湖北省黄冈市红安县六校2014届九年级上学期12月联考数学试题
- 格式:doc
- 大小:222.50 KB
- 文档页数:7
2024学年湖北省黄冈市红安县中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.如图,三角形纸片ABC ,AB =10cm ,BC =7cm ,AC =6cm ,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长为( )A .9cmB .13cmC .16cmD .10cm2.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=-B .4504504050x x -=-C .4504502503x x -=+D .4504502503x x -=- 3.下列二次根式,最简二次根式是( )A .B .C .D .4.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y =ax 2(a ≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤D .122a ≤≤ 5.在解方程12x --1=313x +时,两边同时乘6,去分母后,正确的是( ) A .3x -1-6=2(3x +1)B .(x -1)-1=2(x +1)C .3(x -1)-1=2(3x +1)D .3(x -1)-6=2(3x +1)6.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.下列计算正确的是( )A .a 3﹣a 2=aB .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(﹣a 2)3=﹣a 68.下列运算正确的是( )A .a 12÷a 4=a 3B .a 4•a 2=a 8C .(﹣a 2)3=a 6D .a•(a 3)2=a 7 9.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CD ACB .BC ABC .BD BC D .AD AC 10.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加_____m .12.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.13.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.14.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩15.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.16.因式分解:2b2a2﹣a3b﹣ab3=_____.三、解答题(共8题,共72分)17.(8分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.18.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF;(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC中的任意一点,这次变换后的对应点P1的坐标为.19.(8分)解方程311(1)(2)xx x x-=--+.20.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?21.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)22.(10分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角∠BAD为45°,BC部分的坡角∠CBE为30°,其中BD⊥AD,CE⊥BE,垂足为D,E.现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算.可能用到的数据:2≈1.414,3≈1.732)23.(12分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M 所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、D【解题分析】解:设动车速度为每小时x千米,则可列方程为:45050x﹣450x=23.故选D.3、C【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、B【解题分析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.5、D【解题分析】 解:1316(1)623x x -+-=⨯ ,∴3(x ﹣1)﹣6=2(3x +1),故选D . 点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.6、C【解题分析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求. 【题目详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【题目点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7、D【解题分析】各项计算得到结果,即可作出判断.解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=﹣a6,符合题意,故选D8、D【解题分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【题目详解】解:A、a12÷a4=a8,此选项错误;B、a4•a2=a6,此选项错误;C、(-a2)3=-a6,此选项错误;D、a•(a3)2=a•a6=a7,此选项正确;故选D.【题目点拨】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.9、D【解题分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【题目详解】cosα=BD BC CD BC AB AC==.故选D.【题目点拨】熟悉掌握锐角三角函数的定义是关键.10、D【解题分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【题目详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【题目点拨】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解题分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【题目详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【题目点拨】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.12、1.【解题分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【题目详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=12AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得8CD===.故答案是:1.13、1【解题分析】先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【题目详解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【题目点拨】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.14、A【解题分析】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.15、y=﹣x+1【解题分析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【题目详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.16、﹣ab(a﹣b)2【解题分析】首先确定公因式为ab,然后提取公因式整理即可.【题目详解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.【题目点拨】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.三、解答题(共8题,共72分)17、证明见解析.【解题分析】不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC 的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.【题目详解】∵AB是⊙O直径,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【题目点拨】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.18、(1)见解析;(2)见解析,(﹣2x,﹣2y).【解题分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到△DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到△A1B1C1,根据△A1B1C1结合位似的性质即可得P1的坐标.【题目详解】(1)如图所示,△DEF即为所求;(2)如图所示,△A1B1C1即为所求,这次变换后的对应点P1的坐标为(﹣2x,﹣2y),故答案为(﹣2x,﹣2y).【题目点拨】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点得到新的图形.在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧. 19、原分式方程无解. 【解题分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【题目详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3 即:x 2+2x ﹣x 2﹣x+2=3 整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0, ∴原方程无解. 【题目点拨】本题考查解分式方程,解题的关键是明确解放式方程的计算方法. 20、(1)117(2)见解析(3)B (4)30 【解题分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形; (3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得. 【题目详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人, 则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117; (2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B 等级, 故答案为B .(4)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21、29.8米. 【解题分析】作AD BC ⊥,BH CN ⊥,根据题意确定出ABC ∠与BCH ∠的度数,利用锐角三角函数定义求出AD 与BD 的长度,由CD BD +求出BC 的长度,即可求出BH 的长度. 【题目详解】解:如图,作AD BC ⊥,BH CN ⊥,由题意得:MCD 57MCA 12AB CH ∠∠︒︒=,=,, ACB 45BCH ABC 33∠∠∠∴︒︒=,==, AB 40=米,AD CD sin ABC?AB 40sin33m BD AB?cos3340cos33===,==∠∴⨯︒︒⨯︒米, BC CD BD 40sin33cos3355.2∴+⨯︒+︒≈==()米,则BH BC?sin3329.8︒≈=米,答:这架无人飞机的飞行高度为29.8米.【题目点拨】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键. 22、33层. 【解题分析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD 和CE 的长,二者的和乘以100后除以20即可确定台阶的数.【题目详解】解:在Rt△ABD中,BD=AB•sin45°=32m ,在Rt△BEC中,EC=12BC=3m,∴BD+CE=3+32,∵改造后每层台阶的高为22cm,∴改造后的台阶有(3+32)×100÷22≈33(个)答:改造后的台阶有33个.【题目点拨】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.23、(1);(2)列表见解析,.【解题分析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2 (2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,∴P(点M落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.24、3【解题分析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.试题解析:∵四边形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴22-2342-22BD AB。
2014年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(2014•黄冈)﹣8的立方根是()A.﹣2 B.±2C.2D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2014•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(2014•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(2014•黄冈)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(2014•黄冈)函数y=中,自变量x的取值范围是()A.x≠0B.x≥2C.x>2且x≠0D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2014•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C .点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(2014•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(2014•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A .B.C.D .考点:动点问题的函数图象.分析:判断出△AEF 和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2014•黄冈)计算:|﹣|= .考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(2014•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(2014•黄冈)计算:﹣= .考点:二次根式的加减法.分先进行二次根式的化简,然后合并同类二次根式求解.析:解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(2014•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(2014•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R ,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(2014•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10 cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE 边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S △AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF =AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(2014•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2014•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(2014•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(2014•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD 和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)(2014•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(2014•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 ,),B( 2 ,﹣),D( 1 ,﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点: 反比例函数综合题. 专题:综合题. 分析: (1)由C 坐标,利用反比例函数的中心对称性确定出D 坐标,联立双曲线y=﹣与直线y=﹣x ,求出A 与B 坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB ,OC=OD ,利用对角线互相平分的四边形为平行四边形即可得证; (3)由A 与B 坐标,利用两点间的距离公式求出AB 的长,联立双曲线y=﹣与直线y=﹣kx ,表示出CD 的长,根据对角线相等的平行四边形为矩形,得到AB=CD ,即可求出此时k 的值.解答: 解:(1)∵C(﹣1,1),C ,D 为双曲线y=﹣与直线y=﹣kx 的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1), 联立得:,消去y 得:﹣x=﹣,即x 2=4, 解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B (2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x ,y=﹣kx (k >0,且k≠)分别相交于A 、B 、C 、D 四点, ∴OA=OB,OC=OD ,则以点A 、D 、B 、C 为顶点的四边形是平行四边形; (3)若▱ADBC 是矩形,可得AB=CD , 联立得:,消去y 得:﹣=﹣kx ,即x 2=, 解得:x=或x=﹣, 当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D (,﹣), ∴CD==AB==,整理得:(4k ﹣1)(k ﹣4)=0, 解得:k=(不合题意,舍去)或k=4, 则当k=4时,▱ADBC 是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(2014•黄冈)如图,在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到故障船C 的求救信号.已知A 、B 两船相距100(+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC 去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D 作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F ,根据AD的长和∠DAF 的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C 之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(2014•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n 元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(2014•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x 轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC 重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ 的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标析:代入求出a 、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ 的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=×(2t)×=t2,②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观.。
2014-2015学年湖北省武汉市部分学校联考九年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.(3分)(2014秋•硚口区期中)若x1,x2是方程x2﹣6x+8的两根,则x1+x2的值是()A.8 B.﹣8 C.﹣6 D.62.(3分)(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2010秋•洛江区期末)如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是()A.30°B.60°C.90°D.120°4.(3分)(2016春•钦州校级月考)下列各式正确的是()A.B.3C.3D.5.(3分)(2014秋•德城区期末)关于x的一元二次方程x2+m=2x,没有实数根,则实数m 的取值范围是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣16.(3分)(2014秋•硚口区期中)一根水平放置的圆柱形输水管横截面如图所示,其中有水部分水面宽8米,最深处水深2米,则输水管的半径是()A.4米B.5米C.6米D.8米7.(3分)(2014秋•蔡甸区校级月考)如图,P为∠AOB边OA上一点,∠AOB=30°,OP=10cm,以P为圆心,5cm为半径的圆与直线OB的位置关系是()A.相离 B.相交 C.相切 D.无法确定8.(3分)(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1969.(3分)(2014秋•硚口区期中)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a<0B.c>0C.b2﹣4ac>0D.当x<2时,函数值y随x增大而增大;当x>2时,函数值y随x增大而减小10.(3分)(2014秋•硚口区期中)如图,PA,PB分别切⊙O于A、B,圆周角∠AMB=60°,EF切⊙O于C,交PA,PB于E,F,△PEF的外心在PE上,PA=3,则AE的长为()A.3﹣B.4﹣2C.1 D.2﹣3二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.(3分)(2014秋•蔡甸区校级月考)点M(3,a﹣1)与点N(b,4)关于原点对称,则a+b=.12.(3分)(2014秋•河西区期末)抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则此抛物线的对称轴是.13.(3分)(2015•湖北模拟)如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是.14.(3分)(2014秋•武昌区期中)如图,等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A逆时针旋转60°得△ACE,那么线段DE的长为.15.(3分)(2014秋•蔡甸区校级月考)如图,平面直角坐标系中,A(﹣3,0),B(0,4).把△AOB按如图标记的方式连续做旋转变换,这样得到的第2015个三角形中,O点的对应点的坐标为.16.(3分)(2015•泗洪县校级模拟)如图,矩形纸片ABCD,AD=8,AB=10,点F在AB 上,分别以AF、FB为边裁出的两个小正方形纸片面积和S的取值范围是.三、解答题(共9小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(6分)(2011•聊城)解方程:x(x﹣2)+x﹣2=0.18.(6分)(2014秋•蔡甸区校级月考)已知:y=x2﹣2x﹣3,①写成y=﹣(x﹣h)2+k的形式;②求出图象与x轴的交点;③直接写出原抛物线沿x轴翻折后图象的解析式为.19.(6分)(2013秋•道里区期末)如图,在⊙O中,,点D、E分别在半径OA和OB上,AD=BE.求证:CD=CE.20.(7分)(2014•武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.21.(7分)(2014秋•硚口区期中)如图,矩形OABC和▱ABEF,B(3,4).(1)画出矩形OABC绕点O逆时针旋转90°后的矩形OA1B1C1,并写出B1的坐标为,点B运动到点B1所经过的路径的长为;(2)若点E的坐标为(5,2),则点F的坐标为,请画一条直线l平分矩形OABC 与▱ABEF组成图形的面积(保留必要的画图痕迹).22.(8分)(2014秋•滨州校级期末)如图,⊙O的直径AB为10,弦BC为6,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE(1)求AC、AD的长;(2)试判断直线PC与圆⊙O的位置关系,并说明理由;(3)直接写出CD的长为.23.(10分)(2015春•潜江校级月考)武汉某公司策划部进行调查后发现:如果单独投资A 种产品,则所获利润y a(万元)与投资金额x(万元)之间的关系图象如图1所示;如果单独投资B种产品,则所获利润y b(万元)与投资金额x(万元)之间的关系图象如图2所示.(1)请分别求出y a、y b之间的函数表达式;(2)若公司计划A、B两种产品共投资10万元,请你帮助该公司设计一个能获得最大利润的投资方案,并求出此方案所获得的最大利润.24.(10分)(2014秋•蔡甸区校级月考)如图①在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,(1)把Rt△DBC绕点D顺时针旋转45°,点C的对应点为E,点B的对应点为F,请画出△EDF,连接AE,BE,并求∠AEB的度数.(2)如图②,把Rt△DBC绕点D顺时针旋转α度(0<α<90°),点C的对应点为E,点B的对应点为F,连接CE,CD,求出∠AEC的度数,并写出线段AE、BE与CE之间的数量关系,不证明.(3)如图②,在(2)的条件下,连接CD交AE于点G,若BC=2,α=60°,则CG=.(直接写出结果,不用证明)25.(12分)(2014秋•硚口区期中)如图1,在平面直角坐标系中,抛物线C1:y=ax2﹣a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析式;(2)如图2,先将抛物线C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C2,设抛物线C2与直线y=x交于C、D两点,求线段CD的长;(3)在图1中将抛物线C1绕点B旋转180°后得到抛物线C3,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线l与抛物线C3只有一个公共点,求直线l的解析式.2014-2015学年湖北省武汉市部分学校联考九年级(上)月考数学试卷(12月份)参考答案一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.D;2.B;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.D;二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.-6;12.直线x=1;13.60π;14.2;15.(8059.2,2.4);16.50≤S≤68;三、解答题(共9小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.;18.y=-x2+2x+3;19.;20.;21.(-4,3);π;(5,-2);22.7;23.;24.1+;25.;。
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前湖北省黄冈市2014年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的立方根是( ) A .2-B .2±C .2D .12- 2.如果α与β互为余角,则( ) A .180αβ+=︒B .180αβ-=︒C .90αβ-=︒D .90αβ+=︒ 3.下列运算正确的是( )A .236x x x =B .65x x x ÷=C .246()x x -=D .235x x x +=4.如图所示的几何体的主视图是( )ABC D 5.函数y =,自变量x 的取值范围是( ) A .0x ≠B .2x ≥C .20x x ≠>且D .20x x ≠≥且 6.若α、β是一元二次方程0622=-+x x 的两根,则22αβ+=( ) A .8-B .32C .16D .407.如图,圆锥体的高cm h =,底面圆半径2cm r =,则圆锥体的全面积为( )A.2cm B .28πcm C .212πcm D.24)πcm8.已知,在ABC △中,=10BC ,BC 边上的高5h =,点E 在边AB 上,过点E 作EF BC ∥,交AC 边于点F .点D 为BC 边上一点,连接DE ,DF .设点E 到BC 的距离为x ,则DEF △的面积S 关于x 的函数图象大致为( )ABCD第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分.把答案填写在题中的横线上)9.计算:1||3-= .10.分解因式:22(21)a a +-= . 11.. 12.如图,若AD BE ∥,且90ACB ∠=︒,30CBE ∠=︒,则CAD ∠= 度.13.当12-=x 时,代数式222111x x x x x x x-+-÷+++的值是 .14.如图,在O 中,弦CD 垂直于直径AB 于点E ,若30BAD ∠=︒,且2BE =,则毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)CD = .15.如图,在一张长为8cm ,宽为6cm 的矩形纸片上,现要剪下一个腰长为5cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 cm .三、解答题(本大题共10小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分5分)解不等式组:215,311.2x x x -⎧⎪⎨+-⎪⎩>①≥②并在数轴上表示出不等式组的解集.17.(本小题满分6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需多少元?18.(本小题满分6分)已知,如图所示,AB AC =,BD CD =,DE AB ⊥于E ,DF AC ⊥于点F ,求证:DE DF =.19.(本小题满分6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛. (1)请用树形图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率.20.(本小题满分7分)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 与AB 交于点D ,过点D 作O 的切线,交BC 于点E .(1)求证:EB EC =;(2)若以点O ,D ,E ,C 为顶点的四边形是正方形,试判断ABC △的形状,并说明理由.数学试卷 第5页(共32页) 数学试卷 第6页(共32页)21.(本小题满分7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶供学生饮用.浠马中学为了了解学生对不同口味的牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如下两张不完整的人数统计图.(1)本次被调查的学生有 名;(2)补全上面的条形统计图,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都能喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味牛奶要比原味多送多少盒?22.(本小题满分9分) 如图,已知双曲线1y x =-与两直线x y 41-=,kx y -=(0>k 且41≠k )分别相交于A ,B ,C ,D 四点.(1)当点C 的坐标为(1,1)-时,A ,B ,D 三点坐标分别是A ( , ),B ( , ),D ( , );(2)证明:以A ,D ,B ,C 为顶点的四边形是平行四边形; (3)当k 为何值时,□ADBC 是矩形;23.(本小题满分7分)如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B两船相距1)海里,船C 在船A 的北偏东60︒方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75︒方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号);(2)已知距观测点D 处100海里范围内有暗礁.若巡逻船A 沿直线AC 去营救船C ,在毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共32页) 数学试卷 第8页(共32页)去营救的途中有无触礁危险?(1.411.73≈)24.(本小题满分9分)某地实行医疗保险(以下简称“医保”)制度,医保机构规定: 一、每位居民年初缴纳医保基金70元;二、居民每个人当年治病所花的医疗费(以定点医院的医疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用.如果设一位居民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和年初缴纳的医保基金)记为y 元.(1)当0x n ≤≤时,70y =;当6000n x <≤时,y = (用含n 、k 、x 的代数式表示);(2)表二是该地A ,B ,C 三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n 、k 的值;(3)该地居民周大爷2013年看病的医疗费用共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(本小题满分13分)已知,如图所示,在四边形OABC 中,AB OC ∥,BC x ⊥轴于C ,(1,1)A -,(3,1)B -,动点P 从O 点出发,沿着x 轴正方向以每秒2个单位长度的速度移动.过点P 作PQ 垂直于直线OA ,垂足为点Q .设点P 移动的时间为t 秒02)t (<<,OPQ △与四边形OABC 重叠部分的面积为S .(1)求经过O ,A ,B 三点的抛物线的解析式并确定顶点M 的坐标; (2)用含t 的代数式表示点P 、点Q 的坐标;(3)如果将OPQ △绕点P 按逆时针方向旋转90︒,是否存在t ,使得OPQ △的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由; (4)求出S 与t 的函数关系式;5 / 16湖北省黄冈市2014年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据立方根的定义,3(2)8-=-Q ,8∴-的立方根是2-,故选A. 【考点】立方根. 2.【答案】D【解析】若两个角的和是90︒,则这两个角互余,故90αβ+=︒,故选D. 【考点】互余. 3.【答案】B【解析】同底数幂相乘,底数不变,指数相加,故23235x x xx +==g ,A 错误;同底数幂相除,底数不变,指数相减,故6565x x x x -÷==,B 正确;幂的乘方,底数不变,指数相乘,故24248()x x x ⨯-==,C错误;2x 与3x 不是同类项,不能合并,故D 错误,故选B. 【考点】幂. 4.【答案】D【解析】根据几何体的形状可知从正面看到的图象为D ,故选D. 【考点】几何体的三视图,难度较小. 5.【答案】B【解析】根据二次根式被开方数是非负数,分式的分母不能等于0,得20,0,x x -⎧⎨≠⎩≥解得2x ≥,故选B.【考点】函数自变量的取值范围. 6.【答案】C 【解析】若α,β是方程2260x x +-=的两根,则2b aαβ+=-=-,6c aαβ==-,所以2222()2(2)2(6)16αβαβαβ+=+-=--⨯-=,故选C.【考点】一元二次方程的根与系数的关系. 7.【答案】C数学试卷 第11页(共32页)数学试卷 第12页(共32页)【解析】设圆锥的母线长为l ,根据勾股定理,4l ==,故圆锥的全面积22πππ24π212πrl r =+=⨯⨯+=g ,故选C. 【考点】圆锥表面积的计算. 8.【答案】D【解析】EF BC ∥Q ,AEF ABC ∴△△:,相似三角形对应边上的高之比等于相似比,5510x EF-∴=,102EF x ∴=-,21(102)52S x x x x ∴=-=-+(05x ≤≤),由此可知,S 是关于x 的二次函数且图象开口向下,故选D.【考点】动点问题的函数图象,相似三角形的性质,三角形的面积.第Ⅱ卷二、填空题9.【答案】13【解析】根据负数的绝对值等于它的相反数,故1133-=. 【考点】绝对值. 10.【答案】(31)(1)a a ++【解析】原式(21)(21)(31)(1)a a a a a a =+++-=++g . 【考点】平方差公式分解因式. 11.【答案】2【解析】原式22=-=. 【考点】二次根式的化简与计算. 12.【答案】60【解析】A D B E ∥Q ,180DAB ABE ∴∠+∠=︒,即180DAC CAB ABC CBE ∠+∠+∠+∠=︒,又90ACB ∠=︒Q ,90CAB ABC ∴∠+∠=︒,90DAC CBE ∴∠+∠=︒,而30CBE ∠=︒,60DAC ∴∠=︒.【考点】直角三角形的性质,平行线的性质. 13.【答案】3-7 / 16【解析】原式22(1)(1)(1)11x x x x x x x x x x -+=+=-+=+-g,当1x =时,原式21)3==-【考点】代数式的化简与求值. 14.【答案】【解析】连接OD ,根据同弧所对的圆周角等于圆心角的一半,260BOD BAD ∴∠=∠=︒,设O e 半径是r ,则2OE r =-,在Rt DOE △中,cos OE BOE OD ∠=,即2cos60r r-︒=,解得4r =,2OE ∴=,4OD =,又由勾股定理得DE =,根据垂径定理2CD DE ==. 【考点】圆周角定理,垂径定理,解直角三角形.15.【答案】252或10【解析】分类谈论:(1)等腰三角形的顶角的顶点与矩形的顶点重合,如图a ,则5AE AF ==,此时,112555222AEF S AE AF ==⨯⨯=△g ;(2)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 与宽AB 上,如图b ,此时5EF AE ==,651BE =-=,在Rt EBF △中,根据勾股定理,BF ==,11522AEF S AE BF ==⨯⨯=△g (3)等腰三角形的底角的顶点与矩形的顶点重合,腰AE 在长AD 上,如图c ,此时5EF AE ==,853DE =-=,在Rt EDF △中,根据勾股定理,4DF ==,11541022S AE DF ==⨯⨯=△AEF g ;故答案是252或10.【考点】等腰三角形的画法,三角形的面积计算. 三、解答题16.【答案】解:解不等式①得3x >; 解不等式②的1x ≥.∴原不等式组的解集为3x >,不等式组的解集在数轴上表示如下:数学试卷 第15页(共32页)数学试卷 第16页(共32页)【考点】一元一次不等式组.17.【答案】购买一台电子白板需8 000元,购买一台投影机需4 000元.【解析】解:设购买一块电子白板需x 元,购买一台投影机需y 元,依题意列方程组234000,4344000.x y x y -=⎧⎨+=⎩解得8000,4000.x y =⎧⎨=⎩答:购买一台电子白板需8 000元,购买一台投影机需4 000元. 【考点】二元一次方程组在实际问题中的应用. 18.【答案】证法一:连接AD.AB AC =Q ,BD CD =,AD AD =,ABD ACD ∴△≌△.BAD CAD ∴∠=∠.AD ∴是EAF ∠的平分线.又DE AB ⊥Q ,DF AC ⊥,DE DF ∴=. 证法二:证ABD ACD △≌△,得ACD ABD ∠=∠.DCF DBE ∴∠=∠.又90DFC DEB ∠=∠=︒Q ,DC DB =,DFC DEB ∴△≌△.DE DF ∴=.【考点】全等三角形的判定和性质. 19.【答案】解:(1)树形图:∴共有12种选派方案.(2)恰有一男一女参赛共有8种可能,82123P∴==(一男一女).【考点】列举法或树状图求概率.20.【答案】(1)解:(1)证法一:如图,连接CD.ACQ为Oe的直径,90ACB∠=︒,CB∴为Oe的切线.又DEQ切Oe于点D,ED EC∴=.CDE DCE∴∠=∠.ACQ为Oe直径,90ADC∴∠=︒.90CDE EDB∴∠+∠=︒,90DCE CBD∠+∠=︒.9 / 16数学试卷 第19页(共32页)数学试卷 第20页(共32页)EDB CBD ∴∠=∠.ED EB ∴=.EB EC ∴=.证法二:如图,连接OD .AC Q 为O e 的直径,90ACB ∠=︒,CB ∴为O e 的切线.又DE Q 切O e 与点D ,EB EC ∴=,90ODE ∠=︒.90ODA EDB ∴∠+∠=︒. OA OD =Q ,ODA OAD ∴∠=∠.又90OAD DBE ∠+∠=︒Q ,EDB DBE ∴∠=∠.ED EB ∴=.EB EC ∴=.(2)ACB △为等腰直角三角形. 理由:Q 四边形ODEC 为正方形,OC CE ∴=,90ACB ∠=︒.又12OC AC =Q ,12CE EB BC ==,AC BC ∴=.ACB ∴△为等腰直角三角形.【考点】圆的切线的判定和性质,等腰三角形的判定和性质,正方形的性质,等腰直角三角形的判定. 21.【答案】(1)200. (2)40.90︒.(3)144.【解析】解:(1)200(2)如图,补全条形图(40人)喜好“菠萝味”学生人数在扇形统计图中所占圆心角度数为5036090200⨯︒=︒. (3)6238241200()1200144200200200⨯-=⨯=(盒) 答:每次草莓味要比原味多送144盒.【考点】条形统计图,扇形统计图的理解与应用.22.【答案】解:(1)1(2,)2A -,1(2,)2B -,(1,1)D -. (2)证法一:Q 反比例函数1y x =-的图象关于原点对称,过原点的直线14y x =-也关于原点对称,OA OB ∴=.同理OC OD =. ∴四边形ADBC 是平行四边形. 证法二:14y x =-Q 与1y x=-交于A ,B 两点, 1(2,)2A ∴-,1(2,)2B -. ∴由勾股定理知222117(2)()24OA =-+=, 2221172()24OB =+-=. 22OA OB ∴=.OA OB ∴=.y kx =-Q 与1y x =-交于C ,D 两点,(C k ∴,(D k. 21OC k k ∴=+,21OD k k =+.数学试卷 第23页(共32页)22OC OD ∴=.OC OD ∴=.∴四边形ADBC 是平行四边形.(3)当4k =时,ADBC Y 为矩形.理由:当OA OC =时,22AB OA OC CD ===.ADBC ∴Y 为矩形.此时由22OA OC =得1174k k +=,217104k k -+=, 14k ∴=,214k =. 又14k ≠Q ,4k ∴=. 4k ∴=时,ADBC Y 为矩形.【考点】待定系数法求函数的解析式,平行四边形的判定,矩形的判定,勾股定理. 23.【答案】(1)A 与C 间距离为200海里,A 与D间距离为1)-海里. (2)船A 沿直线AC 航行,前往船C 处途中无触礁危险.【解析】解:(1)如图,过C 作CE AB ⊥于点E .设AE a =海里,则1)BE AB AE a =-=-(海里).在Rt ACE △中,90AEC ∠=︒,60EAC ∠=︒,21cos602AE a AC a ∴===︒海里,tan 60CE AE =︒g 海里.在Rt BCE △中,BE CE =,1)a ∴-=.100a ∴=海里.2200AC a ∴==海里.在ACD △和ABC △中,180456075ACB ADC ∠=︒-︒-=︒=∠,CAD BAC ∠=∠,ACD ABC ∴△△:,AD AC AC AB∴=. 即200AD =1)AD ∴=.答:A 与C 间距离为200海里,A 与D 间距离为1)海里.(2)如图,过D 作DF AC ⊥于点F .在Rt ADF △,60DAF ∠=︒,sin601)2DF AD ∴=︒=⨯g100(3127100=-≈>. ∴船A 沿直线AC 航行,前往船C 处途中无触礁危险.【考点】解直角三角形.24.【答案】(1)()%70y x n k =-+g .(2)50040.n k =⎧⎨=⎩, (3)7 470【解析】解:(1)()%70y x n k =-+g .(2)由表二易知400n ≥,且800x =时,190y =,1500x =时,470y =.(800)%70190,(1500)%70470.n k n k -+=⎧∴⎨-+=⎩g g 解得500,40.n k =⎧⎨=⎩(3)当6000x >时,(6000500)40%(6000)20%70y x =-⨯+-⨯+数学试卷 第27页(共32页)0.21070x =+,∴当32000x =时,0.23200010707470y =⨯+=(元).(直接代入计算也可)【考点】列代数式的应用,二元一次方程组的应用.25.【答案】(1)4(2,)3-. (2)(2,0)P t ,(,)Q t t -.(3)①12t =. ②1t =(4)见解析.【解析】解:(1)Q 抛物线过原点(0,0)O , ∴可设经过A ,B ,O 三点的抛物线解析式为2y ax bx =+(或直接设2y ax bx c =++).将(1,1)A -,(3,1)B -代入2y ax bx =+中,得1,93 1.a b a b +=-⎧⎨+=-⎩1,34.3a b ⎧=⎪⎪∴⎨⎪=-⎪⎩ 21433y x x ∴=-. ∴抛物线221414(2)3333y x x x =-=--,顶点M 的坐标为4(2,)3-.(2)Q 点A 坐标为(1,1)-,45COA ∴∠=︒.OPQ ∴△为等腰直角三角形.过Q 作QD x ⊥轴于D.2OP t =Q ,11222OD OP t t ∴==⨯=,12DQ OP t ==. ∴点P 坐标为(2,0)P t ,点Q 坐标为(,)Q t t -.(3)当OPQ △绕点P 逆时针旋转90︒后,点O 坐标为(2,2)t t -,点Q 的坐标为(3,)t t -.①若点O 在21433y x x =-上, 则214(2)2233t t t ⨯-⨯=-,220t t -=. 10t ∴=,212t =.02t <<Q ,12t ∴=. 12t ∴=时点(1,1)O -在21433y x x =-上.(只需求出t 的值即可). ②若点Q 在21433y x x =-上, 则214(3)(3)33t t t ⨯-⨯=-,20t t -=. 10t ∴=,21t =.又02t <<Q ,1t ∴=.1t ∴=时点(3,1)Q -在21433y x x =-上.(只需求出t 的值即可). (4)如图,分三种情况讨论:①当01t <≤时, 211222OPQ Q S S OP y t t t ===⨯⨯=△g . (方法二:212OPQ S S OQ ==△) ②当312t <≤时,设P Q ''交AB 与E . OP Q ABQ S S S '''=-△△.AB OC ∥Q ,45Q AE '∴∠=︒,数学试卷 第31页(共32页)AEQ '∴△为等腰直角三角形.cos4522OQ OP t ''∴=︒==g. 1)AQ OQ OA t ''∴=--.221(1)2AEQ S AQ t ''∴==-△. 22(1)21S t t t ∴=--=-.(方法二:OAEP S S '=梯形) ③如图,当322t <<时,设P Q ''''交BC 于点F ,交AB 于点E ', 则OP Q AE Q CFP S S S S '''''''''=--△△△.221(1)2AE Q S AQ t '''''==-△Q , 2211(23)22CFP S CP t ''''==-△, 2222111(1)(23)2822S t t t t t ∴=----=-+-. (方法二:BE F OABC S S S '=-△梯形)22(01),321(1),211328(2).22t t S t t t t t ⎧⎪⎪⎪∴=-⎨⎪⎪-+-⎪⎩<≤<≤<< 【考点】求抛物线解析式,抛物线顶点坐标,动点问题,面积的计算,点的存在.。
2014届湖北黄冈市十校九年级第一学期期中联考数学试卷(带解析)1、下列图形中,不是中心对称图形的是( ).A. B.C. D.【答案】D【解析】试题分析:根据中心对称图形的定义:如果把一个图形绕某一点旋转180度后能与原来的图形重合,这个图形就是中心对称图形。
可以发现选项A、B、C均符合条件,故选D.考点:中心对称图形的定义.2、下列变形中,正确的是().A.(2)2=2×3=6B.=-C.=D.=.【答案】D【解析】试题分析:由二次根式的运算性质可得.,,,,故选D.考点:二次根式的运算.3、若、是一元二次方程x2+5x+4=0的两个根,则的值是().A.-5 B.4 C.5 D.-4【答案】B【解析】试题分析:此题易直接用根与系数的关系求出两根之积为4,故选B.考点:根与系数的关系.4、如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=().A.35°B.55°C.70°D.110°【答案】B【解析】试题分析:因为AB是⊙O的直径,所以∠ACB=900,由内角和定理求得∠B=550,根据同弧所对的圆周角相等可得∠ADC=550.故选B.考点:1、直径所对的圆周角是直角.2、同弧所对的圆周角相等.5、相交两圆的公共弦长为24cm,两圆半径分别为15cm和20cm,则这两个圆的圆心距等于().A.16cm B.9cm或16cm C.25cm D.7cm或25cm 【答案】D【解析】试题分析:如下图,根据题意,需分两种情况讨论:①当两圆心位于公共弦的两侧时,由垂直平分线的判定可得,两圆连心线垂直平分公共弦,再由勾股定理分别求出AD=16cm,BD=9cm,所以圆心距为16+9=25cm.②当两圆圆心位于公共弦的同侧时,易得出AD=16cm,AB=9cm,所以圆心距为16-9=7cm.因此,两圆的圆心距为7cm或25cm,故选D.考点:圆与圆的位置关系.6、如图.AB是⊙O的直径,E是弧BC的中点,OE交BC于点D,OD=3,DE=2,则AD的长为().A.B.3C.8 D.2【答案】D【解析】试题分析:如下图,连接、,由是的直径,可得,由是弧的中点,可得,易用证,所以,;由,,可用勾股定理求解,所以,再由勾股定理得,最后由勾股定理求解,故选.考点:1、同弧所对的圆心角相等.2、直径所对的圆周角是直角.3、勾股定理.7、若、(<),是关于x的方程(x-a)(x-b)=1(a<b)的两个根,则实数、,a、b的大小关系为().A.<< a<b B.<a<<b C.<a<b<D.a<<b<【答案】C【解析】试题分析:解答此题的关键是利用数形结合,由四个数在数轴上表示的点来判断。
湖北省黄冈市红安县2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一元二次方程2660x x +-=配方后的正确结果为()A .2(3)3x +=B .2(3)3x -=C .2(3)15x -=D .2(3)15x +=2.抛物线y=﹣x 2+2kx+2与x 轴交点的个数为()A .0个B .1个C .2个D .以上都不对3.关于方程210y y ++=的说法正确的是()A .两实数根之和为1-B .两实数根之积为1C .两实数根之和为1D .无实数根4.要组织一场足球赛,每两队之间进行两场比赛,计划踢56场比赛,则要邀请()个足球队.A .10B .9C .8D .75.某牧民要围成面积为352m 的矩形羊圈,且长比宽多2米,则此羊圈的周长是()A .20米B .24米C .26米D .20或22米6.已知方程20x bx a ++=有一个根是a (0a ≠),则代数式a b +的值是()A .1-B .1C .0D .以上答案都不是7.已知x 为实数,且满足(x 2+3x)2+2(x 2+3x)-3=0,那么x 2+3x 的值为()A .1B .-3或1C .3D .-1或38.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .x 2+130x ﹣1400=0B .x 2+65x ﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0三、解答题△的面积是(1)若PCQ△的面积能否为(2)PCQ23.人民商场销售某种商品,统计发现:每件盈利调查发现,该商品每降价()1假如现在库存量太大,。
湖北省黄冈市红安县六校2014届九年级化学12月联考试题考试时间:40分钟总分:50分命题:红安思源实验学校(注意:本试卷可能用到的相对原子质量: O-16、H-1、C-12、N-14、Ca-40 )一、选择题(每小题只有一个..选项符合题意,请将答案填写在答题框中。
共12小题,每小题1分,计12分)1.11月22日青岛中石化黄潍输油管线发生爆炸事故,造成多人死伤的严重后果,下列有关爆炸中属于化学变化的是:()A.日光灯管爆炸 B.煤气爆炸 C.气球爆炸 D.车胎爆炸2.下列关于燃烧现象的描述中正确的是:()A.木炭在空气中燃烧后,生成黑色的固体 B.镁条在空气中燃烧,发出耀眼的白光C.硫粉在氧气中燃烧,产生大量白烟 D.红磷在空气中燃烧,产生蓝紫色火焰3.正确的实验操作对实验结果、人身安全都非常重要。
下列实验操作正确的是:()A B C D4.一氧化氮是汽车尾气中的一种大气污染物,它是一种无色气体,难溶于水,密度比空气略大,在空气中能与氧气迅速反应生成红棕色的二氧化氮气体。
在实验室中收集一氧化氮可以采用的方法是:()A.排水集气法 B.向上排空气集气法C.向下排空气集气法 D.向上排空气集气法或排水集气法5.下列有关水的说法正确的是()A. 蒸馏水属于硬水B. 净化水时,可用活性炭作杀菌剂C. 水变成水蒸气,水分子变大D. 湿衣服晾干说明分子作不断运动6.科学家发现了一种质子数与氢原子相同,但中子数比氢原子多一个的新原子,关于此原子的说法中,正确的是:()A.属于一种新元素B.跟普通氢原子相同的原子C.是氢元素的另一种原子D.与氢元素的原子不同类的原子7.用分子的知识对下列现象的解释,正确的是:()A.做饭时炊烟袅袅,是由于分子间存在斥力B.一块金属很难被压缩,是由于分子间没有问隙C.变瘪的乒乓球放入热水中鼓起来,是由于分子受热变大D.房间里放一箱苹果,满屋飘香,是由于分子做无规则运动8.下列各组物质中,带点的同种元素的化合价相同的是()A.C.l2、NaC.lB.N.H4Cl、HN.O3C. M.nO2、K2M.nO4D. P.2O5、Ca3(P.O4)29.在反应A+3B=2C+3D中,若4.6克A与足量B完全反应后,生成8.8克C和5.4克D。
2014 年黄冈市九年级调研考试数 学 试 题(满分 120 分 时间 120 分钟)第I 卷(选择题共24分)一、选择题(本大题共 8 小题,每题 3 分,共 24 分)1.在下实数中,无理数是A . 1B.πC . 16 D .22372.以下运算正确的选项是A . x 2 ? x3x6B .― 2 x21C .( ― x 2 ) 3=x 5D .― x 2―2x 2 =― 3x 24x 23.下边四个几何体中,从上往下看,其正投影不是圆的几何体的个数是4.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝部分忽视不计)是22C 22A .20cmB .40 cm. 20πcm D .40πcm 5.若小唐同学掷出的铅球在场所上砸出一个直径约为 10cm 、深约为 2cm 的小坑,则该铅球的直径约为 A .10cm B . 14.5cm C . 19.5cm D .20cm 6.某商贩去菜摊买黄瓜,他上午买了 30 斤,价钱为每斤 x 元;下午他又买了20 斤,价钱为每斤 y 元。
以后他以每斤xy元的价钱卖完后,结果发现自2己赔了钱,其原由是A .x <yB .x >yC . x ≤ yD .x ≥y7.数学活动课上,小敏、小颖分别画了△ ABC 和△ DEF ,尺寸如图。
假如把小敏画的三角形的面积记作 S △ ABC ,小颖画的三角形的面积记作 S △ DEF ,那么两个三角形面积的大小关系是 A .S △ ABC >S △ DEF B .S △ ABC <S △DEF C .S △ ABC =S △ DEF D .不可以确立8.以以下图,在平行四边形 ABCD 中,∠ DAB=60°, AB=5, BC=3,点 P 从起点 D 出发,沿 DC 、CB 向终点 B 匀速运动。
设点 P 所走过的行程为 x ,点 P 所经过的线段与线段 AD 、AP 所围成图形的面积为 y ,y 随 x 的变化而变化。
第4题图第15题图第13题图黄冈教育网2014年中考模拟试题数学E 卷试卷总分:120分 考试时间:120分钟 命题人:红安思源实验学校 彭家明一.选择题(每小题3分,共24分) 1.tan60°的值为( ) A.3 B.33 C. 23 D. 22 2.下列运算中,正确的是( )A.2352x x x += B. 236()x x = C. 222()m n m n -=- D. 824m m m ÷=3.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( ) A .(3)(1)(4) B .(3)(2)(1)(4) C .(3)(4)(1)(2) D .(2)(4)(1)(3)4.如图,一条公路的转变处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),其中CD=600米, E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,OF=3003米,则这段弯路的长度为( )5.现要选用两种不同的正多边形地砖铺地板,若已选择了正三边形,可以再选择正n 边形搭配,则下列选项中不能选择的n 值为( ) A.3 B.4 C.5 D.66.化简28a a -+-的值为( ) A.32 B. 22C.32D. 22 7.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是( ) A.甲 B.乙 C.丙 D.乙或丙8.如图,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE=EF=FB=5,DE=12,动点P 从点A 出发,沿折线AD-DC-CB 以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,y=S △EPF ,则y 与t 的函数图象大致是( )二.填空题(每小题3分,共21分) 9. 2-的绝对值是 . 10.因式分解39____________x x -= 11.y=20(16)x -中自变量x 的取值范围为 .12.某种生物的直径为0.00063米,用科学记数法表示为 米13. 二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,若M=a+b-c ,N=4a-2b+c ,P=2a-b ,Q=b 2-4ac .则M ,N ,P,Q 中,值小于0的数有 个 14.观察方程①:x+2x =3, 方程②:x+x 6=5, 方程③:x+12x=7.则第10个方程解是: .15.把边长为1的正方形纸片OABC 放在直线m 上,OA 边在直线m 上,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时,点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处,又将正方形纸片AO 1C 1B 1绕B 1点,按顺时针方向第3题图 A.B. C. D.第18题图第21题图旋转90°…,按上述方法经过61次旋转后,顶点O 经过的总路程为 . 三.解答题(共75分)16.(本小题满分5分)解不等式组并将其解集在数轴上表示出来⎪⎩⎪⎨⎧+<+≤+41333)2(2x x x x 17.(本小题满分6分)某县教育局为了解本县一中学1200名学生每学期参加社会实践活动的时间,随机对该校50名学生进行了调查,结果如下表:时间(天) 4 5 6 7 8 9 10 11 12 13 人 数 1 2 4 5 7 11 8 6 4 2(1)在这个统计中,众数是 ,中位数是 ; (2)补全下面的频率分布表和频率分布直方图(直接填在答题卡):分组 频数 频率 3.5~5.5 3 0.06 5.5~7.5 9 0.18 7.5~9.5 0.36 9.5~11.5 14 11.5~13.5 6 0.12 合 计 50 1.00(3)请你估算这所学校的学生中,每学期参加社会实践活动时间不少于9天的大约有多少人?18.(本小题满分6分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF . (1)BD 与C D 有什么数量关系,并说明理由;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由.19.(本小题满分6分)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?20.(本小题满分6分)袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.21.(本小题满分9分)如图,在平面直角坐标系中,双曲线my x=和直线y=kx+b 交于A ,B 两点,点A 的坐标为(-3,2),BC ⊥y 轴于点C ,且OC=6BC . (1)求双曲线和直线的解析式;(2)直接写出不等式mx>kx+b 的解集. (3)直接写出四边形AOBC 的面积22.(本小题满分8分)钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,s in20.5°≈0.35,sin18.1°≈0.31,2≈1.4,3≈1.7)23.(本小题满分8分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO 平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求OD的长.24.(本小题满分9分)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(本小题满分12分)以点A(0,4),B(8,4),C(0,8)为顶点的四边形OABC在平面直角坐标系中位置如图所示,现将四边形OABC沿直线AC折叠使点B落在点D处,AD交OC于E.(1)试求E点坐标及直线AE的解析式;(2)试求经过点O、D、C三点抛物线的解析式及顶点F的坐标;(3)一动点P从点A出发,沿射线AB以每秒一个单位长度的速度匀速运动.①当t为何值时,直线PF把△FAC分成面积之比为1:3的两部分;②在P点的运动过程中,是否存在某一时刻使△APF为直角三角形,若存在,直接写出t的值,若不存在,请说明理由.答题卡一、选择题1 [A] [B] [C] [D]2 [A] [B] [C] [D]3 [A] [B] [C] [D]4 [A] [B] [C] [D]5 [A] [B] [C] [D]6 [A] [B] [C][D]7 [A] [B] [C] [D]8 [A] [B] [C] [D]9.10.11.12.13.14.15.三、解答题(共75分)16.(本小题满分5分)17.(本小题满分6分)(1)____________;(2)_____________(3)18.(本小题满分6分)第18题图第21题图19.(本小题满分6分)(1)(2)20.(本小题满分6分)21.(本小题满分9分)22.(本小题满分8分)23.(本小题满分8分)24.(本小题满分9分)25.(本小题满分12分)参 考 答 案1.A2.B3.C(影子先后指向西、西北、东北、东,影子长短也随时间而变化)4.A5. C6. D7.B8.A在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=, ①点P 在AD 上运动:过点P 作PM ⊥AB 于点M ,则PM =APsin ∠A=1213t , 此时y=12EF×PM=3013t ,为一次函数; ②点P 在DC 上运动,y=12EF×DE=30;③点P 在BC 上运动,过点P 作PN ⊥AB 于点N ,则PN=BPsin ∠B=1213(AD+CD+BC-t )=12(31)13t -,则y=12EF×PN=30(31)13t -,为一次函数. 9.2 10. (3)(3)x x x +- 11. x ≠±4 12. 6.3×10-413.3∵图象开口向下,∴a <0,∵对称轴在y 轴左侧,∴a ,b 同号,∴a <0,b <0,∵图象经过y 轴正半轴,∴c >0, ∴M=a+b-c <0,当x=-2时,y=4a-2b+c <0,∴N=4a-2b+c <0, ∵-ab2>-1,∵a <0,∴b >2a ,∴2a-b <0,∴P=2a-b <0,值小于0的数有M ,N ,P 14.x 1=10,x 2=1115.如图,为了便于标注字母,且位置更清晰,每次旋转后不防向右移动一点,第8题图第15题图第1次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,路线长为90111802ππ⨯=; 第2次旋转路线是以正方形的对角线长2为半径,以90°圆心角的扇形,路线长为9022ππ⨯=; 第3次旋转路线是以正方形的边长为半径,以90°圆心角的扇形,路线长为90111802ππ⨯=;第4次旋转点O 没有移动,旋转后于最初正方形的放置相同, 因此4次旋转,顶点O 经过的路线长为1212222ππππ+++=; ∵61÷4=15…1,∴经过61次旋转,顶点O 经过的路程是4次旋转路程的15倍加上第1次路线长,即2211522ππ+⨯+=152312π+.故答案分别是: 152312π+. 16. 31<≤x .17. (1)9天,9天…2分;(2)18,0.28,作图略…2分;(3)(11+8+6+4+2)120050⨯÷=744(人) 18.(1)BD=CD .理由如下:∵AF ∥BC ,∴∠AFE=∠DCE ,∵E 是AD 的中点, ∴AE=DE ,在△AEF 和△DEC 中,AFE DCEAEF DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DEC (AAS ),∴AF=CD ,∵AF=BD ,∴BD=CD ;……3分(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.理由如下:∵AF ∥BD ,AF=BD , ∴四边形AFBD 是平行四边形,∵AB=AC ,BD=CD ,∴∠ADB=90°,∴▱AFBD 是矩形.……6分 19.(1)设打折前售价为x ,则打折后售价为0.9x ,由题意得,360360100.9x x+=, 解得:x=4,经检验得:x=4是原方程的根,答:打折前每本笔记本的售价为4元.……3分(2)设购买笔记本y 件,则购买笔袋(90-y )件,由题意得,360≤4×0.9×y+6×0.9×(90-y )≤365, 解得:6729≤y≤70,∵x 为正整数,∴x 可取68,69,70 故有三种购买方案:方案一:购买笔记本68本,购买笔袋22个;方案二:购买笔记本69本,购买笔袋21个;方案三:购买笔记本70本,购买笔袋20个……6分20.①公平 因为获胜概率相同都等于18…3分;②不公平;因为甲获胜概率为31,乙获胜概率为61.21.(1)∵点A (-3,2)在双曲线y=mx上,∴2=3m -,即m=-6,∴双曲线的解析式为y=-6x ,∵点B在双曲线y=-6x 上,且OC=6BC ,设点B 的坐标为(a ,-6a ),∴-6a=-6a,解得:a=±1(负值舍去),∴点B 的坐标为(1,-6),∵直线y=kx+b 过点A ,B ,∴236k b k b =-+⎧⎨-=+⎩,解得:24k b =-⎧⎨=-⎩.∴直线解析式为y=-2x-4…4分;(2)-3<x<0或x>1…7分;(3)12…22.(1)过点E 作圆A 的切线EN ,连接AN ,则AN ⊥EN ,由题意得,CE=9×2=18海里,则AE=AC-CE=52-18=34海里,∵sin ∠AEN=1234AN AE =≈0.35,∴∠AEN=20.5°,∠NEM=69.5°,即必须沿北偏东至少转向69.5°航行,才能恰好避免进入钓鱼岛12海里禁区.……4分(2)过点D 作DH ⊥AB 于点H ,由题意得,BD=2×12=24海里,在Rt △DBH 中,DH=12BD=12海里,BH=123海里,∵AF=12海里,∴DH=AF ,∴DF ⊥AF ,此时海监船以最大航速行驶, 海监船到达点F 的时间为:6012318818DF AB BH --==≈2.2小时;渔船到达点F 的时间为:52-18-1299EF ==2.4小时,∵2.2<2.4,∴海监船比日本渔船先到达F 处.……8分23.(1)证明:过O 点作OE ⊥CD 于点E ,∵AM 切⊙O 于点A ,∴OA⊥AD ,又∵DO 平分∠ADC ,∴OE=OA ,∵OA 为⊙O 的半径,∴OE 是⊙O 的半径,且OE ⊥DC ,∴CD 是⊙O 的切线;……4分(2)连OC ,∵DC 、AM 、BC 为圆的切线,由切线长定理易证DC=AD+BC=13,易证△DOC为直角三角形,则△AO D ∽△OCD ,从而OD 2=DC ·AD ,OD=213;也可过D 作DF ⊥BC ,先求圆半径为6…8分 24.(1)x=0时,甲距离B 地30千米,所以,A 、B 两地的距离为30千米;……2分(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=23,23×30=20千米,所以,点M 的坐标为(23,20),表示23小时后两车相遇,此时距离B 地20千米;……5分 (3)设x 小时时,甲、乙两人相距3km ,①若是相遇前,则15x+30x=30-3,解得x=35,②若是相遇后,则15x+30x=30+3,解得x=1115,③若是到达B 地前,则15x-30(x-1)=3,解得x=95,所以,当35≤x≤1115或95≤x≤2时,甲、乙两人能够用无线对讲机保持联系.…9分106C(0,8),则DC =BC =AB =4∠D =∠AOE =90° ∠AEO =∠CED ,∴△AE O ≌△CED ∴DE =OE 设OE =x ,则EC =8-x ∴2224)8(+=-x x .∴OE =3 ∴E 点为(3,0) 设过A ,E 两点直线解析式为b kx y +=,得434+-=x y …………(3分) (2)过D 作D G ⊥OC 于G ,故△CD E ∽△DGE,∵OE =3 ∴EC =5, ∴CD DG EC DE =,DE EG EC DE =,即512=DG ,59=EG ,∴)512,524(-D 由于过点O 、D 、C 的抛物线经过原点,则设bx ax y +=2,而C(0,8),)512,524(-D ∴⎪⎩⎪⎨⎧-=+=+512524)524(08642b a b a 解之得325=a 45-=b ∴x x y 453252-= ∴25)168(3254532522-+-=-=x x x x y 25)4(3252--=x ,故经点F 的坐标为)25,4(-F …(6分)(3)①易求直线AC 的解析式为421+-=x y AC ,设直线FP 交AC 于H ,)421,(+-m m H过H 作H M ⊥OA 垂足为M ,则△AMH ∽△AOC ∴ACAHOC MH = ∴S △FAH :S △FHC =1:3或3:1 ∴3:1=HC AH 或3:1 即4:1==OCMHAC AH 或3:4 …(9分)∴2=HM 或6,而m=2或6,∴)3,2(1H ,)1,6(2H …………(10分)∴直线FH 1的解析式为217411+-=x y ,当4=y 时,1118=x 直线FH 2的解析式为21947-=x y ,当4=y 时,754=x故当1118=t 秒或754秒,直线FP 把△FAC 分成面积之比为1:3两部分. ………(10分)②a 、当FP ⊥AB 时,t=4(s )……(11分);b 、当PF ⊥AF 时,16233=t (s )……(12分)。
黄冈市红安县2013年秋九年级六校联考政治试题第I卷:选择题部分(共20分)一:单项选择题(每题2分,共20分,请将答案按序号涂在答题卡上)1、“如果你没有离开,依然会,带吴钩,巡万里关山。
多希望你只是小憩,醉一下再挑灯看剑,梦一回再吹角连营。
你听到了么?那战机的呼啸,没有悲伤,是为你而奏响!”这是组委会对2012年“感动中国”年度人物歼—15现场总指挥罗阳的颁奖词。
他的故事告诉我们要①自觉履行社会责任,不言代价与回报②爱岗敬业,让自身价值在奉献中提升③献身国防才能实现人生价值,获得荣誉④服务社会,努力做一个负责任的公民A.①②③B.①②④C.①③④D.②③④2、在2012年欧债危机中,中国不仅向国际货币基金组织增资430亿美元,还继续购买欧元区国债,投资欧洲金融稳定基金。
这表明中国:①国际影响力日益提高;②中国实行了对外开放的基本国策;③在国际舞台上发挥着越来越重要的作用;④是促进世界共同发展的中坚力量.A.①②③B.②③④C.①②④D.①②③④3、我们要建设社会主义和谐社会,就必须从中国的国情出发。
中国最基本的国情是:A.我国正处于社会主义初级阶段 B.我国人口基数大、增长速度快C.我国面临严峻的资源环境形势D.我国与发达国家相比还有很大差距4、“民生”,已成为今天中国在追求幸福过程中的网络热词和时代强音。
2012年中央财政用于民生各方面支出的增幅均高于当年中央财政收入9.4%的增幅。
2013年中央财政将进一步优化支出结构,突出重点、控制一般,把财政资金用在刀刃上,切实保障和改善民生。
保障和改善民生的举措能够()。
①推动社会主义和谐社会建设②鼓舞人民投身社会主义现代化建设③从根本上解决我国社会的主要矛盾④保障人民共享改革开放的成果A.①②③B.②③④C.①②④D.①②③④5、实现祖国的完整统一,是海内外中华儿女的共同心愿,党和政府制定了的基本方针是发展两岸关系和实现和平统一的基础是A.坚持社会主义制度和平统一,一国两制B.坚持一个中国原则和平统一,一国两制C.和平统一,一国两制坚持一个中国原则D.和平统一,交流合作和平统一,一国两制6、总书记强调,改革开放是一项长期的、艰巨的、繁重的事业,必须一代又一代人接力干下去。
湖北省黄冈市红安县六校2014届九年级上学期12月联
考数学试题
一、选择题(共8小题,每小题3分,满分24分)
1.
=x -2,那么x 的取值范围是( )
A .x ≥2
B .x<2
C .x ≤2
D .x>2
2.若x=3是方程x 2-3mx+6m=0的一个根,则m 的值为( )
A .1
B .2
C .3
D .4
3.如图所示, AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD ,
若∠CAB =35°,则∠ADC 的度数为( )
A .35°
B .45°
C .55°
D .65°
4.下列事件中,属于随机事件的是( )
A .掷一枚均匀的正方体骰子所得的结果超过13
B .买一张彩票中奖
C .口袋中装有10个红球,从中摸出一个红球
D
.太阳从西边落下
5. 下列图形中既是中心对称图形,又是轴对称图形的是( )
A .①②
B .①③
C .②③
D .③
8.如图,⊙O P 是直线
y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q
为切点,则切线长PQ 的最小值为( ) 第6题 第7题
第3题
A .3
B .4
C .6.-1
________ cm..
两处入口的中路宽都 。
13.二次函数4322-+-=x x y ,当x = 时,y 的值最大。
三、解答题(共9小题,满分72分)
17.(本小题5分)解方程:254x += 第15题 第16题
A
B
19.(本小题6分)如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE=DC ,以D 为圆心,DB 长为半径作⊙D ,AB=5,EB=3.
(1)求证:AC 是⊙O 的切线;
(2)求线段AC 的长.
20.(本小题7分)给出如下定义:若一个四边形中存在相邻两边的平方和等
于一条对角线的平方,则称该四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称:__________和_________;
(2)如图,将ABC △绕顶点B 按顺时针方向旋转60,得到DBE △,连接AD DC ,,已知30DCB =∠.求证:222DC BC AC +=,即四边形ABCD
21.(本小题6分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字。
现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的
22.(本小题8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在已备足可以砌50m 长的墙的材料,试设计一种
砌法,使矩形花园的面积为300m 2.
23.(本小题8分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道, 需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面; 60第20题图
(2)若这个输水管道有水部分的水面宽AB=16cm ,水面最深地方的高度为4cm , 求这个圆形截面的半径.
24.(本小题12分)有一种螃蟹,从海上捕获后不放养,最多只能存活两天,如果放养 在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量 基本保持不变.现有一经销商,按市场价收购了这种活蟹1 000千克放养在塘内,此时市场 价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种 费用400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价是每千克 20元.
(1)设x 天后每千克活蟹的市场价为P 元,写出P 关于x 的函数关系式;
(2)如果放养x 天后将活蟹一次性出售,并记1 000千克蟹的销售总额Q 元,写出Q 关于x 的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用 )?最大利润是多少?
25.(本小题14分)如图,在平面直角坐标系中,抛物线23
4322++-=x x y 交x 轴于A,
B 两点(A 在B 的左侧),交y 轴于点
C 。
(1) 求直线BC 的解析式;
(2)求抛物线的顶点及对称轴;
(3)若点Q 是抛物线对称轴上的一动点,线段AQ+CQ 是否存在最小值,若存在,求出点 Q 的坐标,若不存在,说明理由;
(4)若点P 是直线BC 上方的一个动点,△PBC 的面积是否存在最大值,若存在,求出点 P 的坐标及此时△PBC 的面积,若不存在,说明理由;
数学参考答案
1.A
2.C
3.C
4.B
5.B
6.B
7.D
8.B
9.43 10.40°11.7 12.5000m 2 13.
43 14.152 15. 32316-π cm 2 16.( 27,6
5) 17. 7,121==x x (未检验扣1分) 1 8. 化简得:
b a -1,结果为:21- 19. 证明:(1)过点D 作DF ⊥AC 于F ;
∵AB 为⊙D 的切线,
∴∠B=90°
∴AB ⊥BC
∵AD 平分∠BAC ,DF ⊥AC
∴BD=DF
∴AC 与圆D 相切;
(2)在△BDE 和△DCF 中;
∵BD=DF ,DE=DC ,
∴Rt △BDE ≌Rt △DCF (HL ),
∴EB=FC .
∵AB=AF ,
∴AB+EB=AF+FC ,
即AB+EB=AC ,
∴AC=5+3=8.
20.(1).正方形,直角梯形等 (2). 证明:连接EC ,
∵将△ABC 绕顶点B 按顺时针方向旋转60°,得到△DBE ,
∵△ABC ≌△DBE ,
∴AC=DE ,BC=BE ,
∵∠CBE=60°,
∴EC=BC ,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
∴DC 2+EC 2=DE 2,
∴DC 2+BC 2=AC 2,
即四边形ABCD 是勾股四边形.
21. 解:(1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标,如图:
答:AB 边砌15米,BC 边砌20米。
23.解:(1)如图, (2).过点O 作O C ⊥AB 于点C,交弧AB 于点D,
依题意CD=4,AC=8,设⊙O 的半径为x,在Rt △AOC 中,
依题意列方程:x 2-(x-4)2=82
解得:x=10
答:⊙O 的半径为10cm.
24解:(1)P =30+x .
(2)Q =(30+x )(1 000-10x )+20·10x =-10x 2+900x +30 000.
(3)设利润为w 元,则
w =(-10x 2+900x +30 000)-30·1 000-400x =-10(x -25)2+6 250.
∵-10<0,
∴当x =25时,w 有最大值,最大值为6 250.
答:经销商将这批蟹放养25天后出售,可获得最大利润.
25.解:(1)232
+-=x y
(2)(1,38
);1=x
(3)存在Q (1,34
)
(4)存在P(23,45),此时,S △PBC 最大=49。