纯度的DNA (5-10μg)。
所需仪器设备较多、检测步骤多、技术较复杂,周期长、成本高。
通常都用到同位素,对人体有一定的伤害。
具有种属特异性,且只适合单拷贝和低拷贝基因。
多态性产生的基础是限制性酶切位点的丢失或获得,所以RFLP多态位点数仅1或2个,多态信息含量低。
二、基于PCR技术的分子标记技术1.基于随机引物PCR的分子标记技术在聚合酶链式反应(PCR)技术发明后(1987年,Mullis和Faloona),由于PCR技术操作简单,成功率较高,出现了一大批以PCR技术为基础的分子标记。
分子标记技术实施方案一、引言。
分子标记技术是一种通过对生物体细胞或组织中的分子进行标记,来实现对生物体特定基因或蛋白质的研究和分析的技术手段。
它在生物学、医学、农业等领域有着广泛的应用,可以帮助科研人员更好地理解生命的奥秘,为人类的健康和生活质量提供保障。
本文将针对分子标记技术的实施方案进行详细介绍。
二、实施方案的选择。
在进行分子标记技术的实施时,首先需要选择合适的实施方案。
通常情况下,分子标记技术的实施方案主要包括PCR技术、蛋白质标记技术、原位杂交技术等。
在选择实施方案时,需要根据具体的研究目的和样本特点进行综合考虑,确保选取的方案能够满足研究需求。
三、实施步骤。
1. 样本处理。
样本处理是分子标记技术实施的第一步,它直接影响着后续实验结果的准确性和可靠性。
在样本处理过程中,需要注意避免污染和样本损伤,保证样本的完整性和纯度。
2. 分子标记。
分子标记是实施分子标记技术的核心步骤,它通过对目标分子进行特异性标记,实现对目标分子的检测和分析。
在分子标记过程中,需要选择合适的标记试剂和方法,确保标记的特异性和稳定性。
3. 实验操作。
实验操作是实施分子标记技术的关键环节,它直接影响着实验结果的准确性和可重复性。
在实验操作过程中,需要严格按照操作规程进行,避免操作失误和交叉污染,确保实验结果的可靠性。
4. 数据分析。
数据分析是实施分子标记技术的最后一步,它通过对实验数据进行统计和分析,得出研究结论。
在数据分析过程中,需要选择合适的统计方法和软件工具,确保数据分析的科学性和可信度。
四、实施效果评价。
实施分子标记技术后,需要对实施效果进行评价。
评价的主要内容包括实验结果的准确性和可重复性,实施过程的操作规范性和实验数据的科学性等。
通过对实施效果的评价,可以发现实施中存在的问题和不足,为进一步的研究提供参考。
五、总结。
分子标记技术的实施方案是实施分子标记技术的基础,它直接影响着实验结果的准确性和可靠性。
在实施分子标记技术时,需要选择合适的实施方案,严格按照实施步骤进行操作,并对实施效果进行评价,确保实验结果的科学性和可信度。