北师大版数学八年级《二次根式的运算》公开课
- 格式:ppt
- 大小:869.50 KB
- 文档页数:42
八年级下册16.3 二次根式的加减(第一课时)16.3 二次根式的加减教学设计教学目标知识与技能目标:通过自主探究概括同类二次根式的概念及二次根式加减法法则.过程与方法目标:了解同类二次根式的概念,会识别同类二次根式,会利用法则进行二次根式的加减运算.情感态度与价值观目标:通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.教学重难点重点:同类二次根式的概念及二次根式加减运算法则.难点:探讨二次根式加减法运算的方法,准确进行二次根式加减法的运算.教学重难点解决方法:在二次根式性质和乘除运算的基础上,本课进一步学习二次根式的加减运算.二次根式的加减法是把二次根化为最简二次根式后,合并被开方数相同的二次根式就可以了,所以本课内容与整式的加减法类似,在教学中可以让学生体会类比思想的实质,通过具体例子,引导学生探索发现二次根式加减运算的核心是合并被开方数相同的二次根式,基本依据是二次根式的性质和分配律.课程资源:U盘,班班通教学过程:进行三分种的民族团结教育.前提测评:⑴辺⑶ J面最简二次根式的条件:(1) 被开方数不含分母;(2) 被开方数中不含能开得尽方的因数或因式. 我们把满足上述两个条件的二次根式叫做最简二次根 式•导入新课:创设情景,提出问题问题:现有一块长7. 5dm ,宽50dm 的木板,能 否采用如课本图16. 3- 1所示的方式,在这块木板 上截出两个面积分别是 8dm 2和18dm 2的正方形木 板?师生活动:教师引导学生认真读题,分析题意. 7,5dm追问1 :满足什么条件才能截出两块正方形木板?你能用数学语言表示出来吗?师生活动:学生讨论得出“长够、宽也够”,丿v 5,,v 5, 把问题转化为“长是 否够?”,即转化为比较* +“与7. 5大小问题,这 就需要计算门+*・引出课题“二次根式的加减” 追问1:你认为可以怎样计算 八+J ?师生活动:让学生讨论,用实际问题引出•/: +■ 是让学生感受学习二次根式加减运算的必要性和意 义.通过分析如何计算八+、’让学生了解到本课内容 并不是孤立的全新知识,而与二次根式的化简密切相 关•师生一起总结■V 8 x/18 5dm 厂…」尿 |風=2.2 3 2 (化成最简二次根式)= (2 3)、2 (利用分配律)=52,18 = ^ 2 3 1. 414 4. 242 :: 58 . 18 二 5 2 : 5 1.414 : 7. 07 :: 7. 5•••在这块木板上可以截出两个分别是8 dm2和18 dm2 的正方形木板.师生活动:学生讨论得出: 1 J'■,教师引导学生类比合并同类项,总结得出二次根式加减运算的方法.二次根式的加减的一般步骤:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.初步应用,巩固知识例1计算:(1 八‘12\ 75~(2 八莎- 745"(3) 79 a 725 a师生活动:学生独立思考计算,请学生板演,说出计算步骤与依据(二次根式的性质和分配律)•最后师生一起总结•巩固练习练习1:师生活动:学生独立完成练习1,教师强调步骤和算理,学生回答,对出现的错误给予评价.1•判断下列计算是否正确?为什么?78 - "3= 7 8 - 3 ; d 4 + P9 =74 + 9 ;(X ) (X )79V16 = ^916;(v)775 - 73= 4 73 •(V)布置作业:教科书第13页练习板书设计:16.3.二次根式的加减问题:二次根式的加减的一般步骤:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.例1: 练习:教研组长意见:课后反思:。
2.7 二次根式第2课时二次根式的运算【上节知识回顾】1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。
如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“,”等虽然可以进行开方运算,但它们仍属于二次根式。
2.二次根式的主要性质(1);(2);(3);(4)积的算术平方根的性质:;(5)商的算术平方根的性质:;(6)若,则。
3.注意与的运用。
【新授】一、二次根式的乘法一、复习引入1.填空(1;(2=_______.(3.参考上面的结果,用“>、<或=”填空.一般地,对二次根式的乘法规定为反过例1.计算(1(2(3(4例2 化简(1(2(3(4(5例3.判断下列各式是否正确,不正确的请予以改正:(1(2=4二、二次根式的除法1.写出二次根式的乘法规定及逆向等式.2.填空(1;(2;;(4.(3一般地,对二次根式的除法规定:例1.计算:(1(2(3(4例2.化简:(1(2(3(4例3.=,且x为偶数,求(1+x的值.三、分母有理化两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式。
对于有理化因式,要注意以下四点:(1)它们必须是成对出现的两个代数式;(2)这两个代数式都是二次根式;(3)这两个代数式的积不含有二次根式;(4)一个二次根式,可以与几个不同的代数式互为有理化因式。
a=(单项二次根式的有理化因式是它本身);=-(平方差公式)。
2.7二次根式〔第3课时〕教学设计一、学生情况分析前面学习了实数,实数的运算法那么,最简二次根式及二次根式的化简,已能进行实数的四那么运算.但熟练程度不高,同时对根号内含字母的二次根式的化简比拟生疏..为今后的数学学习扫清了计算方面的障碍.二、教学任务分析二次根式〔第3课时〕是义务教育课程标准北师大版实验教科书八年级上册第二章?实数?第7节内容.本节内容分为3个课时,本课时是第3课时.继续稳固二次根式的概念,熟练二次根式的化简,进而完善实数的运算.二次根式化简掌握以后,初中阶段实数的运算根本完成,本节课就是进一步完善二次根式的运算。
假设能够在含字母的二次根式的化简方面再深化一下,那么在今后的学习中,实数的计算问题根本解决了.经历本节课的学习,学生对实数的运算,就有了较全面的了解。
因此本节课的目标定为:1.进一步理解二次根式的概念,进一步熟练二次根式的化简。
2. 了解根号内含有字母的二次根式的化简3.利用二次根式的化简解决简单的数学问题.通过独立思考,能选择合理的方法解决问题.4.在运算过程中稳固知识,通过与人交流总结方法.根号内含字母的二次根式的化简对学生来说是一个难点.三、教学过程设计本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识稳固;第三环节:问题解决;第四环节:知识提升;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入内容:〔1〕最简二次根式的概念;〔2〕二次根式化简过程中,你有哪些体会?〔3〕上节课课后作业:假设414.12≈,732.13≈,449.26≈,求23.你是怎样解决的? 意图:借助复习,在稳固旧知的同时,导入新课. 第二环节:知识稳固例4 计算:〔1〕3223-;〔2〕81818+-;〔3〕3)6124(÷-. 解:〔1〕3223-=33322223⨯⨯-⨯⨯=631621-=6)3121(-=661; 〔2〕81818+-=162222322+⨯-⨯=2412223+-=245; 〔3〕3) 6124(÷-= 361324÷-÷= 361324÷-÷ = 3618⨯-= 66224⨯-⨯= 26122-= 2611. 说明:可以放手让学生独立完成,然后通过交流,发现问题,给出一个统一的意见.收集第〔3〕小题有多少种解决方法.让学生说说想法.以上过程每位同学都是怎样化简的,方法好不好,能做到快而准确吗?化简:〔1〕10152-;〔2〕31312+-;〔3〕8)2118(⨯-.第三环节:问题解决如以下图,图中小正方形的边长为1,试求图中梯形的面积,你有哪些方法,与同伴交流.让学生充分发表意见.〔1〕直接求法.过点D 作AB 边上的高DE ,可发现边AB ,DC 及DE都是某一个小直角三角形的斜边.根据勾股定理可求得AB =25, CD =2,DE =23,面积梯形AB CD 的面积是23)225(21⨯+=18. 〔2〕间接求法.将梯形ABCD 补成一个5×7长方形,用长方形的面积减去3个小三角形的面积,得梯形ABCD 的面积是11212421552175⨯⨯-⨯⨯-⨯⨯-⨯=18. 第四环节:知识提升问题:2a 〔0>a 〕等于多少?根据算术平方根的定义,可知a a =2〔0>a 〕.例5 化简:〔1〕3325b a 〔0>a ,0>b 〕;〔2〕3)(y x +〔0≥+y x 〕;〔3〕a b b a 〔0>a ,0>b 〕. 解:〔1〕3325b a =ab b a ⋅2225=ab b a ⋅2225=ab ab 5;〔2〕3)(y x +=)()(2y x y x +⋅+=y x y x ++)(;〔3〕a b b a =2a ab b a =ab a b a 1⨯=ab b 1. 0>a ,0>b 时化简:〔1〕)(a b b a ab +;〔2〕324b a ;〔3〕ab b a⨯-)1(; 〔4〕b a a b ab a 155102÷⋅. 解:〔1〕)(a b b a ab +=a b ab b a ab ⨯+⨯=ab ab b a ab ⨯+⨯ =22b a +=b a +;〔2〕324b a =b b a ⋅2222=b b a ⋅2222=b ab 2;〔3〕ab b a⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a ⨯-⨯1=a b b ⨯-2 =a b b -;〔4〕b a a b ab a 155102÷⋅=ba ab ab a ÷⋅÷⨯)15510(2=a b a 32310⋅ =222310a ba b a ⋅⋅=222310a ba b a ⋅⋅=222310aab b a ⋅⋅=ab a b a ⋅⋅2310 =ab ab 310. 2. 求代数式ab b a ⨯-)1(的值,其中3=a ,2=b . 解:由题知0>a ,0>b .ab b a ⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a⨯-⨯1=2ab b - =a b b -.当3=a ,2=b 时,a b b -=322-.第五环节:课堂小结〔1〕二次根式的化简:二次根式的化简一定要化成最简二次根式.〔2〕利用式子a a =2〔0>a 〕可将根号内含字母的二次根式化简,结果也要化成最简二次根式.第六环节:课后作业习题 2.11 1, 3补充作业:化简:〔1〕)263)(232(+-; 〔2〕)483814122(23+-; 〔3〕)0,0()2(≥≥⋅+-y x xy yx x y xy ; 〔4〕)0,0()(33≥≥⋅-+b a ab ab ab b a ;〔5〕)0(4322763232≥+-a a ab a b ab a . 答案:〔1〕64216-;〔2〕6648-;〔3〕x y xy +-2;〔4〕ab ab ab b a -+22;〔5〕a ab 325. 五、教学反思[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
第2课时 二次根式的运算1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27; (3)2xy ×1x ; (4)14×7. 解:(1)3×5=15; (2)13×27=13×27=9=3; (3)2xy ×1x =2xy ×1x=2y ; (4)14×7=14×7=72×2=7 2.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法 计算a 2-2a ÷a 的结果是( )A.-a -2 B .--a -2C.a -2 D .-a -2 解析:原式=a 2-2aa =a (a -2)a =a -2.故选C. 方法总结:利用ab =a b(a ≥0,b>0)可以进行二次根式的化简、计算,化去根号内的分母. 探究点二:二次根式的加减运算计算:(1)23-63;(2)80-20+5;(3)239x +6x 4-2x 1x. 解析:(1)直接把二次根式合并,(2)、(3)先将二次根式化成最简二次根式,再将被开方数中相同的二次根式合并. 解:(1)23-63=(2-6)3=-43; (2)80-20+5=45-25+5=(4-2+1)5=35;(3)239x +6x 4-2x 1x =2x +3x -2x =3x. 方法总结:将各二次根式化简为最简二次根式,然后将被开方数相同的项合并.探究点三:二次根式乘法公式计算:(23+32-6)(23-32+6).解析:将括号内的各项重新结合,构成平方差公式,再结合完全平方公式展开并化简.解:原式=[23+(32-6)][23-(32-6)]=(23)2-(32-6)2=12-(18-123+6)=123-12.方法总结:结合题目特点使用适当的运算方法,可以减少计算量.三、板书设计二次根式的运算⎩⎪⎨⎪⎧乘除法则加减法则乘法公式通过对公式的逆运用,达到化简的目的.学会这种特殊的思考方法.在合作探究过程中,提升学生探究能力和合作意识.通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.。