数列求和7种方法(方法全_例子多)
- 格式:doc
- 大小:428.00 KB
- 文档页数:18
来源:网络转载数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法:一、公式法1、等差数列前n 项和公式2、等比数列前n 项和公式二、拆项分组求和法某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。
三、裂项相消求和法将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。
四、重新组合数列求和法将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和五、错位相减求和法适用于一个等差数列和一个等比数列对应项相乘构成的数列求和典型例题一、拆项分组求和法 例1、求数列1111123,2482n n ⎛⎫+ ⎪⎝⎭,,,,的前n 项和例2、求和:222221111n n x x x x x ⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法例5、求和:()()11113352121n S n n =+++⨯⨯-+ 例6、求数列1111,,,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++⨯⨯+ 例8、数列{}n a 的通项公式11n a n n =++,求数列的前n 项和三、重新组合数列求和法例9、求2222222212345699100-+-+-++-四、错位相减求和法来源:网络转载例10、求数列123,,,,,2482n n 的前n 项和例11、求和:()23230n n S x x x nx x =++++≠。
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+ 特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n kS nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.练习:求:S n =1+5x+9x 2+······+(4n-3)x n-13. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式: 1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n项和.[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.练习: 求:S n=1+5x+9x 2+······+(4n -3)xn-13. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设kk k k k k a k ++=++=2332)12)(1(∴∑=++=nk n k k k S 1)12)(1(=)32(231k k k n k ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n(分组求和)=2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211n n 的前n 项和。
数列求和的七种根本方法甘志国局部容(已发表于 数理天地(高中),2014(11):14-15)数列求和是数列问题中的基此题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种根本方法.1 运用公式法很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记:还要记住一些正整数的幂和公式:例1 数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤⇔>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时,所以 2232(1,2,,16)32512(17,)n n nn T n n n n *⎧-=⎪=⎨-+≥∈⎪⎩N 且例2 求1)2(3)1(21⋅++-⋅+-⋅+⋅=n n n n S n .解 设2)1()1(k n k k n k a k -+=-+=,此题即求数列}{k a 的前n 项和.高考题1 (2014年高考卷文科第19题(局部))求数列{}21n -的前n 项和n S . 答案:2n S n =.高考题2 (2014年高考卷理科第19题(局部))求数列{}24n -的前n 项和n S . 答案:23n S n n =-.高考题3 (2014年高考卷文科第17题)在等比数列{}n a 中,253,81a a ==.(1)求n a ; (2)设3log nn b a =,求数列{}n b 的前n 项和n S .答案:(1)13n na -=;(2)22n n nS -=.高考题4 (2014年高考卷文科第16题){}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.(1)求n a 及n S ;(2)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式及其前n 项和n T .答案:(1)221,n n a n S n =-=;(2)2122,(41)3n n n n b T -==-.2 倒序相加法事实上,等差数列的前n 项和n S 的公式推导方法就是倒序相加法. 例3 求正整数m 与()n m n <之间的分母为3的所有既约分数的和S . 解 显然,这些既约分数为:有 )31()32()34()34()32()31(-+-+-++++++=n n n m m m S 也有 )31()32()34()34()32()31(++++++-+-+-=m m m n n n S所以 2222),(2)(2)(2m n S m n m n n m S -=-=-⋅+=例4 设4()42xx f x =+,求和12320012002200220022002f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.解 可先证得()(1)1f x f x +-=,由此结论用倒序相加法可求得答案为20012. 3 裂项相消法例5 假设}{n a 是各项均不为的等差数列,求证:1113221111++=+++n n n a a n a a a a a a . 证明 设等差数列}{n a 的公差为d :假设0d =,要证结论显然成立;假设0≠d ,得例8 证明222211112(123n n*++++<∈N 且2)n ≥. 证明 22221312111n++++高考题5 (2014年高考全国大纲卷理科第18题)等差数列{}n a 的前n 项和为n S ,110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 答案:(1)133n a n =-;(2)10(103)n nS n =-.高考题6 (2014年高考卷文科第19题)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有31)1(1)1(1)1(12211<++++++n n a a a a a a .答案:(1)12a =;(2)2n a n =;(3)当1n =时,可得欲证成立.当2n ≥时,111111(1)2(21)(21)(21)22121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,再用裂项相消法可得欲证.高考题7 (2014年高考卷理科第19题)等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列}{n a 的通项公式;(2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T . 答案:(1)21n a n =-,2221221n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数.4 分组求和法例9 求11111111111224242n nS -⎛⎫⎛⎫⎛⎫=+++++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解 设11111242n n a -=++++,得1122n n a -=-.所以此题即求数列1122n -⎧⎫-⎨⎬⎩⎭的前n 项和: 例10 设数列}{n a 的前n 项和n S 满足221⎪⎭⎫⎝⎛+=n n a S ,又n n n S b )1(-=,求数列}{n b 的前n 项和n T .解 在221⎪⎭⎫⎝⎛+=n n a S 中,令1n =可求得11=a .还可得相减,得所以}{n a 是首项为1公差为2的等差数列,得所以 222)1(,21n b n a S n n n n ⋅-==⎪⎭⎫⎝⎛+=当n 为偶数时, 当n 为奇数时, 总之,2)1()1(+⋅-=n n T nn . 高考题8 (2014年高考卷文科第15题){}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和.答案:(1)1=3,=32n n n a n b n -+;(2)3(1)212n n n ++-. 高考题9 (2014年高考卷文科第19题)在等差数列{}n a 中,公差2d =,2a 是1a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .答案:(1)2n a n =,2(1)2(1)2n n n T n n n ⎧+-⎪⎪=⎨+⎪⎪⎩为奇数为偶数.高考题10 (2014年高考卷理科第19题(局部))求数列12(1)n n n ⎧⎫-⎨⎬+⎩⎭的前n 项和n S .答案:1221n nn +--+. 5 错位相减法高考题11 (2014年高考卷理科第17题)首项都是1的两个数列{}{}∈≠n b b a n n n ,0(,N *)满足02111=+-+++n n n n n n b b b a b a .(1)令nnn b a c =,求数列{}n c 的通项公式; (2)假设13-=n n b ,求数列{}n a 的前n 项和n S .解 (1)12-=n c n .(2)得13)12(-⋅-==n n n n n c b a .先写出n S 的表达式:13213)12(37353311-⋅-++⋅+⋅+⋅+⋅=n n n S ①把此式两边都乘以公比3,得n n n n n S 3)12(3)32(35333131321⋅-+⋅-++⋅+⋅+⋅=- ②①-②,得n n n n S 3)12(32323232121321⋅--⋅++⋅+⋅+⋅+=-- ③13)12()3232323232(213210-⋅--⋅++⋅+⋅+⋅+⋅=--n n n n S ④由等比数列的前n 项和公式,得23)22(13)12(132+⋅-=+⋅-++-=n n n n n n S ⑤因为此解答确实步骤多,且有三步容易出错:(1)等式③右边前n 项的符号都是"+〞,但最后一项为哪一项"—〞;(2)当等式③右边的前n 项不组成等比数列时,须把第一项作微调,变成等比数列(即等式④),这增加了难度;(3)等式⑤中最后一步的变形(即合并)有难度.但这种方法(即错位相减法)又是根本方法且程序法,所以备受命题专家的青睐,在高考试卷中频频出现就缺乏为怪了.考生在复习备考中,应彻底弄清、完全掌握,争取拿到总分值.这里笔者再给出一个小技巧——检验:算得了n S 的表达式后,一定要抽出万忙的时间检验一下21,S S 是否正确,假设它们均正确,一般来说就可以确定算对了,否则就算错了,需要检查(重点是检查容易出错的三点)或重算.对于此题,已经算出了13)1(+⋅-=n n n S ,所以10,121==S S .而由通项公式可知1033,1111121=⋅+==⋅=S S S ,所以求出的答案正确.高考题12 (2014年高考课标全国卷I 文科第17题){}n a 是递增的等差数列,42,a a 是方程2560x x -+=的根.(1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 答案:(1)121+=n a n . (2)用错位相减法可求得答案为1242++-n n . 高考题13 (2014年高考卷文科第18题)数列{}n a 满足111,(1)(1),n n a na n a n n n +==+++∈N *.(1)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)设3nn b =,求数列{}n b 的前n 项和n S . 答案:(1)略.(2)由(1)可求得2n a n =,所以3n n b n =⋅,再用错位相减法可求得433)12(1+⋅-=+n n n S .高考题14 (2014年高考卷文科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *). (1)证明:数列{}n b 为等比数列;(2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列2{}n n a b 的前n 项和n S .答案:(1)略.(2)可求得,2n n n a n b ==,所以24n n n a b n =⋅,再用错位相减法可求得944)13(1+⋅-=+n n n S .高考题15 (2014年高考卷理科第19题)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2xf x =的图象上(n ∈N *).(1)假设12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 答案:(1)2=3n S n n -.(2)可求得,2n n n a n b ==,所以2n n n a nb =,再用错位相减法可求得答案为nn n T 222+-=. 6 待定系数法例11 数列}3)12{(nn ⋅-的前n 项和=n S .解 设等差数列{}m a 的公差为d ,等比数列{}m b 的公比为(1)q q ≠,得 先用错位相减法求数列{}m m a b ⋅的前n 项和n S :所以有下面的结论成立:假设{},{}m m a b 分别是等差数列、等比数列(其公比1≠q ),且11,a b 均是与n 无关的常数,则数列{}m m a b ⋅的前n 项和b q b an S n n -+=)(,其中,a b 是与n 无关的常数.由此结论就可以用待定系数法快速求解此题: 可设()3n n S an b b =+⋅-(其中,a b 是常数).可得123,32730S S ==+=,所以3()39(2)30a b b a b b +-=⎧⎨+-=⎩,解得33a b =⎧⎨=-⎩,所以33)1(1+⋅-=+n n n S .例12 求和12212+22+32++(1)2+2n n n n S n n --=⋅⋅⋅-⋅⋅.解 得012111111+2+3++22222n n n S n -⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.用待定系数法可求出该等式的右边为1242n n -+-,所以2224n n S n +=--. 七、求导法、积分法例13 (1)求证:)1(111132≠--=++++++x x x x x x x n n; (2)求证:)1()1(1]1)1[(321212≠-+--=++++-x x x n x nx x x n n ;(3)求数列{}(21)3nn -⋅的前n 项和n S(此即例6).解 (1)当0=x 时,显然成立.当0≠x 时,由等比数列的前n 项和公式知,欲证结论也成立.(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立.(3)1(21)3=6(3)3nn n n n --⋅⋅-.由(2)的结论中令3=x ,得数列{}13n n -⋅的前n 项和为413)12(+⋅-n n ;又数列{}3n的前n 项和为2331-+n .所以数列{}(21)3nn -⋅的前n 项和为高考题16 (2008年高考卷第23题)请先阅读:在等式∈-=x x x (1cos 22cos 2R )的两边对*求导,得)1cos 2()2(cos 2'-='x x .由求导法则,得)sin (cos 42)2sin (x x x -⋅=⋅-,化简后得等式x x x cos sin 22sin =.(1)利用上题的想法(或其他方法),试由等式∈++++=+x x C x C x C C x nn n n n n n ()1(2210 R ,整数)2≥n 证明:∑=--=-+nk k k n n x kC x n 211]1)1[(.(2)对于整数3≥n ,求证: (i))1(1=-∑=nk knkkC ; (ii))1(12=-∑=nk k n kC k ;(iii)1121110+-=++=∑n C kn nk kn .答案:(1)在等式两边对x 求导后移项可得欲证. (2) (i)在结论(1)中令1-=x 可证.(ii)由等式两边对x 求导后再求导,又令1-=x ,得0)1()1(22=--∑=-nk k k nCk k ,即0)()1(12=--∑=nk kn kC k k ,再由结论(i)得结论(ii)成立.(iii)在等式两边在[0,1]上对x 积分后可得欲证.。
求数列求和的方法数列求和是数学中的一个重要问题,它涉及到数列的性质和求解方法。
在数学中,数列求和有多种方法,下面将为您介绍最常用的数列求和方法。
一、等差数列求和等差数列是指数列中相邻两项之差都相等的数列。
等差数列求和的公式如下:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和,a1表示等差数列的第一项,an表示等差数列的第n项,n表示等差数列的项数。
二、等比数列求和等比数列是指数列中相邻两项之比都相等的数列。
等比数列求和的公式如下:Sn=a1*(1-q^n)/(1-q)其中,Sn表示等比数列的前n项和,a1表示等比数列的第一项,q表示等比数列的公比,n表示等比数列的项数。
三、算术级数求和算术级数是指数列中每一项与前一项的差为一个固定的数d的数列,它可以看作是等差数列的变形。
算术级数求和的公式如下:Sn = (a1 + an) * n / 2其中,Sn表示算术级数的前n项和,a1表示算术级数的第一项,an 表示算术级数的第n项,n表示算术级数的项数。
四、几何级数求和几何级数是指数列中每一项与前一项的比为一个固定的数q的数列,它可以看作是等比数列的变形。
几何级数求和的公式如下:Sn=a*(1-q^n)/(1-q)其中,Sn表示几何级数的前n项和,a表示几何级数的第一项,q表示几何级数的公比,n表示几何级数的项数。
五、调和级数求和调和级数是指数列的每一项都是倒数数列的项的数列,它的求和公式如下:Sn=1/1+1/2+1/3+...+1/n其中,Sn表示调和级数的前n项和,n表示调和级数的项数。
六、费马数列求和费马数列是一个特殊的数列,它的每一项都是前一项的平方。
费马数列求和的公式如下:Sn=(a1^(n+1)-1)/(a1-1)其中,Sn表示费马数列的前n项和,a1表示费马数列的第一项,n 表示费马数列的项数。
七、斐波那契数列求和斐波那契数列是一个经典的数列,它的每一项都是前两项的和。
数列求和常用方法总结一、公式法:必须记住几个常见数列前n 项和 等差数列:2)1(2)(11d n n na a a n S n n -+=+=; 等比数列:⎪⎩⎪⎨⎧≠--==11)1(111q q q a q na S n n ;例1.求和(1)1+2+3+…+n=二、分组求和法例2.求和:()()()()n S n n -++-+-+-=2322212321解:三、错位相减法 例3. 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 解:由题可知,⎭⎬⎫⎩⎨⎧n n 22的通项是等差数列{2n}的通项与等比数列⎭⎬⎫⎩⎨⎧n 21的通项之积 n n n S 2226242232+⋅⋅⋅+++=…………………………………① (乘公比) 14322226242221++⋅⋅⋅+++=n n n S ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S (错位相减) 1122212+---=n n n∴ 1224-+-=n n n S练习:1、求数列()13231,,35,34,33,2-⨯+⨯⨯⨯n n 的前n S n 项和.nn n S 2)12(...252321232⨯-++⨯+⨯+⨯=、求和:四、裂项相消法把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:(1)111)1(1+-=+n n n n (2) 1111()(2)22n n n n =-++ (3) )121121(21)12)(12(1+--=+-n n n n (4)n n n n -+=++111 例4. 已知数列{}()11+=n n a a n n 中,,求前n S n 项和.练习:1、在数列{}n a 中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{}nb 的前n S n 项和.2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.。
有关数列求和公式方法总结有关数列求和公式方法总结总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。
以下是小编精心整理的数列求和公式方法总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。
一般步骤是:拆裂通项――重新分组――求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和解由和式可知,式中第n项为an=n(3n+1)=3n2+n∴Sn=1×4+2×7+3×10+…+n(3n+1)=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)=3(12+22+32+…+n2)+(1+2+3+…+n)=3×16n(n+1)(2n+1)+n(n+1)2=n(n+1)2二、奇偶分析求和法求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。
例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶性有关,故利用奇偶分析法及分组求和法求解,也可以在奇偶分析法的基础上利用并项求和法求的结果。
解:当n为偶数时,Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)=-n2(1+2n-3)2+n2(3+2n-1)2=-n2-n2+n2+n2=n当n为奇数时,Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)=-n+12(1+2n-1)2+n-12(3+2n-3)2=-n2+n2+n2-n2=-n综上所述,Sn=(-1)nn三、并项求和法一个数列an的前n项和Sn中,某些项合在一起就具有特殊的`性质,因此可以几项结合求和,再求Sn,称之为并项求和法。
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+L ;(2)21nk k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2123[]n n n +++++=L ;(4)1(21)n k k =-=∑2135(21)n n ++++-=L .例1 已知3log 1log 23-=x ,求23n x x x x ++++ 的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 23n n S x x x x =++++L=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++ ,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
百度文库-让每个人平等地提升自我数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n)等差数列求和公式:等比数列求和公式:S nS nnk3k 1S nS n1)1)]2na13d1[例1]已知x ,求xx2解:由等比数列求和公式得na1印(11(q 1) x3a.qS n[例2]设S n= 1+2+3+ …+n, n€ N*,求f(n)4、S n的前(q 1)nk2k 1n项和.2x3x(1 x n)1 x2(1S n(n 32)S n 1」n(n 1)(2 n 1)6x nJ2L =1 _ 丄11 2n2的最大值.(利用常用公式)百度文库-让每个人平等地提升自我2解:由等差数列求和公式得1Sn2n(n 1),S n1-(n 1)( n 2) 2(利用常用公式)S n…f(n) (n 32)S n 1n ~2n 34n 641 ""“ 64n 34•••当 n -8•一 n1 I,5050,即 8 时,f (n )max50二、错位相减法求和这种方法是在推导等比数列的前 n 项和公式时所用的方法, 项和,其中{ a n }、{ b n }分别是等差数列和等比数列 2 3[例 3]求和:S n 1 3x 5x 7x(2n 1)x n 1解:由题可知, {(2n 1)x n 1}的通项是等差数列设xS n1x 3x 2 5x 3 7x 4(2n 这种方法主要用于求数列 {2n — 1}的通项与等比数列{ x nn1)x ①一②得 (1 x)S n 1 2x 2x 2 2x 32x 42x n 1(2n 1)x n{a n • b n }的前n}的通项之积 (设制错位)(错位相减)再利用等比数列的求和公式得:(1X )Snn 1c 1 X /c 2x(2n1 xn1)x[例4]求数列2,-62 2 解:由题可知,设S n2 ' '2n4 22 4 戸 2 22 22①一②得(1n 1S (2n 1)x(2nS n2(1 x)贵前n 项的和.1)x n (1 x) }的通项是等差数列{2n }的通项与等比数列{ I }的通项之积2n_6_ 23 6 24 1)S n2S n2 22 1尹n 2 yr....................2n、“ 1 2 2 23 24 2n盯 2 2n 2* 2*1(设制错位) (错位相减)百度文库-让每个人平等地提升自我练习题1 已知,求数列{a n}的前n项和S.答案:练习题的前n项和为百度文库-让每个人平等地提升自我答案:三、逆序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a.a n).0 12[例5]求证:C n 3C n 5C n(2n 1)C:(n 1)2n证明:设S n C0 3C1 5C;(2n i)c n把①式右边倒转过来得又由c nmS n (2n 1)C:(2nC:m可得S n (2n 1)C0 (2n①+②得2S n(2nS n (n1)C:1i)c n2)(C°C:1) 2n3c n C0(反序)3C;1C n 1 nC:C n n) 2(n 1) 2n(反序相加)题1 已知函数(1)证明:(2)求的值.解:(1 )先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1 )小题已经证明的结论可知, 两式相加得:百度文库-让每个人平等地提升自我所以四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可 .1 1[例7]求数列的前n 项和:1 1,— 4,-y 7,a a 1 1解:设 S n (1 1) (- 4) (-2a a将其每一项拆开再重新组合得1 S n (1 一a3n 2,•-7)(丄 a n 13n 2)1a(3n 1)n2丄 孑(3n 1)n\ 1丄a[例8]求数列{n(n+1)(2n+1)}的前n 项和.当a = 1时, 当a 1时,S n解:设 a k k(k 1)(2k 1)2k 3 )(13k 23n 2)(3n 1)n1a a 1(3n 1)n 2nS n k(k 1)(2kk 11)n(2 k 313k 2 k)将其每一项拆开再重新组合得nS n = 2k 1k 3 k 2=2(13 233\n )3(12 2 (1 2n)(分组)(分组求和)(分组)2 2n (n 1) n(n 1)(2n 1) n(n 1)2 2 22n(n 1) (n 2)2(分组求和)五、裂项法求和 这是分解与组合思想在数列求和中的具体应用 .裂项法的实质是将数列中的每项(通项)分解,然后 重新组合,使之能消去一些项,最终达到求和的目的.通项分解 (裂项)如:(1) a nf(n 1) f(n)(2) sin1 cos n cos(n 1)tan(n 1) tan n(3) a n1 n(n 1)(4) a n(2n )2 (2n 1)(2 n1)1 2n 1(5)a nn(n 1)( n 2) 12[n(n 1) (n 1)(n 2)](7)a na n(8) a n[例9]求数列n 2 1 n(n 1) 2n2(n 1) n n(n 1)1 2n1 n 2n 1,则 S n1(n 1)2n ' n1 (n 1)2n(An B)(A n C)C B (AnAn七)的前 n 项和.(裂项)解:设a n则S n=(.2 .1)(..n 1(3 (裂项求和)[例10]在数列{a n }中,a n、、n )-,求数列{b n }的前n 项的和•a n a n 1解:a n••• b nS n8[(1 =8(1/n 1(2009年广东文)20.(本小题满分n n 1 f nn 12 2}的前n 项和2)(丄1)2 3(14)(-二n n1 =8nn 114分)• 数列{b n (裂项)(裂项求和)1 x已知点(1,一)是函数f (x ) a (a 0,且a 1)的图象上一点,等比数列{a n }的前n 项和为f (n ) 3c ,数列{b n }(b n 0)的首项为 c ,且前 n 项和 S n 满足 S * — S n 1 = ... S n + .. S n1(n2).(1)求数列{a n }和{b n }的通项公式;1(2)若数列{—— bn b n}前n 项和为T n ,问Tn > 1000的最小正整数2009n 是多少?0.【解析】(1)a 1 又数列又公比又b n 数列b n ,a 2a 3f 3a n 成等比数列, a 2 a 12 27S n2n a12a s4 81 2 27所以1,所以3a nS n 1S n 1构成一个首相为 1( n N );1公差为 1的等差数列,1 n , S n n 21 2 2n 1 ;⑵T n1 1b|b2 b2b3b s b4HI ib n b n i7 III 1(2n 1) 2n 1由T n 11 1 1 11 -2 3 2 3 5HI 1 12 2n 112n 11 1丄2 2n 1n2n 1 n2n 11000得n 1000,满足T n2009 9竺0的最小正整数为112.2009练习题1.练习题2。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和Sn=2n-1,则=题2.若12+22+…+(n-1)2=an3+bn2+cn,则a= ,b= ,c=.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
=答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10练习、求和:练习题 1 设,则=___答案:2.练习题2.若S n=1-2+3-4+…+(-1)n-1·n,则S17+S33+S50等于 ( )A.1B.-1C.0 D .2解:对前n 项和要分奇偶分别解决,即: S n =答案:A练习题 3 1002-992+982-972+…+22-12的值是 A.5000 B.5050 C.10100 D.20200解:并项求和,每两项合并,原式=(100+99)+(98+97)+…+(2+1)=5050.答案:B七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8nn n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c nnn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。