(新课标)2021版高考数学一轮总复习综合试题(一)新人教A版
- 格式:docx
- 大小:60.79 KB
- 文档页数:7
2021年高考数学理新课标A 版一轮总复习开卷速查必修部分1集合1.若集合A ={x ∈R |ax 2+x +1=0}中只有一个元素,则a 的值为( )A.14B.12C .0D .0或14 解析:若a =0,则A ={-1},符合题意;若a ≠0,则Δ=1-4a =0,解得a =14.综上,a 的值为0或14,故选D. 答案:D2.[xx·课标全国Ⅱ]设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( )A .{1}B.{2} C .{0,1} D.{1,2}解析:N ={x |x 2-3x +2≤0}={x |1≤x ≤2},又M ={0,1,2},所以M ∩N ={1,2}.答案:D3.[xx·辽宁五校协作体期末]设集合M ={x |x 2+3x +2<0},集合N ={x |⎝ ⎛⎭⎪⎫12x ≤4},则M ∪N =( ) A .{x |x ≥-2} B.{x |x >-1}C .{x |x <-1} D.{x |x ≤-2}解析:∵M ={x |x 2+3x +2<0}={x |-2<x <-1},N ={x |⎝ ⎛⎭⎪⎫12x ≤4}={x |x ≥-2},∴M∪N={x|x≥-2},故选A.答案:A4.[xx·辽宁]已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x<1},故选D.答案:D5.若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1,x∈A},则∁R(A∩B)=()A.R B.(-∞,0]∪[2,+∞)C.[2,+∞) D.(-∞,0]解析:由2-x>0,得x<2,∴x-1<1,∴2x-1<21.∴A={x|x<2},B={y|0<y<2}.∴∁R(A∩B)=(-∞,0]∪[2,+∞),故选B.答案:B6.设全集U=R,A={x|x2+3x<0},B={x|x<-1},则图中阴影部分表示的集合为()A.{x|-1<x<0}B .{x |-1≤x <0}C .{x |0<x <3}D .{x |-3<x ≤-1}解析:由题意知,A ={x |-3<x <0},∁U B ={x |x ≥-1},图中阴影部分表示的集合为A ∩(∁U B )={x |-1≤x <0},故选B.答案:B7.已知集合A ={x |x 2-x ≤0},函数f (x )=2-x (x ∈A )的值域为B ,则(∁R A )∩B =( )A .(1,2]B.[1,2] C .[0,1] D.(1,+∞)解析:由题意知,集合A ={x |0≤x ≤1},∴B ={y |1≤y ≤2},∁R A ={x |x <0,或x >1},∴(∁R A )∩B =(1,2],故选A.答案:A8.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ax -1x -a <0,且2∈A,3∉A ,则实数a 的取值范围是________.解析:因为2∈A ,所以2a -12-a <0,即(2a -1)(a -2)>0,解得a >2或a <12.①若3∈A ,则3a -13-a <0,即(3a -1)(a -3)>0,解得a >3或a <13,所以3∉A 时,13≤a ≤3.②由①②可知,实数a 的取值范围为⎣⎢⎡⎭⎪⎫13,12∪(2,3]. 答案:⎣⎢⎡⎭⎪⎫13,12∪(2,3] 9.由集合A ={x |1<ax <2},B ={x |-1<x <1},满足A ⊆B 的实数a 的取值范围是__________.解析:当a =0时,A =∅,满足A ⊆B ;当a >0时,A ={x |1a <x <2a },由A ⊆B ,得⎩⎪⎨⎪⎧ a >0,2a ≤1,解得a ≥2;当a <0时,A ={x |2a <x <1a },由A ⊆B 得⎩⎪⎨⎪⎧ a <0,2a ≥-1,解得a ≤-2.综上,实数a 的取值范围是a ≤-2或a =0或a ≥2.答案:a ≤-2或a =0或a ≥210.函数f (x )=lg(x 2-2x -3)的定义域为集合A ,函数g (x )=2x -a (x ≤2)的值域为集合B .(1)求集合A ,B ;(2)若集合A ,B 满足A ∩B =B ,求实数a 的取值范围.解析:(1)A ={x |x 2-2x -3>0}={x |(x -3)(x +1)>0}={x |x <-1或x >3},B ={y |y =2x -a ,x ≤2}={y |-a <y ≤4-a }.(2)∵A ∩B =B ,∴B ⊆A ,∴4-a <-1或-a ≥3,∴a ≤-3或a >5,即a 的取值范围是(-∞,-3]∪(5,+∞).B 级 能力提升练11.已知集合M ={x |x +2x -8≤0},N ={x |y =-x 2+3x -2},在集合M 中任取一个元素x ,则“x ∈M ∩N ”的概率是( )A.12B.16C.310D.110解析:因为M ={x |x +2x -8≤0},所以M ={x |-2≤x <8}.因为N ={x |y =-x 2+3x -2},所以N ={x |-x 2+3x -2≥0}={x |1≤x ≤2},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-18+2=110,故选D. 答案:D12.[xx·福建]若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是__________.解析:因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上,符合条件的有序数组的个数是6.答案:613.[xx·湖北四校期中]设函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B ;(2)若C ={x |m -1<x <m +2},C ⊆B ,求实数m 的取值范围. 解析:(1)依题意,得A ={x |x 2-x -2>0}={x |x <-1或x >2}, B ={x |3-|x |≥0}={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1或2<x ≤3}.(2)因为C ⊆B ,则需满足⎩⎨⎧ m -1≥-3,m +2≤3.解得-2≤m ≤1.故实数m 的取值范围是[-2,1]. 14.已知集合A ={x |x 2-2x -3<0},B ={x |12<2x -1<8},C ={x |2x 2+mx -m 2<0}(m ∈R ).(1)求A ∪B ;(2)若(A ∪B )⊆C ,求实数m 的取值范围.解析:(1)A ={x |x 2-2x -3<0}=(-1,3),B ={x |12<2x -1<8}=(0,4),则A ∪B =(-1,4).(2)C ={x |2x 2+mx -m 2<0}={x |(2x -m )(x +m )<0}①当m >0时,C =⎝ ⎛⎭⎪⎫-m ,m 2,由(A ∪B )⊆C 得⎩⎪⎨⎪⎧ -m ≤-1,m 2≥4⇒m ≥8;②当m =0时,C =∅,不合题意;③当m <0时,C =⎝ ⎛⎭⎪⎫m 2,-m ,由(A ∪B )⊆C 得⎩⎪⎨⎪⎧ -m ≥4,m 2≤-1⇒m ≤-4;综上所述:m ≤-4或m ≥8.X w. 28486 6F46 潆_38309 95A5 閥 C26253 668D 暍35992 8C98 貘Y。
2021年高中数学 综合测试题 新人教A 版必修1一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设A ∪{-1,1}={-1,0,1},则满足条件的集合A 共有( ) A .2个 B .4个 C .6个D .8个解析 可用列举法写出A ={0},{-1,0},{0,1},{-1,0,1}共4个. 答案 B2.设集合M ={y |y =2x ,x ∈R },N ={x |y =log a (x +1),a >0,a ≠1},则M 与N 的关系是( )A .MN B .M NC .M =ND .M ∩N =∅解析 M ={y |y >0,y ∈R },N ={x |x >-1,x ∈R }, ∴MN .答案 A3.设函数f (x )=a-|x |(a >0,且a ≠1),f (2)=4,则( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2)解析 ∵f (2)=4,∴a -2=4,∴a =12,∴f (x )=⎝ ⎛⎭⎪⎫12-|x |=2|x |.∴f (-2)=22=4,f (-1)=2. ∴f (-2)>f (-1). 答案 A4.函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则a 的值为( )A .0B .1C .-1D .不存在解析 由f (0)=0,得a =-1. 答案 C5.函数f (x )对任意x ∈R ,都有f (x )=12f (x +1),当0≤x ≤1时,f (x )=x (1-x ),则f (-1.5)的值是( )A.14 B .-54C.18D.116解析 由题意知,f (-1.5)=12f (-1.5+1)=12f (-0.5)=14f (-0.5+1)=14f ⎝ ⎛⎭⎪⎫12 =14×12⎝ ⎛⎭⎪⎫1-12=116. 答案 D6.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 24-xx ≤0,f x -1-fx -2x >0,则f (3)的值为( )A .-1B .-2C .1D .2解析 ∵3>0,∴f (3)=f (3-1)-f (3-2)=f (2)-f (1)=f (2-1)-f (2-2)-f (1)=-f (0)=-log 24=-2.答案 B7.函数f (x )=1+log 2x 与g (x )=2-x +1在同一坐标系下的图象大致是( )解析f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).答案 C8.三个数60.7,0.76,log0.76的大小顺序是( )A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<0.76<60.7D.log0.76<60.7<0.76解析∵60.7>1,0<0.76<1,log0.76<0,∴60.7>0.76>log0.76,故选C.答案 C9.下列给出的四个函数f(x)的图象中能表示函数y=f(x)-1没有零点的是( )答案 C10.已知函数f (x )=log 12x ,则方程⎝ ⎛⎭⎪⎫12|x |=|f (x )|的实根个数是( )A .1B .2C .3D .2 006解析 ∵f (x )为偶函数,∴f (2)=f (-2).又∵-2<-32<-1,且f (x )在(-∞,-1)上是增函数,∴f (2)<f ⎝ ⎛⎭⎪⎫-32<f (-1).在同一平面直线坐标系中作出函数y =⎝ ⎛⎭⎪⎫12|x |及y =|log 12x |的图象如图,易得B.答案 B11.某新品牌电视投放市场后,第一个月销售100台,第二个月销售200台,第3个月销售400台,第四个月销售810台,则下列函数模型中能较好反映销售量y 与投放市场的月数x 之间的关系的是( )A .y =100xB .y =50x 2-50x +100 C .y =50·2xD .y =100log 2x +100解析 把x =1,2,3,4分别代入A 、B 、C 、D 知,C 正确. 答案 C12.若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )·(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析 令y 1=(x -a )(x -b )+(x -b )(x -c )=(x -b )[2x -(a +c )],y 2=-(x -c )(x -a ),由a <b <c 作出函数y 1,y 2的图象(图略),由图可知两函数图象的两个交点分别位于区间(a ,b )和(b ,c )内,即函数f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.答案 A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13.函数y =(log 3a )x在R 上为增函数,则a 的取值范围是________. 解析 由题意知log 3a >1.∴a >3 答案 (3,+∞)14.已知函数f (x )在区间(0,+∞)上有定义,且对任意正数x ,y ,都有f (xy )=f (x )+f (y ),则f (1)=________.解析 令x =y =1,则有f (1)=f (1)+f (1), ∴f (1)=0. 答案 015.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f ⎝ ⎛⎭⎪⎫-12·f ⎝ ⎛⎭⎪⎫12<0,则方程f (x )=0在[-1,1]内实根有________个.解析 依题意知,f (x )=0在⎝ ⎛⎭⎪⎫-12,12内有一个实根,又知f (x )在[-1,1]内是增函数,所以在[-1,1]内f (x )=0只有一个实根.答案 116.已知函数f (x )=lg(2x-b )(b 为常数),若x ∈[1,+∞)时,f (x )≥0恒成立,则b 的取值范围是________.解析 ∵要使f (x )=lg(2x-b )在x ∈[1,+∞)上,恒有f (x )≥0,∴2x-b ≥1在x ∈[1,+∞)上恒成立,即2x≥b +1恒成立.又∵指数函数g (x )=2x在定义域上是增函数.∴只要2≥b +1成立即可,解得b ≤1. 答案 (-∞,1]三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)设集合A ={x |0<x -a <3},B ={x |x ≤0或x ≥3},分别求满足下列条件的实数a 的取值范围:(1)A ∩B =∅; (2)A ∪B =B .解 ∵A ={x |0<x -a <3}, ∴A ={x |a <x <a +3}.(1)当A ∩B =∅时,有⎩⎪⎨⎪⎧a ≥0,a +3≤3,解得a =0.(2)当A ∪B =B 时,有A ⊆B ,所以a ≥3或a +3≤0,解得a ≥3或a ≤-3.18.(本小题满分12分)(1)计算:⎝ ⎛⎭⎪⎫279 12 +(lg5)0+⎝ ⎛⎭⎪⎫2764- 13 ; (2)解方程:log 3(6x-9)=3.解 (1)原式=⎝ ⎛⎭⎪⎫259 12 +(lg5)0+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫343- 13 =53+1+43=4. (2)由方程log 3(6x-9)=3得 6x-9=33=27,∴6x =36=62, ∴x =2.经检验,x =2是原方程的解.19.(本小题满分12分)已知函数f (x )=x 3-x 2+x 2+14,求证:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.证明 令g (x )=f (x )-x =x 3-x 2-x 2+14,∵g (0)=14>0,g ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫123-⎝ ⎛⎭⎪⎫122-14+14=-18<0,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎝ ⎛⎭⎪⎫0,12上是连续的, ∴存在x 0∈(0,12),使得g (x 0)=0,即f (x 0)=x 0.20.(本小题满分12分)f (x )是定义在R 上的奇函数,当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,0)上的解析式; (2)证明:f (x )在(0,1)上是减函数.解 (1)设x ∈(-1,0),则-x ∈(0,1),由x ∈(0,1)时,f (x )=2x4x +1知f (-x )=2-x 4-x +1=2x4x +1,又f (x )为奇函数知,-f (x )=2x4x +1,即f (x )=-2x4x +1.故当x ∈(-1,0)时,f (x )=-2x4x +1.(2)证明:设0<x 1<x 2<1,则f (x 2)-f (x 1)=2x 24x 2+1-2x 14x 1+1=2x 1+x 2-12x 1-2x 24x 1+14x 2+1.由0<x 1<x 2<1知,2x 1<2x 2, ∴2x 1-2x 2<0.又4x 1+1>0,4x 2+1>0,2x 1+x 2-1>0, ∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1).因此,f (x )在(0,1)上是减函数.21.(本小题满分12分)设函数y =f (x )的定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,当x >0时,f (x )>0.(1)求f (0)的值; (2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 解 (1)令x =y =0,则f (0)=f (0), ∴f (0)=0.(2)令y =-x ,得f (0)=f (x )+f (-x )=0, ∴f (-x )=-f (x ),故函数f (x )是R 上的奇函数. (3)任取x 1,x 2∈R ,x 1<x 2,则x 2-x 1>0.∵f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)>0, ∴f (x 1)<f (x 2).故f (x )是R 上的增函数.∵f ⎝ ⎛⎭⎪⎫13=1,∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2. ∴f (x )+f (2+x )=f [x +(2+x )]=f (2x +2)<f ⎝ ⎛⎭⎪⎫23.又由y =f (x )是定义在R 上的增函数,得2x +2<23,解之得x <-23.故x ∈⎝⎛⎭⎪⎫-∞,-23.22.(本小题满分12分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用新工艺,把二氧化碳转化为一种可利用的产品.已知该单位每月处理二氧化碳最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似表示为y =12x 2-200x +80000,且每处理1吨二氧化碳得到可利用的化工产品价值为100元.(1)若该单位每月成本支出不超过105000元,求月处理量x 的取值范围;(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解 (1)设月处理量为x 吨,则每月处理x 吨二氧化碳可获化工产品价值为100x 元,则每月成本支出f (x )为f (x )=12x 2-200x +80000-100x ,x ∈[400,600].若f (x )≤105000,即12x 2-300x -25000≤0,即(x -300)2≤140000,∴300-10014≤x ≤10014+300.∵10014+300≈674>600,且x ∈[400,600],∴该单位每月成本支出不超过105000元时,月处理量x 的取值范围是{x |400≤x ≤600}.(2)f (x )=12x 2-300x +80000=12(x 2-600x +90000)+35000 =12(x -300)2+35000,x ∈[400,600], ∵12(x -300)2+35000>0, ∴该单位不获利.由二次函数性质得当x =400时,f (x )取得最小值.f (x )min =12(400-300)2+35000=40000.∴国家至少需要补贴40000元.y26913 6921 椡32355 7E63 繣vT25127 6227 戧37182 913E 鄾31378 7A92 窒E|21108 5274 剴3]E20385 4FA1価。
核心素养测评六十九分类加法计数原理与分步乘法计数原理(25分钟50分)一、选择题(每小题5分,共35分)1.如图,从A到O的不同的走法(不重复过一点)有______种( )A.1B.2C.4D.5【解析】选D.分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O,有2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O,有2种不同的走法.由分类加法计数原理可得共有1+2+2=5(种)不同的走法.2.将3张不同的演唱会门票分给10名同学中的3人,每人1张,则不同分法的种数是 ( )A.2 160B.720C.240D.120【解题指南】按顺序分步骤确定每张门票的分法种数,根据分步乘法计数原理得到结果.【解析】选B.分步来完成此事.第1张有10种分法,第2张有9种分法,第3张有8种分法,共有10×9×8=720(种)分法.3.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A.10种B.25种C.52种D.24种【解析】选D.每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理可知,共有24种不同的走法.4.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A.36种B.48种C.96种D.192种【解析】选C.设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3; 2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,所以不同的选修方案共有6×4×4=96(种).5.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是 ( )A.65B.56C.30D.11【解析】选B.每一位同学有5种不同的选择,则6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是56.6.《九章算术》中记载有“阳马,鳖臑(biēnào)”,阳马是底面为矩形,有一条侧棱与底面垂直的四棱锥,鳖臑是四个面都是直角三角形的四面体.若以正方体的顶点为阳马的顶点,可以得到m个阳马,以正方体的顶点为鳖臑的顶点,可以得到n个鳖臑,则( )A.m=12,n=24B.m=36,n=24C.m=12,n=72D.m=36,n=72【解析】选D.因为以正方体的一个顶点为四棱锥的顶点所得的阳马有3个,而正方体有12个顶点,所以阳马的个数m=36,因为每个阳马可以拆分为2个鳖臑,所以鳖臑的个数n=72.7.某校为了庆祝新中国成立70周年举办文艺汇演,原节目单上有9个节目已经排好顺序,又有3个新节目需要加进去,不改变原来的顺序,则新节目单的排法有______种 ( )A.12B.27C.729D.1 320【解题指南】可以考虑3个新节目逐一加入原来的节目单中去. 【解析】选D.第一步:9个节目空出10个位置,可以加入1个新来的节目,所以加入一个新节目有10种方法,第二步:从排好的10个节目空出的11个位置中,加入第2个新节目,有11种方法,第三步:从排好的11个节目空出的12个位置中,加入第3个新节目,有12种方法,所以由分步乘法计数原理得加入3个新节目后的节目单的排法有10×11×12=1 320(种).二、填空题(每小题5分,共15分)8.小明计划在2019年的暑假从他居住的昆明到北京去游学,他可以坐动车,也可以乘高铁,还可以乘飞机,已知动车每日5班,高铁每日10班,飞机每日2班,则小明在某一天从昆明到北京有________种出行方式.【解析】出行方式分3类,动车有5种方式,高铁有10种方式,飞机有2种方式,这三类的每一种方式都可以达到出行目的,所以由分类加法计数原理得共有5+10+2=17种出行方式.答案:179.甲组有4名男同学、2名女同学;乙组有5名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有______种.【解析】分两类:第一类,甲组1男1女,乙组2男0女,再分两个步骤,第一步甲组选1男1女,有4×2=8(种)方法,第二步乙组选2男0女,把5个男同学编号1,2,3,4,5,从中选2人,有12,13,14,15,23,24,25,34,35,45,有10种方法,所以第一类共有8×10=80种方法,第二类,甲组2男0女,乙组1男1女,再分两个步骤,第一步甲组选2男0女,把4个男同学编号1,2,3,4,从中选2人,有12,13,14,23,24,34,共6种方法,第二步乙组选1男1女,有5×2=10(种)方法,所以第二类共有6×10=60种方法,所以选出的4人中恰有1名女同学的不同选法共有80+60=140(种).答案:14010.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M 的“子集对”共有________个.【解析】当A={1}时,B有23-1种情况;当A={2}时,B有22-1种情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1种情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况.所以满足题意的“子集对”共有7+3+1+3+3=17(个).答案:17(15分钟35分)1.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种【解析】选C.考虑问题的反面:甲、乙所选的课程2门都相同,把4门课程编号为1,2,3,4,从中选2门,有12,13,14,23,24,34共6种方法,所以甲、乙的选法都有6种,所以甲、乙所选的课程中至少有1门不相同的选法共有6×6-6=30(种).2.(5分)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看这4道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A.24种 B.36种C.48种D.72种【解析】选B.按照甲的情形分类:第一类:甲照看第一道工序,则丙照看第四道工序,余下4人选择2人照看第二、第三道工序,有4×3=12(种)方案,第二类:甲照看第四道工序,则乙照看第一道工序,余下4人选择2人照看第二、第三道工序,有4×3=12(种)方案,第三类:甲不照看第一道工序,也不照看第四道工序,则乙照看第一道工序,丙照看第四道工序,余下4人选择2人照看第二、第三道工序,有4×3=12种方案,所以由分类加法计数原理得不同的安排方案共有12+12+12=36(种).【一题多解】选B.按照4道工序的安排分为两个步骤,第一步安排第一道工序和第四道工序,(1)甲照看第一道工序,丙照看第四道工序,(2)甲照看第四道工序,乙照看第一道工序,(3)乙照看第一道工序,丙照看第四道工序,所以符合条件的方案有3种,第二步安排余下的两道工序,有4×3=12(种)方案,由分步乘法计数原理得不同的安排方案有3×12=36(种).3.(5分)如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有 ( )A.256种B.128种C.72种D.64种【解析】选C.按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).4.(10分)从0,1,2,3,4,5,6,7,8,9这10个数字中任意选取3个不同的数字,(1)求这3个数字组成等差数列的个数;(2)求以这3个数字为边长组成的三角形的个数.【解析】(1)按照公差的大小分类:公差为1的数列,有8个(0,1,2;1,2,3;2,3,4;…;7,8,9),公差为2的数列,有6个(0,2,4;1,3,5;2,4,6;…;5,7,9),公差为3的数列,有4个(0,3,6;1,4,7;2,5,8;3,6,9),公差为4的数列,有2个(0,4,8;1,5,9),所以公差为正数的等差数列有8+6+4+2=20(个).由对称性可知公差为负数的等差数列也有20个,所以这3个数字组成等差数列的个数为40.(2)按照边长最大的边分类:最长边为9,有7,8,9;6,8,9;5,8,9;4,8,9;3,8,9;2,8,9;6,7,9;5,7,9;4,7,9;3,7,9;5,6,9;4,6,9,共12个;最长边为8,有6,7,8;5,7,8;4,7,8;3,7,8;2,7,8;5,6,8;4,6,8;3,6,8;4,5,8,共9个;最长边为7,有5,6,7;4,6,7;3,6,7;2,6,7;4,5,7;3,5,7,共6个;最长边为6,有4,5,6,共1个.所以能组成三角形的个数为12+9+6+1=28.5.(10分)现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法? 【解析】(1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理共有5+2+7=14(种)不同的选法.(2)分为三步:国画、油画、水彩画各有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10(种)不同的选法.第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法. 第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法, 所以有10+35+14=59(种)不同的选法.【拓广探索练】1.(2020·聊城模拟)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则首数为2的“六合数”共有( ) A.18 B.15 C.12 D.9【解析】选B.若由3个2,一个0组成六合数,符合题意的有3个;若由2个2,2个1组成六合数,有3个;若由1个2,1个0,1个3,1个1,符合条件的六合数有6个;若由1个2,1个4,2个0组成六合数,共有3个.依分类加法计数原理可知:共有3+3+6+3=15个.2.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素.又点P到原点的距离|OP|≥5,则这样的点P 的个数为______.【解析】依题意可知:当a=1时,b=5,6,两种情况;当a=2时,b=5,6,两种情况;当a=3时,b=4,5,6,三种情况;当a=4时,b=3,5,6,三种情况;当a=5或6时,b各有五种情况.所以,共有2+2+3+3+5+5=20种情况.答案:20关闭Word文档返回原板块。
第4讲直线、平面平行的判定及其性质一、选择题1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 D2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.确定平行 B.不平行C.平行或相交 D.平行或在平面内解析直线在平面内的状况不能遗漏,所以正确选项为D.答案 D3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是().A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上全部的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是().A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不愿定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不愿定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.答案 B5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析如图所示,由于α2∥α3,同时被第三个平面P1P3N所截,故有P2M∥P3N.再依据平行线截线段成比例易知选C.答案 C6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是().A.①③B.②③C.①④D.②④解析对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不行以,故选C.答案 C二、填空题7.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点。
2021年高考数学大一轮总复习 13.1 算法初步高效作业 理 新人教A 版一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(xx·课标全国Ⅰ)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]解析:程序框图对应函数为s =⎩⎨⎧3t ,t <14t -t 2,t ≥1,∴当t ∈[-1,1)时,s =3t ∈[-3,3]; 当t ∈[1,3]时,s =4t -t 2∈[3,4].∴当t ∈[-1,3]时,s ∈[-3,4],选A. 答案:A2.(xx·浙江)某程序框图如图所示,若该程序运行后输出的值是95,则( )A .a =4B .a =5C .a =6D .a =7解析:对于k ≤4时有S =1+11×2+12×3+13×4+14×5,此时k =5,因此a =4,这时结束运算可得S =1+1-15=95.答案:A3.(xx·福建)阅读如图所示的程序框图,若输入的k =10,则该算法的功能是( )A .计算数列{2n -1}的前10项和 B .计算数列{2n -1}的前9项和C .计算数列{2n-1}的前10项和 D .计算数列{2n-1}的前9项和 解析:S =1+2×0=1,i =2;S =1+2×1=1+21,i =3, S =1+2(1+21)=1+21+22,i =4,S =1+2(1+21+22)=1+21+22+23,i =5,…S =1+21+22+23+…+29,i =11>10,输出S =1+21+22+23+…+29,所以选A. 答案:A4.(xx·江西)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )答案:C5.(xx·重庆)执行如右图所示的程序框图,如果输出s =3,那么判断框内应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤9解析:首次进入循环体,s =1×log 23,k =3;第二次进入循环体,s =lg 3lg 2×lg 4lg 3=2,k =4;依次循环,第六次进入循环体,s =3,k =8,此时终止循环,则判断框内填k ≤7.答案:B6.(xx·辽宁)执行如图所示的程序框图,若输入n =10,则输出S =( )A.511B.1011C.3655D.7255解析:S=122-1+142-1+162-1+182-1+1102-1=511.答案:A二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上)7.(xx·湖南)执行如右图所示的程序框图,如果输入a=1,b=2,则输出的a的值为________.解析:每次进入循环结构a,b的值如下:a=1,b=2①a=3,b=2②a=5,b=2③a =7,b=2④a=9,b=2满足a>8,此时a=9.答案:98.(xx·湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i=________.解析:从程序框图知,a=10,i=1;a=5,i=2;a=16,i=3;a=8,i=4;a=4,i=5.故输出i=5.答案:59.(xx·山东)执行右面的程序框图,若输入的ε的值为0.25,则输出的n的值为________.解析:逐次计算的结果是F1=3,F0=4,n=2;F1=7,F0=11,n=3,此时输出,故输出结果为3.答案:310.(xx·江苏)下图是一个算法的流程图,则输出的n的值是________.解析:n0=1,a0=2;a1=8,n1=2;a2=26,n2=3.答案:3三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.画出计算S=1·22+2·23+3·24+…+10·211的值的程序框图.解:如图所示:12.(xx·河南三市联考)根据如图的程序框图,将输出的x,y值依次分别记为x1,x2,…,x2 013;y1,y2,…,y2 013.(1)写出数列{x n},{y n}的通项公式(不要求写出求解过程);(2)求S n=x1(y1+1)+x2(y2+1)+…+x n(y n+1),(n≤2 013).解:(1)x n=2n-1,y n=3n-1,(n≤2 013).(2)S n=1×31+3×32+5×33+…+(2n-1)·3n.∴3S n=1×32+3×33+5×34+…+(2n-3)·3n+(2n-1)·3n+1.∴2S n=(2n-1)3n+1-3-2(32+33+…+3n).∴S n=(n-1)3n+1+3(n≤2 013).13.(理)(xx·四川)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3); (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)运行次数n输出y 的值为1的频数 输出y 的值 为2的频数输出y 的值 为3的频数30 14 6 10 … … … … 2 1001 027376697运行次数n输出y 的值为1的频数 输出y 的值 为2的频数输出y 的值 为3的频数30 12 11 7 … … … … 2 1001 051696353当n i (i =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(Ⅲ)将按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.解:(Ⅰ)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16.(Ⅱ)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:(Ⅲ)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=C 03×(13)0×(23)3=827, P (ξ=1)=C 13×(13)1×(23)2=49,P (ξ=2)=C 23×(13)2×(23)1=29,P (ξ=3)=C 33×(13)3×(23)0=127, 故ξ的分布列为所以,Eξ=0×827+1×49+2×29+3×127=1.即ξ的数学期望为1.(文)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如下图所示):(1)图中①处和②处应填上什么语句,使之能完成该题算法功能;(2)根据程序框图写出程序.解:(1)①处应填i≤30;②处应填p=p+i.(2)程序如下所示:s21526 5416 吖 37431 9237 鈷.33497 82D9 苙 36176 8D50 赐38770 9772 靲24567 5FF7 忷27692 6C2C 氬40472 9E18 鸘%36538 8EBA 躺{g。
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
9.5 圆锥曲线的综合问题一、选择题1.(2021浙江,9,4分)已知a,b ∈R,ab>0,函数f(x)=ax 2+b(x ∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是( ) A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线 答案 C 由题意知f(s)=as 2+b,f(s-t)=a(s-t)2+b=(as 2+b)+at(t-2s),f(s+t)=a(s+t)2+b=(as 2+b)+at(t+2s), ∵f(s -t),f(s),f(s+t)成等比数列,∴f(s -t)·f(s+t)=f 2(s)⇒[(as 2+b)+at(t-2s)][(as 2+b)+at(t+2s)]=(as 2+b)2⇒at(as 2+b)(t-2s+t+2s)+a 2t 2(t 2-4s 2)=0⇒2at 2(as 2+b)+a 2t 2(t 2-4s 2)=0,(*) ①当t=0时,s ∈R,故(s,t)的轨迹为一条直线; ②当t ≠0时,(*)式可化为2as 2+2b+at 2-4as 2=0, 即2as 2-at 2=2b,因为ab>0,所以s 2-t22=b a>0,故(s,t)的轨迹为双曲线,故选C.二、解答题2.(2022届广西开学考,22)设双曲线x 23-y 2=1的右焦点为F,过F 的直线与双曲线C 的右支交于A 、B 两点.(1)若直线AB 与x 轴不垂直,求直线的斜率的取值范围; (2)求AB 中点的轨迹方程.解析 (1)由题知F(2,0),设直线AB 的方程为y=k(x-2),代入方程x 23-y 2=1,得(3k 2-1)x 2-12k 2x+12k 2+3=0.设A(x 1,y 1),B(x 2,y 2),则{x 1+x 2=12k 23k 2-1>0,x 1x 2=12k 2+33k 2-1>0,Δ=144k 4-4(3k 2-1)(12k 2+3)=12k 2+12>0, 所以k ∈(-∞,-√33)∪(√33,+∞).(2)设AB 中点坐标为(x 0,y 0),若直线AB 的斜率存在,x 0=x 1+x 22=6k 23k 2-1,y 0=y 1+y 22=k(x 0-2)=2k 3k 2-1,消去k 得,(x 0-1)2-3y 02=1,此时x 0=6k 2-2+23k 2-1=2+23k 2-1>2,所以AB 中点的轨迹方程为(x-1)2-3y 2=1(x>2);若直线AB 的斜率不存在,则x 0=2,y 0=0,满足(x-1)2-3y 2=1.综上,AB 中点的轨迹方程为(x-1)2-3y 2=1(x ≥2).3.(2022届山西怀仁一中期中,21)已知点A(-2,0),B(2,0),设动点P 满足直线PA 与PB 的斜率之积为-34,记动点P 的轨迹为曲线E. (1)求曲线E 的方程;(2)若动直线l 经过点(1,0),且与曲线E 交于C,D(不同于A,B)两点,问:直线AC 与BD 的斜率之比是不是定值?若是定值,求出该定值;若不是定值,请说明理由.解析 (1)设P(x,y),由题意可得k PA ·k PB =-34,所以y x+2·y x -2=-34(x ≠±2),所以曲线E 的方程为x 24+y 23=1(x ≠±2). (2)由题意知,可设直线l:x=my+1,C(x 1,y 1),D(x 2,y 2),由{x =my +1,x 24+y 23=1(x ≠±2),可得(3m 2+4)y 2+6my-9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,因为直线AC 的斜率k 1=y 1x 1+2,直线BD 的斜率k 2=y 2x 2-2,且my 1y 2=32(y 1+y 2),所以k 1k 2=y 1(x 2-2)y 2(x 1+2)=y 1(my 2-1)y 2(my 1+3)=my 1y 2-y 1my 1y 2+3y 2=32(y 1+y 2)-y 132(y 1+y 2)+3y2=12y 1+32y 232y 1+92y 2=13,所以直线AC 和BD 的斜率之比为定值13. 4.(2021四省八校调研,20)已知圆锥曲线E:√(x -1)2+y 2+√(x +1)2+y 2=4,经过点Q(-4,4)的直线l 与E 有唯一公共点P,定点R(-1,0). (1)求曲线E 的标准方程;(2)设直线PR,QR 的斜率分别为k 1,k 2,求k 1k 2的值.解析 (1)由√(x -1)2+y 2+√(x +1)2+y 2=4可得,点(x,y)到定点(-1,0),(1,0)的距离的和为4.由椭圆的定义可知动点(x,y)的轨迹即圆锥曲线E 是以(-1,0),(1,0)为左、右焦点,2a=4为长轴长的椭圆(此处必须由定义说明圆锥曲线的类型),则其长半轴长a=2,则短半轴长b=√22-12=√3,故曲线E 的标准方程为x 24+y 23=1. (2)由题意得过点Q(-4,4)的直线l 的斜率存在,设为k,则直线l 的方程为y-4=k(x+4),即y=kx+4+4k, 代入x 24+y 23=1,整理,得(3+4k 2)x 2+32(k+1)kx+64k 2+128k+52=0(※).∵l 与E 仅有一个公共点,∴Δ=1024(k+1)2k 2-4(3+4k 2)(64k 2+128k+52)=0,即12k 2+32k+13=0.解得k=-12或k=-136.(k 的值有两个,需分两种情况求解)设P(x 0,y 0),当k=-12时,方程(※)为x 2-2x+1=0,得x 0=1,∴y 0=32,∴k 1=34,又k 2=-43,∴k 1k 2=-1.当k=-136时,方程(※)为49x 2+182x+169=0,得x 0=-137,∴y 0=-914,∴k 1=34,又k 2=-43,∴k 1k 2=-1.综上所述,k 1k 2的值为-1.5.(2022届甘肃名校月考,21)已知F 1,F 2分别是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,|F 1F 2|=6,当P 在E 上且PF 1垂直于x 轴时,|PF 2|=7|PF 1|. (1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C,BM 与x 轴交于点D.求证:四边形ABDC 的面积是定值.解析 (1)由题意知|PF 1|=b2a ,|PF 2|+|PF 1|=2a,|PF 2|=7|PF 1|,则8|PF 1|=2a,所以a=2b,又c=3,a 2=b 2+c 2,∴a=2√3,b=√3, ∴E 的标准方程是x 212+y 23=1.(2)证明:由题意知A(-2√3,0),B(0,√3),设M(m,n),C(0,t),D(s,0),因为A,C,M 三点共线,所以设AC ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ ,解得t=2√3n m+2√3,又B,D,M 三点共线,所以设BD⃗⃗⃗⃗⃗⃗ =μBM ⃗⃗⃗⃗⃗⃗ ,解得s=-√3m n -√3. 易知,|AD|=s+2√3,|BC|=√3-t,m 212+n 23=1,所以|AD|·|BC|=√3s-2√3t-st+6=-n -√3-m+2√3+(n -√3)(m+2√3)+6=-√3m √3n+36(m+2√3)(n -√3)+(n -√3)(m+2√3)+6=√3)(n √3)(n -√3)(m+2√3)+6=12.所以四边形ABDC 的面积为12|AD|·|BC|=6.故四边形ABDC 的面积是定值.6.(2022届长春外国语学校期中,21)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+√2=0与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (1)求椭圆C 的方程;(2)设M 是椭圆的上顶点,过点M 分别作直线MA,MB 交椭圆于A,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,证明:直线AB 过定点,并求出该定点.解析 (1)易知,等轴双曲线的离心率为√2,故椭圆C 的离心率e=√22.∵e 2=c 2a 2=a 2-b 2a2=12,∴a 2=2b 2.由x-y+√2=0与圆x 2+y 2=b 2相切,得√2√2=b,故b=1,∴a 2=2.∴椭圆C 的方程为x 22+y 2=1.(2)已知M(0,1).当直线AB 的斜率不存在时,设方程为x=x 0(x 0≠0),A(x 0,y 0),B(x 0,-y 0).由k 1+k 2=4,得y 0-1x 0+-y 0-1x 0=4,即x 0=-12.此时直线AB 的方程为x=-12.当直线AB 的斜率存在时,设AB 的方程为y=kx+m,依题意知m ≠±1.设A(x 1,y 1),B(x 2,y 2),由{y =kx +m,x 22+y 2=1得(1+2k 2)x 2+4kmx+2m 2-2=0.则x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2.由k 1+k 2=4,得y 1-1x 1+y 2-1x 2=4,∴kx 1+m -1x 1+kx 2+m -1x 2=4,即2k+(m-1)x 1+x2x 1x 2=4, ∴k -km m+1=2,∴k=2(m+1),∴m=k 2-1.故直线AB 的方程为y=kx+k 2-1,即y=k (x +12)-1.∴直线AB 过定点(-12,-1).综上,直线AB 过定点(-12,-1).7.(2022届成都蓉城名校联盟联考一,20)已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的长轴长与短轴长之比为2,过点P(0,2√5)且斜率为1的直线与椭圆E 相切. (1)求椭圆E 的方程;(2)过点T(2,0)的直线l 与椭圆E 交于A,B 两点,与直线x=8交于H 点,若HA ⃗⃗⃗⃗⃗⃗ =λ1AT ⃗⃗⃗⃗⃗ ,HB ⃗⃗⃗⃗⃗⃗ =λ2BT ⃗⃗⃗⃗⃗ .证明:λ1+λ2为定值.解析 (1)由题意知,a b =2,a=2b,切线方程为y=x+2√5.设椭圆方程为x 24b 2+y 2b 2=1,联立得{y =x +2√5,x 24b 2+y 2b 2=1,整理得5x 2+16√5x+80-4b 2=0,则Δ=0,即(16√5)2-20(80-4b 2)=0,则b 2=4,∴椭圆方程为x 216+y 24=1.(2)由题意知,直线l 的斜率一定存在.当直线l 的斜率为零时,易得λ1+λ2=0;当直线l 的斜率不为零时,设直线l:x=ty+2(t ≠0),A(x 1,y 1),B(x 2,y 2),联立{x =ty +2,x 2+4y 2=16,得(t 2+4)y 2+4ty-12=0,则y 1+y 2=-4t t 2+4,y 1y 2=-12t 2+4,直线l:x=ty+2,令x=8,则y=6t ,即H 8,6t .∵HA ⃗⃗⃗⃗⃗⃗ =(x 1-8,y 1-6t ),AT ⃗⃗⃗⃗⃗ =(2-x 1,-y 1),HA ⃗⃗⃗⃗⃗⃗ =λ1AT ⃗⃗⃗⃗⃗ ,∴{x 1-8=λ1(2-x 1),y 1-6t =-λ1y 1,∴1-6ty 1=-λ1,同理可得,1-6ty 2=-λ2,∴-λ1-λ2=1-6ty 1+1-6ty 2=2-6(y 1+y 2)ty 1y 2=2--24t t 2+4·t 2+4-12t=0.综上,λ1+λ2=0.8.(2021皖南八校第三次联考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左焦点为F,过点F 的直线l 与椭圆交于A,B两点,当直线l ⊥x 轴时,|AB|=√2,tan ∠AOB=2√2. (1)求椭圆C 的方程;(2)设直线l'⊥l,直线l'与直线l 、x 轴、y 轴分别交于M 、P 、Q,当点M 为线段AB 中点时,求PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ⃗⃗⃗⃗⃗⃗⃗⃗ 的取值范围.解析 (1)由题意可知F(-c,0).当直线l ⊥x 轴时,|AB|=2b 2a =√2,tan ∠AOB=2tan ∠AOF1-tan 2∠AOF =2√2,解得tan ∠AOF=√22或-√2,∵∠AOF ∈(0,π2),∴tan∠AOF=√22=|AF||FO|=b 2a c,得b=c=1,a=√2,故椭圆C 的方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),依题意直线l 的斜率一定存在且不为零,设l:y=k(x+1),由{y =k(x +1),x 22+y 2=1,消去y 得(2k 2+1)x 2+4k 2x+2k 2-2=0,则x 1+x 2=-4k 22k 2+1,则y 1+y 2=k(x 1+x 2+2)=2k 2k 2+1.故M (-2k 22k 2+1,k2k 2+1),直线l':y-k 2k 2+1=-1k (x +2k 22k 2+1),令y=0,则P (-k22k 2+1,0),∵PM⊥MF,OQ ⊥PO,∴PM ⃗⃗⃗⃗⃗⃗ ·PF ⃗⃗⃗⃗⃗ =|PM ⃗⃗⃗⃗⃗⃗ |2,PO ⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗ =|PO ⃗⃗⃗⃗⃗ |2,∴PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF ⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗⃗⃗⃗ =|PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2|PO⃗⃗⃗⃗⃗⃗⃗⃗ |2=(-k 22k 2+1--2k 22k 2+1)2+(0-k 2k 2+1)2(-k 22k 2+1)2=k 2+1k 2=1+1k 2,∵k 2∈(0,+∞),∴1+1k2∈(1,+∞), ∴PM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·PF⃗⃗⃗⃗⃗⃗⃗ PO ⃗⃗⃗⃗⃗⃗⃗⃗ ·PQ⃗⃗⃗⃗⃗⃗⃗⃗ ∈(1,+∞). 9.(2022届四川内江六中月考,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,过F 2且与x 轴垂直的直线与椭圆C 交于A,B 两点,△AOB 的面积为2√2,点P 为椭圆C 的下顶点,|PF 2|=√2|OP|. (1)求椭圆C 的标准方程;(2)经过抛物线y 2=4x 的焦点F 的直线l 交椭圆C 于M,N 两点,求|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |的取值范围.解析 (1)因为△OPF 2为直角三角形,所以b 2+c 2=|PF 2|2=(√2b)2,故b=c,又S △AOB =12·2b 2a ·c=b 2c a=2√2,所以b 2c=2√2a,又a 2=b 2+c 2,所以b 3=2√2·√b 2+c 2=4b,故b 2=4,所以a 2=b 2+c 2=4+4=8,故椭圆C 的标准方程为x 28+y 24=1. (2)由题意得F(1,0),M,N,F 三点共线,所以|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=||FM ⃗⃗⃗⃗⃗⃗ |·|FN ⃗⃗⃗⃗⃗ |·cosπ|=|FM|·|FN|.若直线l 斜率为零,则|FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|=(a-1)(a+1)=7;若直线l 斜率不为零,设直线l 的方程为x=my+1,M(x 1,y 1),N(x 2,y 2),则{x =my +1,x 28+y 24=1,消去x 得(m 2+2)y 2+2my-7=0,所以y 1+y 2=-2m m 2+2,y 1y 2=-7m 2+2,则|FM|=√(x 1-1)2+y 12=√(my 1+1-1)2+y 12=√m 2+1|y 1|,同理|FN|=√m 2+1·|y 2|,所以|FM ⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|=(m 2+1)|y 1y 2|=(m 2+1)·7m 2+2=7(m 2+2)-7m 2+2=7-7m 2+2,因为m 2+2≥2,所以0<7m 2+2≤72,所以72≤7-7m 2+2<7.综上,|FM⃗⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗⃗ |=|FM|·|FN|∈[72,7]. 10.(2022届黑龙江大庆月考,20)已知椭圆E:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,其离心率为12.椭圆E 的左、右顶点分别为A,B,且|AB|=4. (1)求椭圆E 的方程;(2)过F 1的直线与椭圆相交于C,D(不与顶点重合),过右顶点B 分别作直线BC,BD 与直线x=-4相交于N,M 两点,以MN 为直径的圆是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.解析 (1)由题意得,c a =12,|AB|=2a=4,∴a=2,c=1,b=√a 2-c 2=√3,∴椭圆E 的标准方程为x 24+y 23=1.(2)恒过定点(-7,0)和(-1,0).由(1)知F 1(-1,0),B(2,0),由题意得,直线CD 的斜率不为0,设直线CD 的方程为x=my-1,代入椭圆E 的方程x 24+y 23=1,整理得(3m 2+4)y 2-6my-9=0.设C(x 1,y 1),D(x 2,y 2),则y 1+y 2=6m 3m 2+4①,y 1y 2=-93m 2+4②.直线BC:y=y 1my 1-3(x-2),令x=-4,可得N -4,-6y 1my 1-3,同理M (-4,-6y 2my 2-3),∴以MN 为直径的圆的方程为(x+4)(x+4)+y+6y 1my 1-3(y +6y 2my 2-3)=0,即x 2+8x+16+y 2+6y 1my 1-3+6y 2my 2-3y+36y 1y 2(my 1-3)(my 2-3)=0③,由①②得y 1+y 2=-23my 1y 2,代入③得圆的方程为x 2+8x+7+y 2-6my=0.若圆过定点,则{y =0,x 2+8x +7=0,解得{x =-1,y =0或{x =-7,y =0,∴以MN 为直径的圆恒过点(-7,0)和(-1,0).12.(2022届湘豫名校联盟11月联考,20)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)的离心率e=√63,其左,右焦点为F 1,F 2,P为椭圆E 上任意一点,P 点到原点O 的距离的最小值为1. (1)求椭圆E 的方程;(2)设直线l:y=kx+m 与椭圆E 交于A(x 1,y 1),B(x 2,y 2)两点,且x 12+x 22=3,是否存在这样的直线l 与圆x 2+y 2=1相切?如果存在,直线l 有几条?如果不存在,请说明理由. 解析 (1)由题意知,e=√63,所以b 2a2=1-e 2=13,即a 2=3b 2,易知|PO|2∈[b 2,a 2],所以b 2=1,故椭圆E 的标准方程为x 23+y 2=1. (2)联立{y =kx +m,x 2+3y 2=3,整理得(3k 2+1)x 2+6kmx+3m 2-3=0.所以x 1+x 2=-6km 3k 2+1,x 1·x 2=3m 2-33k 2+1. 因为x 12+x 22=(x 1+x 2)2-2x 1·x 2=3,所以化简得12k 2m 2-2(m 2-1)·(3k 2+1)=(3k 2+1)2,即2m 2·(3k 2-1)=(3k 2+1)·(3k 2-1),所以3k 2-1=0或3k 2+1=2m 2,又直线l:y=kx+m 与圆x 2+y 2=1相切,所以√1+k2=1,即k 2+1=m 2.当3k 2-1=0时,解得k 2=13,m 2=43,直线l 的方程为y=±√33x±2√33;当3k 2+1=2m 2时,解得k 2=1,m 2=2,直线l 的方程为y=±x±√2.综上所述,存在满足题设条件的直线,且直线l 有八条.13.(2022届江西月考,21)过抛物线y 2=2px(p>0)的焦点F 作倾斜角为θ(θ≠π2)的直线,交抛物线于A,B 两点,当θ=π3时,以FA 为直径的圆与y 轴相切于点T(0,√3).(1)求抛物线的方程;(2)试问在x 轴上是否存在异于F 点的定点P,使得|FA|·|PB|=|FB|·|PA|成立?若存在,求出点P 的坐标;若不存在,请说明理由.解析 (1)取FA 的中点C,过C 作CE ⊥x 轴于E,连接CT.因为以FA 为直径的圆与y 轴相切于点T(0,√3),所以CT ⊥y 轴于T,故|CE|=|OT|=√3,因为θ=π3,即∠CFE=π3,所以|CF|=2,|EF|=1,所以C 1+p 2,√3,所以A (2+p 2,2√3),故(2√3)2=2p ·(2+p 2),又p>0,所以p=2,故抛物线的方程为y 2=4x.(2)设P(x 0,0)(x 0≠1),且F(1,0),由题意可知直线FA 的斜率不为0,故设直线FA:x=my+1,联立{x =my +1,y 2=4x,整理得y 2-4my-4=0,设A(x 1,y 1),B(x 2,y 2),则y 1y 2=-4.易知|FA||FB|=|y 1||y 2|,|PA||PB|=√10212√20222,因为|FA|·|PB|=|FB|·|PA|,即|FA||FB|=|PA||PB|,所以|y 1||y 2|=√(x 1-x 0)2+(y 1-0)2(x 2-x 0)2+(y 2-0)2,两边同时平方可得y 12y 22=y 12+(x 1-x 0)2y 22+(x 2-x 0)2,又因为y 12=4x 1,y 22=4x 2,所以y 12y 22=y 12+(y 124-x 0)2y 22+(y 224-x 0)2,化简整理可得(y 12-y 22)x 02=y 12y 22(y 12-y 22)16,所以x 02=y 12y 2216=(y 1y 2)216=1,所以x 0=±1,因为点P 异于点F,所以x 0=-1,故点P(-1,0).14.(2021山西太原二模,20)已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别是A,B,直线l:x=23与椭圆C 相交于D,E 两个不同点,直线DA 与直线DB 的斜率之积为-14,△ABD 的面积为4√23.(1)求椭圆C 的标准方程;(2)若点P 是直线l:x=23的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q,过P 作BQ 的垂线,垂足为M,在x 轴上是否存在定点N,使得|MN|为定值?若存在,请求出点N 的坐标;若不存在,请说明理由. 解析 (1)设D (23,y 0),由题意得{k DA ·k DB =y 023+a ·y 023-a =-14,12×2a ×|y 0|=4√23,49a 2+y 02b 2=1,∴{b 2=1,a 2=4, ∴椭圆C 的方程为x 24+y 2=1.(2)假设存在这样的点N,设直线PM 与x 轴相交于点T(x 0,0),由题意得TP ⊥BQ,由(1)得A(-2,0),B(2,0),设P (23,t),t ≠0,Q(x 1,y 1),由题意可设直线AP 的方程为x=my-2,由{x =my -2,x 24+y 2=1得(m 2+4)y 2-4my=0,∴y 1=4m m 2+4或y 1=0(舍去),x 1=2m 2-8m 2+4,∵23=mt-2,∴t=83m ,∵TP⊥BQ,∴TP ⃗⃗⃗⃗⃗ ·BQ ⃗⃗⃗⃗⃗ =(23-x 0)(x 1-2)+ty 1=0,∴x 0=23+ty 1x 1-2=23+83m ·4m m 2+4·m 2+4-16=0, ∴直线PM 过定点T(0,0), ∴存在定点N(1,0),使得|MN|=1.。
综合试题(一)数学时间:60分钟 总分:100分[对应学生用书p 323]一、选择题(本大题共6小题,每小题5分,共30分.其中多项选择题全部选对得5分,部分选对得3分,有选错或不选得0分.)1.已知复数z 1,z 2在复平面上对应的点分别为A(1,2),B(-1,3),则z 1z 2的虚部为( )A .1B .-12iC .iD .-12[解析]由复数z 1,z 2在复平面上对应的点分别是A(1,2),B(-1,3),得z 1=1+2i ,z 2=-1+3i ,则z 1z 2=1+2i -1+3i =(1+2i )(-1-3i )(-1+3i )(-1-3i )=5-5i 10=1-i2. z 1z 2的虚部为-12,故选D . [答案]D2.将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,则m =2n 的概率为( )A .118B .112C .19D .16[解析]将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,基本事件总数有:6×6=36种,事件“m =2n ”包含的基本事件有:(2,1),(4,2),(6,3)共3个,所以事件“m =2n ”的概率为P =336=112.故选B .[答案]B3.已知函数f(x)=sin (ωx +θ)⎝⎛⎭⎪⎫ω>0,-π2≤θ≤π2的图象相邻的两个对称中心之间的距离为π2,若将函数f(x)的图象向左平移π6后得到偶函数g(x)的图象,则函数f(x)的一个单调递减区间为( )A .⎣⎢⎡⎦⎥⎤-π3,π6B .⎣⎢⎡⎦⎥⎤π4,7π12C .⎣⎢⎡⎦⎥⎤0,π3D .⎣⎢⎡⎦⎥⎤π2,5π6 [解析]函数f(x)=sin (ωx +θ)⎝⎛⎭⎪⎫ω>0,-π2≤θ≤π2的图象相邻的两个对称中心之间的距离为π2,则T =π,所以ω=2.将函数f(x)的图象向左平移π6后,得到g(x)=sin ⎝⎛⎭⎪⎫2x +π3+θ是偶函数,故π3+θ=k π+π2(k ∈Z ),解得θ=k π+π6(k ∈Z ),由于-π2≤θ≤π2,所以当k =0时θ=π6.则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,令π2+2k π≤2x +π6≤2k π+3π2(k ∈Z ),解得π6+k π≤x ≤k π+2π3(k ∈Z ),当k =0时,单调递减区间为⎣⎢⎡⎦⎥⎤π6,2π3,由于⎣⎢⎡⎦⎥⎤π4,7π12⊆⎣⎢⎡⎦⎥⎤π6,2π3,故选B.[答案]B4.已知拋物线C :y 2=2px(p >0)的焦点为F ,准线为l ,点M 在第一象限的拋物线C 上,直线MF 的斜率为3,点M 在直线l 上的射影为A ,且△MAF 的面积为43,则p 的值为( )A .1B .2C .23D .4[解析]由抛物线的定义知S △MAF =12MF ·MA sin 60°=43,得MA =MF =4,所以△MAF 为等边三角形,MA =2p =4,p =2,故选B .[答案]B5.(多选)函数f(x)的定义域R ,且f (x +1)与f (x +2)都为奇函数,则 ( ) A .f (x )为奇函数B .f (x )为周期函数 C .f (x +3)为奇函数D .f (x +4)为偶函数[解析]由题意知f (-x +1)=-f (x +1),f (-x +2)=-f (x +2), 所以f (-x )=f [-(x +1)+1]=-f (x +1+1) =-f (x +2)=f (-x +2),所以f (x )是周期为2的周期函数,B 正确; 又f (-x )=f (-x +2)=-f (x +2)=-f (x ), 所以函数f (x )为奇函数,A 正确;又f (-x +3)=f (-x +1)=-f (x +1)=-f (x +3), 所以f (-x +3)为奇函数,C 正确;f (-x +4)=f (-x )=-f (x )=-f (x +4).所以f (-x +4)也是奇函数,D 错误. [答案]ABC6.若不等式⎪⎪⎪⎪⎪⎪ln x +1x -m ≤m +e 对x ∈⎣⎢⎡⎦⎥⎤1e ,1成立,则实数m 的取值范围是( ) A .⎣⎢⎡⎭⎪⎫-12,+∞B .⎝ ⎛⎦⎥⎤-∞,-12C .⎣⎢⎡⎦⎥⎤-12,1D .[1,+∞)[解析]设t =ln x +1x ,由x ∈⎣⎢⎡⎦⎥⎤1e ,1,则t ∈[1,e -1];当m ≤e 2时,|t -m|max =e -1-m ≤m +e ,解得:m ≥-12;当m>e 2时,|t -m|max =m -1≤m +e ,恒成立;综上知:m ≥-12时,不等式⎪⎪⎪⎪⎪⎪ln x +1x -m ≤m +e 对x ∈⎣⎢⎡⎦⎥⎤1e ,1成立.[答案]A二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H.若AH →=λAB →+μBC →,则λ+μ=____________.[解析]由AB =2,∠ABC =60°,AH ⊥BC ,知BH =AB cos 60°=1,又BC =3,所以BH →=13BC →,所以AH →=AB →+BH →=AB →+13BC →,所以λ=1,μ=13,λ+μ=43.[答案]438.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y +2≥0,x -y -2≤0,y +1≤0,则目标函数z =2x -y 的最大值为________.[解析]画出不等式组表示的可行域(三角形),由z =2x -y 得到y =2x -z ,平移直线y =2x -z ,由图形得,当直线经过可行域内的点A 时,直线在y 轴上的截距最小,此时z 取得最大值.由⎩⎪⎨⎪⎧x -y -2=0,y =-1,解得⎩⎪⎨⎪⎧x =1,y =-1,所以点A 的坐标为(1,-1),得z max =2×1-(-1)=3. [答案]39.若函数f(x)称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有f(x)+f(2a -x)=2b.已知f(x)=x x -1为“准奇函数”,则a +b =________.[解析]由f(x)+f(2a -x)=2b 知“准奇函数”f(x)关于点(a ,b)对称;因为f(x)=xx -1关于(1,1)对称,所以a =1,b =1,a +b =2.[答案]210.已知等腰△ABC 的面积为4,AD 是底边BC 上的高,沿AD 将△ABC 折成一个直二面角,则三棱锥A -BCD 的外接球的表面积的最小值为______________.[解析]设AD =a ,BC =2b ,则ab =4;由已知,BD ⊥平面ADC ,将三棱锥补形为一个长方体,则三棱锥A -BCD 的外接球就是该长方体的外接球,且该长方体的长宽高分别为a 、b 、b ,则球的直径2R =a 2+b 2+b 2=a 2+2b 2,则球的表面积为S =4πR 2=(a 2+2b 2)π,因a 2+2b 2≥22ab =82,故S min =82π.[答案]82π三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.(16分) 如图,在梯形ABCD 中,∠A =∠D =90°,M 为AD 上一点,AM =2MD =2,∠BMC =60°.(1)若∠AMB =60°,求BC ;(2)设∠DCM =θ,若MB =4MC ,求tan θ.[解析] (1)由∠BMC =60°,∠AMB =60°,得∠CMD =60°. 在Rt △ABM 中,MB =2AM =4; 在Rt △CDM 中,MC =2MD =2.在△MBC 中,由余弦定理得,BC 2=BM 2+MC 2-2BM ·MC ·cos ∠BMC =12, 所以BC =2 3.(2)因为∠DCM =θ,所以∠ABM =60°-θ,0°<θ<60°. 在Rt △MCD 中,MC =1sin θ;在Rt △MAB 中,MB =2sin (60°-θ),由MB =4MC 得,2sin (60°-θ)=sin θ,所以3cos θ-sin θ=sin θ,即2sin θ=3cos θ, 整理可得tan θ=32.12.(16分)如图,多面体ABCDEF 中,四边形ABCD 是边长为2的菱形,且平面ABCD ⊥平面DCE.AF ∥DE ,且AF =12DE =2,BF =2 2.(1)求证:AC ⊥BE ;(2)若点F 到平面DCE 的距离为3,求直线EC 与平面BDE 所成角的正弦值.[解析] (1)∵AF =AB =2,BF =22, ∴AF 2+AB 2=BF 2,∴∠FAB =90°,即AF ⊥AB. ∵AF ∥DE ,AB ∥CD , ∴DE ⊥DC.∵平面ABCD ⊥平面DCE ,DE ⊂平面DCE ,平面ABCD ∩平面DCE =DC , ∴DE ⊥平面ABCD , ∴DE ⊥AC. ① ∵四边形ABCD 为菱形, ∴AC ⊥BD. ②由①②,且DE ∩BD =D , ∴AC ⊥平面BDE. ∴AC ⊥BE.(2)设AC ∩BD =O ,连接OE.由(1)AC ⊥平面BDE ,∴OE 是EC 在平面BDE 内的射影, ∴EC 与平面BDE 所成的角为∠CEO. ∵AF ∥DE ,AF ⊄平面DCE ,DE ⊂平面DCE , ∴AF ∥平面DCE ,∴点F 到平面DCE 的距离等于点A 到平面DCE 的距离. 在平面ABCD 内作AH ⊥CD ,交CD 延长线于H. ∵平面ABCD ⊥平面DCE , ∴AH ⊥平面DCE ,∴AH = 3.(或转化为点B 到平面DCE 的距离) ∵AD =2,∴∠ADH =60°, ∴菱形ABCD 中,∠BDC =60°, ∴OC =32CD = 3. 在Rt △DEC 中,EC =DC 2+DE 2=25, ∴sin ∠OEC =OC CE =325=1510.∴EC 与平面BDE 所成角的正弦值为1510.13.(18分)已知函数f(x)=e x+m(1-x)+n. (1)讨论函数f(x)的单调性;(2)函数g(x)=e x-12mx 2+(m +n)x -1,且g(2)=0.若g(x)在区间(0,2)内有零点,求实数m 的取值范围.[解析] (1)f ′(x)=e x-m ,①当m ≤0时,f ′(x)>0成立,f(x)在R 上单调递增;②当m >0时,令f ′(x )=0,得x =ln m ,则f (x )在区间(-∞,ln m )单调递减,在(ln m ,+∞)单调递增.(2)g ′(x )=e x+m (1-x )+n =f (x ),设x 0是g (x )在区间(0,2)内的一个零点,因为g (0)=0,g (x 0)=g (0),可知g (x )在区间(0,x 0)上不单调,故f (x )在区间(0,x 0)存在零点x 1;同理:由g (x 0)=g (2)=0,可知f (x )在区间(x 0,2)上存在零点x 2,即f (x )在区间(0,2)内至少有两个不同零点x 1和x 2.由(1)知m >0,ln m ∈(0,2),得1<m <e 2,此时f (x )在区间(0,ln m )单调递减,在(ln m ,2)单调递增.由g (2)=0,知n =1-e22,所以f (1)=e +1-e22<0,则f (x )min =f (ln m )≤f (1)<0;故只需:⎩⎪⎨⎪⎧f (0)>0,f (2)>0,解得:e 2-32<m <e 2+12.所以实数m 的取值范围是⎝ ⎛⎭⎪⎫e 2-32,e 2+12.。