当前位置:文档之家› 高中数学选修2-3两个计数原理

高中数学选修2-3两个计数原理

高中数学选修2-3两个计数原理
高中数学选修2-3两个计数原理

【高考导航】

分类计数原理与分步计数原理又称加法原理和乘法原理,它不仅是推导排列数、组合数计算公式的依据,而且是最基本的思想方法,这种思想方法贯穿在解决本章应用问题的始终.在高考中,运用分类计数原理和分步计数原理结合排列组合知识解决排列组合相关的应用题,通常不单独命题.

【学法点拨】

对两个原理的掌握和运用,是学好本单元知识的一个关键.

从思想角度看,分类计数原理的运用是将一个问题进行“分类”的思考,分步计数原理是将问题进行“分步”的思考,从而达到分析问题、解决问题的目的.

从集合的角度看,两个基本原理的意义及区别就显得更加清楚了.完成一件事有A、B两类办法,即集合A、B互不相交,在A类办法中有m1种方法,B类办法中有m2种方法,即card(A)=m1,card(B)=m2,那么完成这件事的不同方法的种数是card(A∪B)=m1+m2.这就是n=2时的分类计数原理.若完成一件事需要分成A、B两个步骤,在实行A步骤时有m1种方法,在实行B步骤时有m2种方法,即card(A)=m1;card(B)=m2,那么完成这件事的不同方法的种数是card(A·B)=card(A)·card(B)=m1·m2.这就是n=2时的分步计数原理.

两个原理都是涉及完成一件事的不同方法的种数.它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.初学时,应结合实例,弄清两个原理的区别,学会使用两个原理.

【基础知识必备】

一、必记知识精选

1.分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.

2.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.

二、重点难点突破

本节重点是准确理解和灵活运用分类计数原理和分步计数原理.

难点是两个原理的恰当运用.

两个原理的区别在于“分类”与“分步”,完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一个方法都能单独完成这件事,则用加法计数.若完成这件事需分为n个步骤,这n个步骤相互依存.具有连续性,当且仅当这n个步骤依次全都完成后,这件事才完成,那么完成这件事的方法总数用乘法计算.

处理具体问题时,首先要弄清是“分类”还是“分步”,简单地说是“分类互斥、分步互依”,因此在解题时,要搞清题目的条件与结论,且还要注意分类时,要不重不漏,分步时合理设计步骤、顺序,使各步互不干扰.对于一些较复杂的题目,往往既要分类又要分步,也就是说既要应用分类计数原理又要运用分步计数原理.

三、易错点和易忽略点导析

由于对两个原理理解不清,解题时,易发生分类不全和分类时各类有叠加现象的错误,即“遗漏”或者“重复”.

【例1】有红、黄、蓝旗各3面,每次升一面、二面、三面在某一旗杆上纵向排列,表示不

同的信号,顺序不同则表示不同的信号,共可以组成多少种不同的信号?

错解:可组成3×3×3=27种不同的信号.

正确解法:每次升1面旗可组成3种不同的信号;每次用2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分步计数原理得共可组成3+9+27=39种不同的信号.

错解分析:错解忽略了信号可分为使用的旗数分别可以为1面、2面、3面这3类.本题综合应用了乘法原理和加法原理.

【例2】在3000到8000之间有多少个无重复数字的奇数?

错解:分三步完成,首先排首位有5种方法,再排个位有5种方法,最后排中间两位有8×7种方法,所以共有5×5×8×7=1400个.

正确解法:分两类;一类是以3、5、7为首位的四位奇数,可分三步完成:先排首位有3种方法,再排个位有4种方法,最后排中间两个数位有8×7种方法,所以共有3×4×8×7=672个.

另一类是首位是4或6的四位奇数,也可以3步完成,共有2×5×8×7=560个.

由分类计数原理得共有672+560=1232个.

错解分析:由题意,3、5、7这三个数既可以排在首位,也可以排在个位,因此,首位是用3、5、7去填.还是用4、6去填,影响到第二步,即填个位的方法数,遇到此类情形,则要分类处理.错解中有重复排上同一个奇数的四位数而产生错误.

【例3】编号为1~25的25个球摆成五行五列的方阵,现从中任选3个球,要求3个球中任意两个都不在同一行也不在同一列,有多少种不同的选法?

错解:分以下三步完成:(1)选取第一个球,可在25个球中任意选取,有25种选法;(2)选取第二个球,为了保证两球不在同一行也不在同一列,将第一个球所在的行和列划掉,在剩余的16个球中任取一个,有16种选法;(3)选取第三个球,应从去掉第一、二个球所在的行和列后所剩余的9个球中选取有9种选法.

根据乘法原理,有25×16×9=3600种方法.

正确解法:分以下三个步骤:(1)先从5行5列中选出3行有10种选法;(2)从一行的5个球中选出3个球,有10种选法;(3)最后从所选出的3个球中按照它所在列放在第(1)步选出3行的每一行上有6种方法.

根据乘法原理有10×10×6=600种选法.

错解分析:错解中先选一球,假定此球为①,第二步去掉球①所在的行和列,在剩余的16个球中任选一个球,假定选取了球(25),第三步在去掉球①与(25)所在的两行、两列16个球,在剩余的9个球中任选一球,假定为球(13),则此选法为①(25)(13),若第一步选(13),第二步选①,第三步选(25),显然这两种选法是相同结果.这说明上述解法中有许多重复之处.所以,解法是错误的,每一不同取法在错解中都被重复了6次.

【综合应用创新思维点拨】

一、学科内综合思维点拨

【例1】三边长均为整数,且最大边长为11的三角形共有()

A.25个

B.26个

C.36个

D.37个

思维入门指导:设另两边长分别为x,y,且不妨设1≤x≤y.由三角形的特性,必须满足x+y ≥12,以下可以分类考虑.

解:当y取11时,x=1,2,3,…,11,可有11个三角形.

当y取10时,x=2,3,…,10,可有9个三角形.

……

当y取6时,x=6可有1个三角形.

因此,所求三角形的个数为11+9+7+5+3+1=36个,故应选C.

点拨:本题应用了“穷举法”,这也是解决排列组合应用题的一个基本方法.

二、学科间综合思维点拨

【例2】 DNA分子多样性表现在碱基的排列顺序的千变万化上.若一个DNA分子有8000个碱基,则由此组成的DNA的碱基对的排列方式共有()种.

A.2100

B.24000

C.48000

D.44000

解:选D.

点拨:每个碱基可互配对及自配对.

三、应用思维点拨

【例3】 (1)有5名同学报名参加4个课外活动小组,若每人限报1个,共有多少种不同的报名方法?

(2)5名同学争夺4项竞赛冠军,冠军获得者共有多少种可能?

思维入门指导:(1)每名同学确定参报课外活动小组项目可依次让每个同学去报.因此,可划分为五个步骤.

(2)可依次为四项冠军确定人选,这样,可分4步完成.

解:(1)每名同学在四个项目中可任报一项,即每一步有4种方法,根据分步计数原理,不同的报名方法共有:

N=4×4×4×4×4=45=1024种.

(2)为每一个冠军寻找人选均有5种可能,因此,根据分步计数原理,冠军获得者共有:

N=5×5×5×5=54=625种.

四、创新思维点拨

【例4】(1)有面值为五分、一角、二角、五角、一元、二元、五十元、一百元人民币各一张,共可组成多少种不同的币值?

(2)有一角、二角、五角人民币各一张,一元人民币3张,五元人民币2张,一百元人民币2张,由这些人民币可组成多少种不同的币值?

思维入门指导:(1)中的8张人民币的面值各不相同,并且这8张人民币中任意几张的面值之和各不相同.因此,8张人民币所组成的不同币值的数种就是人民币所有可能取法的数种. 对每一张人民币而言,都有“取”与“不取”两种可能.因此,可按这样的程序:

(2)中这10张人民币一元的有3张,五元的有2张,一百元的有2张.因此取人民币的程序应该是:

解:(1)每张人民币均有“取”与“不取”两种可能,所以有2×2×2×2×2×2×2×2=28.而其中每一张都不取,不组成币值,所以不同的币值数为;

N=28-1=255(种).

(2)第一、二、三步都只有“取”与“不取”这两种情况,第四步取一元的3张中,可分“不取”、“取一张”、“取二张”、“取三张”这四种情况,第五步与第六步都有3种情况,且每步都不取不构成币值.所以不同的币值数:

N=2×2×2×4×3×3-1=287种.

点拨:此题若“分类”思考,特别是第(2)问,则较麻烦.此法为“间接法”.

五、高考思维点拨

【例5】(2003,河南)将3种作物种植在如图10-1-1所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______ 种(以数字作答).

解:设从左到右五块田中要种a、b、c三种作物,不妨先设第一块种a,则第2块可种b或c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由乘法原理共有:1×2×2×2×2=16.

其中要去掉ababa和acaca两种方法,故a种作物种在第1块田时有16-2=14种方法.同样b 和c也可种在第1块田中,故共有:14×3=42种.

点拨:本小题主要考查运用乘法原理分析解决问题的能力.

六、经典类型题思维点拨

【例6】如图10-1-2所示,从A地到B地有3条不同的道路,从B地到C地有4条不同的道路,从A地不经B地直接到C地有2条不同的道路.

(1)从A地到C地共有多少种不同的走法?

(2)从A地到C地再回到A地有多少种不同的走法?

(3)从A地到C地再回到A地,但回来时要走与去时不同的道路,有多少种走法?

(4)从A地到C地再回到A地,但回来时要走与去时完全不同的道路,有多少种走法?

思维入门指导:要综合应用两个原理.

解:(1)从A到C地的走法分为两类:第一类经过B,第二类不经过B.在第一类中分两步完成,第一步从A到B,第二步从B到C,所以从A地到C地的不同走法总数是3×4+2=14种.

(2)该事件发生的过程可以分为两大步,第一步去,第二步回.由(1)可知这两步的走法都是14种,所以去后又回来的走法总数是14×14=196种.

(3)该事件的过程与(2)一样可分为两大步,但不同的是第二步即回来时的走法比去时的走法少1种,所以,走法总数是14×13=182种.

(4)该事件同样分去与回两大步,但须对去时的各类走法分别讨论:

若去时用第一类走法,则回来时,用第二类方法或用第一类中的部分走法,即第一类中的两步各去掉1种走法中的走法,这样的走法数是:

3×4×(2+3×2)=96种;

若去时用第2类走法,则回来时可用第一类走法或用第二类中的另一种走法.这样的走法数是:2×(4×3+1)=26种.

所以,走法总数为96+26=122种.

点拨:正确区分“不同”与“完全不相同”两种含义是解题的另一个关键,前者的含义是回来时不能原路返回,但允许有部分是原路,后者的含义是去时走过的路,回来时都不能走,前者包含后者.

七、探究性学习点拨

允许元素重复出现的排列,叫做有重复的排列.

在m个不同的元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一,第二,…,第n位上选取元素的方法都是m个,所以从m个不同的元素中,每次

取出n个元素的可重复的排列数为=m n.

【例7】有数学、物理、文学3个课外活动小组,6个同学报名,每人限报一组,一共有多少种报名的方法?

解:这就是有重复的排列.第一个同学有3种报名的方法,无论他报了哪一个组,第二个同学还是有3种报名的方法,其余类推.所以,一共有36=729种报名的方法.

思考题:用0,1,2,…,9共10个数字中的4个数字组成电话号码,但0000不能作号码,问可编成多少个号码?

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

高考数学 计数原理 知识汇总

计数原理 课表要求 1、会用两个计数原理分析解决简单的实际问题; 2、理解排列概念,会推导排列数公式并能简单应用; 3、理解组合概念,会推导组合数公式并能解决简单问题; 4、综合应用排列组合知识解决简单的实际问题; 5、会用二项式定理解决与二项展开式有关的简单问题; 6、会用二项式定理求某项的二项式系数或展开式系数,会用赋值法求系数之和。突破方法 1.加强对基础知识的复习,深刻理解分类计数原理、分步计数原理、排列组合等基本概念,牢固掌握二项式定理、二项展开式的通项、二项式系数的性质。2.加强对数学方法的掌握和应用,特别是解决排列组合应用性问题时,注重方法的选取。比如:直接法、间接法等;几何问题、涂色问题、数字问题、其他实际问题等;把握每种方法使用特点及使用范围等。 3.重视数学思维的训练,注重数学思想的应用,在解题过程中注重化归与转化思想的应用,将不同背景的问题归结为同一个数学模型求解;注重数形结合、分类讨论思想、整体思想等,使问题化难为易。 知识点 1、分类加法计数原理 完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类办法中有m2种不同的方法,……在第n类办法中有m n种不同的方法。那么完成这件事共有:N=m1+m2+……+m n种不同的方法。 注意:(1)分类加法计数原理的使用关键是分类,分类必须明确标准,要求每一种方法必须属于某一类方法,不同类的任意两种方法是不同的方法,这时分类问题中所要求的“不重复”、“不遗漏”。 (2)完成一件事的n类办法是相互独立的。从集合角度看,完成一件事分A、B两类办法,则A∩B=?,A∪B=I(I表示全集)。 (3)明确题目中所指的“完成一件事”是指什么事,完成这件事可以有哪些办法,怎样才算是完成这件事。 2、分步乘法计数原理 完成一件事,需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有:N=m1·m2·……·m n种不同的方法。 注意:(1)明确题目中所指的“做一件事”是什么事,单独用题中所给的某种方法是不是能完成这件事,是不是要经过几个步骤才能完成这件事。 (2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成。 (3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步去

(完整word)高中数学《计数原理》练习题

《计数原理》练习 一、选择题 1.书架上层放有6本不同的数学书,下层放有5本不同的语文书,从中任取数学书和语文书各一本,则不同的取法种数有( ) A 11 B 30 C 56 D 65 2.在平面直角坐标系中,若{}{}1,2,3,3,4,5,6x y ∈∈,则以(),x y 为坐标的点的个数为( ) A 7 B 12 C 64 D 81 3.若()12n x +的展开式中,3x 的系数是x 系数的7倍,则n 的值为( ) A 5 B 6 C 7 D 8 4.广州市某电信分局管辖范围的电话号码由8位数字组成,其中前3位是一样的,后5位数字都是0~9这10个数字中的一个,那么该电信分局管辖范围内不同的电话号码个数最多有( ) A 50 B 30240 C 59049 D 100000 6.按血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,其子女的血型一定不是O 型,如果某人的血型为O 型,则该人的父母血型的所有可能情况种数有( ) A 6 B 7 C 9 D 10 7.计算0121734520C C C C ++++L 的结果为( ) A 421C B 321 C C 320C D 420C 8.一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球得2分,取出一个白球得1分,问从口袋中取出5个球,使总分不少于7分的取法种数有( ) A 15 B 16 C 144 D 186 二、填空题 9.开车从甲地出发到丙地有两种选择,一种是从甲地出发经乙地到丙地,另一种是从甲地出发经丁地到丙地。其中从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。则从甲地到丙地不同的走法共有 种。 10.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 种。 14.()()5 211x x +-的展开式中3x 的系数为

高中数学选修2-3两个基本计数原理

两个基本计数原理 教学目标: 1、准确理解分类加法计数原理和分步乘法计数原理概念和步骤 2、会运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的问题 要点扫描: 1、(1)分类计数原理(加法原理): (2)分步计数原理(乘法原理): 2、分类计数原理和分步计数原理的区别和联系 分类计数原理和分步计数原理,回答的都是有关做一件事的不同方法总数的问题,其区别在于:分类计数原理针对的是___问题,其中各种方法____,用其中任何一种方法都可以做完这件事;分步计数原理针对的是___问题,各个步骤中的方法____,只有各个步骤都完成之后才算做完这件事。 例题讲解: 例1、(1)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中任选一本书阅读,有多少种不同的选法? (2)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中各选一本书阅读,有多少种不同的选法? 例2、从1到200的自然数中,各个数位上都不含数字8的有多少个? 例3、3名学生报名参加4个不同学科的比赛,每名学生只能参赛一项,有多少种不同的报名方法?若有4项冠军在3人中产生,每项冠军只能有一人获得,有多少种不同的夺冠方法? 例4、电视台在“欢乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?

例5、在区间[400,800]上,(1)有多少个能被5整除且数字允许重复的整数?(2)有多少 个能被5整除且数字不允许重复的整数? 当堂反馈: 1、某人要将4封信投入3个信箱中,不同的投寄方法有 ( ) A 、12种 B 、7种 C 、43种 D 、34种 2、从0,1,2,3,4,5,7七个数中任取两个数相乘,使所得积为偶数,这样的偶数共有 ( ) A 、18个 B 、9个 C 、12个 D 、10个 3、有三个车队分别有5辆,6辆,7辆车,现欲从其中两个车队各抽调一辆车外出执行任务, 设不同的抽调方案数为n ,则n 的值为 ( ) A 、107 B 、210 C 、36、 D 、77 4、已知集合A={},102,≤≤-∈x z x x A n m ∈,,方程12 2=+n y m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有 ( ) A 、45个 B 、55个 C 、78个 D 、91个 作业:课课练 课时1,2

高中数学选修2-3计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+== 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

高中数学教案:计数原理

高中数学教案:计数原理 教学目标: 对差不多概念,差不多知识和差不多运算的把握 注重对分析咨询题和解决咨询题的能力的培养 对综合咨询题要注意数学思想的培养 教学重难点: 对两个差不多计数原理的把握和运用 排列组合以及二项式定理典型题解题技巧 教学设计: 知识网络: 一、两个差不多计数原理: 1、分类计数原理:完成一件事,有n 类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第n 类方法中有mn 种不同的方法,那么完成这件事共有 N=m1+m2+…+mn 种不同的方法。〔加法原理〕 2、分步计数原理:完成一件事,需要分成n 个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有mn 种不同的方法,那么完成这件事有 N=m1×m2×…×mn 种不同的方法。〔乘法原理〕 二、排列 排列:一样地,从n 个不同的元素中取出m 〔m ﹤n 〕个元素,并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 注意:1、排列的定义中包含两个差不多内容:①〝取出元素〞;②〝按照一定顺序排列〞,〝一定顺序〞确实是与位置有关,这也是判定一个咨询题是不是排列咨询题的重要标志。 2、依照排列的定义,两个排列相同,是指当且仅当两个排列的元素完全相同,而且元素的排列顺序也相同 排列数公式: )!(!)1()2()1(m n n m n n n n A m n -=+-???-?-?= !12)2()1(n n n n A n n =????-?-?= 三、组合 组合:一样地,从n 个不同元素中取出m 个不同元素并成一组,叫做从n 个不同元素中取出m 个不同元素的一个组合。 组合数公式: 〔组合数公式1—适用于运算〕 〔组合数公式2—适用于化简证明〕 组合数公式性质:性质1: m n n m n C C -= ! )1()2)(1(m m n n n n m m m n m n C +---=A =A ! )(! ! m n m n C m n -=

(完整word版)分类加法计数原理与分步乘法计数原理练习题

分类加法计数原理与分步乘法计数原理练习题 一.选择题 1.一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是( ) A.8 B.15 C.16 D.30 2.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有( ) A.5种 B.6种 C.7种 D.8种 3.如图所示为一电路图,从A 到B 共有( )条不同的线路可通电( ) A.1 B.2 C.3 D.4 4.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( ) A.25 B.20 C.16 D.12 5.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳有( )种不同的选择方式 A. 24 B.14 C. 10 D.9 6.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==, ,,,,,,则P *Q 中元素的个数是( ) A.4 B.7 C.12 D.16 二、填空题 7.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法;要买上衣,裤子各一件,共有 种不同的选法. 8.十字路口来往的车辆,如果不允许回头,共有 种行车路线. 9.已知{}{}0341278a b ∈∈, ,,,,,,则方程22()()25x a y b -+-=表示不同的圆的个数是 . 10.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有 项. 11.如图,从A →C ,有 种不同走法. 12.将三封信投入4个邮箱,不同的投法有 种. 三、解答题 13.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同. (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法?

高中数学典型例题解析:第九章 计数原理与概率

第九章 计数原理与概率 §9.1 计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法, 这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一 种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地 到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种

1.1 两个基本计数原理(2)

教学内容 §1.1 两个基本计数原理(2) 教学目标要求(1)掌握分类计数原理与分步计数原理,并能根据具体问题的特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题; (2)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解 决问题的能力,开发学生的逻辑思维能力. 教学重点分类计数原理与分步计数原理的区别和综合应用. 教学难点分类计数原理与分步计数原理的区别和综合应用. 教学方法和教具 教师主导活动学生主体活动一.问题情境 复习回顾:1.两个基本计数原理; 2.练习: (1)从2,3,5,7,11中每次选出两个不同的数作为分数的分子、 分母,则可产生不同的分数的个数是,其中真分数的 个数是. (2)①用0,1,2,……,9可以组成多少个8位号码; ②用0,1,2,……,9可以组成多少个8位整数; ③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数. 二.数学运用 1.例题: 例1 用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同 的颜色,共有多少种不同的涂法? 分析完成这件事可分四个步骤,不妨 设①、②、③、④的次序填涂. 解:第一步,填涂①,有4种不同颜色 可选用; 第二步,填涂②,除①所用过的颜色外, 还有3种不同颜 色可选用; 第三步,填涂③,除①、②用过的2种 颜色外,还有2种 不同颜色可选用; 第四步,填涂④,除②、③用过的2种颜色外,还有2种不同颜色可 选用. ???=种不同的方法,即填涂这张 所以,完成这件事共有432248 地图共有48种方法. 答共有48种不同的涂法. 思考:如果按①、②、④、③的次序填涂,怎样解决这个问题?

高中数学选修2-3计数原理练习

高中数学选修2-3计数原理练习 一、选择题: 1、某同学逛书店,发现三本喜欢的书,决定至少买其中一本,则购买方案有( ) A.3种 B.6种 C.7种 D.9 2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( ) A. 50种 B.105种 C. 510 种 D.以上都不对 3、某高校从8名优秀毕业生中选出5名支援西部建设,其中甲必须当选的种数是( ) A 35 B 56 C 21 D 36 4、假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有( ) A .3 19823C C 种 B .(2 19733319723C C C C +)种 C .)C -(C 4 1975200种 D .)C C C (4197135200-种 5、4·5·6·7·…·(n-1)·n等于( ) A.4-n n A B.3 -n n A C.n!-4! D. ! 4! n 6、已知x ,y ∈N ,且x n C =y n C ,则x 、y 的关系是( ) A.x =y B.y =n -x C.x =y 或x +y =n D.x ≥y 7、下面是高考第一批录取的一份志愿表: 现有4所重点院校,每所院校有3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是( ) A .32 33)(4A ? B .32 33)(4C ? C .32 33 4)(C A ? D .32 33 4)(A A ? 8、从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有( ) A .168 B .45 C .60 D .111 9、氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成, 若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法共有 ( ) A .210种 B .126种 C .70种 D .35种 10、电话号码盘上有10个号码,采用八位号码制比采用七位号码制可多装机的门数是( ) A .87 1010A A - B . C 108-C 107 C .781010- D .88108 C A 11、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共( )种 A .210种 B .420种 C .630种 D .840

广西重点高中届高三数学分类加法计数原理与分步乘法计数原理练习题

《分类加法计数原理与分步乘法计数原理》 1.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,例外选法的种数是() A. 81 C. 48B. 64 D. 24 4 解析:每个同学都有3种选择,所以例外选法共有3=81(种),故选A. 答案:A 2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有() A. 8种 C. 10种B. 9种 D. 11种 解析:设四位监考教师分别为A、B、C、D,所教班分别为a、b、c、d,假设A监考b,则余下三人监考剩下的三个班,共有3种例外方法,同理A监考c、d时,也分别有3种例外方法,由分类加法计数原理共有3+3+3=9(种). 答案:B 3.将标号为1,2,3,4,5,6的6张卡片放入3个例外的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则例外的放法共有() A. 12种 C. 36种 1B. 18种

D. 54种 解析:先将1,2捆绑后放入信封中,有C 3种方法,再将剩余的4张卡片放入另外两个信封中,有C 4C 2种方法,所以共有C 3C 4C 2=18(种)方法. 答案:B 4.用0,1,2,3,4,5六个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,则上述四位数中“渐降数”的个数为() A. 14 C. 16B. 15 D. 17 22122 解析:由已知可知,只需找出组成“渐降数”的四个数字即可,等价于六个数字中去掉两个例外的数字. 从前向后先取0有0与1,0与2,0与3,0与4,0与5,共5种情况; 再取1有1与2,1与3,1与4,1与5,共4种情况; 依次向后分别有3,2,1种情况. 因此,共有1+2+3+4+5=15(个)“渐降数”.

高中数学选修2-3 第一章《计数原理》单元测试题(含答案)

高中数学选修2--3 第一章《计数原理1》单元测试题 一、选择题 1.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .14 2.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( ) A .140种 B.84种 C.70种 D.35种 3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A .33A B .334A C .523533A A A - D .231132 3233A A A A A + 4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( ) A.20 B .16 C .10 D .6 5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人. 6.在8 2x ? ?的展开式中的常数项是( ) A.7 B .7- C .28 D .28- 7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100- 8.22n x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是 ( ) A .180 B .90 C .45 D .360 二、填空题 1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有

种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法. 2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数. 4.在10 (x的展开式中,6x的系数是 . 5.在220 -展开式中,如果第4r项和第2 (1) x r+项的二项式系数相等, T= . 则r=, 4r 6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个? 7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题 1.判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

【高中数学】计数原理总结

【高中数学】计数原理总结 知识梳理: 1. 分类加法计数原理和分布乘法计数原理 (1)如果完成一件事有n 类不同的方案,在第一类中有m1种不同的方法,在第二类中有m2种不同的方法,…,在第n 类中有mn 种不同的方法,那么完成这件事共有N=_________种不同的方法。 (2)如果完成一件事需要n 个不同的步骤,在第一步中有m1种不同的方法,在第二步中有m2种不同的方法,…,在第n 步中有mn 种不同的方法,那么完成这件事共有N=_________种不同的方法。 (3)分类和分布的区别,关键是看事件能否完成,事件完成了就是___________;必须要连续若干步才能完成则是 _____________。分类要用分类计数原理将种数_________,分步要用分步计数原理将种数_________。 2. 排列与组合 (1)排列 (1)(2)(1)()(1)321(1)(2)(1)()(1)321 !()! m n n n n n m n m n m A n n n n m n m n m n n m ---+---??=---+= ---??=- (1)(2)(!()!m n A n n n n n n m =--=- (2)组合 ①组合数公式(1)(2)(1)!()(1)321()!! m n n n n n m n C n m n m n m m ---+==---??- ①组合数的两个性质_______ _ ____、 。 ③区别排列与组合 3. 常见的解题策略有以下几种: (1)特殊元素优先安排的策略 (2)合理分类和准确分布的策略 (3)排列、组合混合问题先选后排的策略 (4)正难则反、等价转化的策略 (5)相邻问题捆绑的策略 (6)不相邻问题插空处理的策略 (7)定序问题除法处理的策略 (8)分排问题直排处理的策略 (9)“小集团”排列问题中先整体后局部的策略 (10)构造模型的策略。 4. 二项式定理 (1)二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n (2)通项:展开式的第1+r 项,即) ,,1,0(1n r b a C T r r n r n r ==-+ (3)二项式系数的性质: ①对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等。即 ①增减性与最值:二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C ③二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和。即 m n n m n C C -=n n n k n n n n C C C C C 2 210 =+???++???+++∴ 0213n-1n n n n C +C +=C +C +=2

选修2-3第一章计数原理教材分析

选修2-3第一章:“计数原理”教材分析与教学建议 一、地位与作用 计数问题是数学中的重要研究象之一,分类加法计数原理与分步乘法计数原理是解决计数问题的最基本、最重要的方法,它们为解决很多实际问题提供了思想和工具。计数原理是学习统计与概率以及相关分支的基础。计数原理的思想方法独特灵活,有利于培养和发展学生的抽象能力和逻辑思维能力。 二、本章重点、难点 1.重点:(1)分类加法计数原理、分步乘法计数原理;(2)排列与组合的意义;(3)排列数公式与组合数公式;(4)二项式定理。 2.难点:(1)如何利用原理和有关公式解决应用问题。 三、课程标准 1.分类加法计数原理、分步乘法计数原理 通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题。 2.排列与组合 通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题。 3.二项式定理 能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。四、教学安排与课时分配 这部分的内容与《大纲》没有太大的区别,在处理方式上,相对于排列、组合来说,《标准》更强调基本的计数原理,而把排列、组合、二项式定理的证明作为计数原理的应用实例。就计数原理本身而言,《标准》强调对计数思想的理解, 两个版本相比,A版更加注重体现课标的精神,比如:从内容编排上看,非常强调基本计数原理的思想及其应用,第一节安排了有梯度的9个例题,计划用4课时,让学生通过丰富的实例来熟悉原理及其基本应用,而同样内容B版为3个例题,2课时;注重学生对新概念、新公式的探究。 避免抽象的讨论计数原理,而且强调计数原理在实际中的应用。教学用时比《大纲》少了4课时。 六、教材分析 (一)计数原理 1.分类加法计数原理 (1)原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N m n =+种不同的方法.

高中数学之计数原理

计数原理(讲义) ? 知识点睛 一、两个计数原理 1. 全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全排列, A (1)(2)21n n n n n n =?-?-???=L ! 即正整数1到n 的连乘积叫做n 的阶乘,用n !表示. A ()m n n n m =-!!,A !C !()!A m m n n m m n m n m ==-, 规定0!1=,0C 1n =. 2. 组合数的性质 C C m n m n n -=,11C C C m m m n n n -+=+. ? 精讲精练 1. 从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地 到B 地有4条路,则从A 地到B 地的不同走法共有( )种.

A .3+2+4=9 B .1 C .3×2×4=24 D .1+1+1=3 2. 设4名学生报名参加同一时间安排的3项课外活动的方案有a 种,这4名学生在运动会上共同争 夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( ) A .(34,34) B .(43,34) C .(34,43) D .3344(A A ), 3. 填空: (1)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有______种. (2)某校学生会由高一年级5人,高二年级6人,高三年级4人组成,若要选出不同年级的两人参加市里组织的某项活动,则不同的选法共有______种. (3)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有_____种. (4)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的为_____种(结果用数值表示). 4. 填空: (1)用0到9这10个数字,可组成________个没有重复数字的四位偶数. (2)6个人从左至右排成一行,若最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种. (3)某运输公司有7个车队,每个车队的车均多于4辆且型号相同,现从这个车队中抽调出10辆车,并且每个车队至少抽调一辆,则不同的抽调方法共有________种.

计数原理练习题

计数原理练习题 一、排列数与组合数计算 1、若n ∈N 且n<20,则(27—n )(28—n ) (34—n )= ( ) A 、827n A - B 、n n A --2734 C 、734n A - D 、834n A - 2、已知=++++2252423n C C C C 363,则n=______ 3、化简=+++-2132n n n n C C C _________ 二、站队相邻与不相邻问题 4、记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A 、1440种 B 、960种 C 、720种 D 、480种 5、把5件不同的商品在货架上排成一排,其中a ,b 两种必须排在一起,而c ,d 两种不能排在一起,则不同排法共有( )A 、12种 B 、20种 C 、24种 D 、48种 6、三个女生和五个男生排成一排, (1)如果女生必须全排在一起,有多少种不同的排法? (2)如果女生必须全分开,有多少种不同的排法? (3)如果两端都不能排女生,有多少种不同的排法? (4)如果两端不能都排女生,有多少种不同的排法? (5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法? 三、定序问题 7、A 、B 、C 、D 、E 五人并排站在一排,其中A 、B 、C 顺序一定,那么不同的排法种数是________。 四、错排问题 8、将数字1、2、3、4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 五、分组分配问题 9、有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4 人承担这三项任务,不同的选法种数是__________。 10、5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( ) A 、480种 B 、240种 C 、120种 D 、96种 11、有6名志愿者(其中4名男生,2名女生)义务参加某项宣传活动,他们自由分成两组完成不同的两项任务,但要求每组最多4人,女生不能单独成组,则不同的工作安排方式有 ( ) A 、40种 B 、48种 C 、60种 D 、68种 12、有2红3黄4白共9个球,同色球不加以区分,将这九个球排成一排,共有____种方法。 六、名额分配问题 13、10个三好学生名额分到7个班级,每个班级至少一个名额,有_________不同分配方案。 14、方程60821=+++x x x 有多少组自然数解(用排列或组合表示)_____________。 七、限制条件的分配问题 15、某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

1.1两个基本计数原理(二)教案

备课时间年月日[来源:学科网][来源:学#科#网 Z#X#X#K] 编写: 上课时间[来源:https://www.doczj.com/doc/5416382225.html,] 第周周月日[来 源:Z_xx_https://www.doczj.com/doc/5416382225.html,][来源:学科网] 班级节次 课题 1.1两个基本计数原理(二)总课时数第节 教学目标1、能根据具体问题的特征,选择运用分类计数原理、分步计数原理; 2、能综合运用两个原理解决一些简单的实际问题; 3、会用列举法解一些简单问题,并体会两个原理的作用. 重难 点 综合运用两个基本原理解决一些简单的实际问题;准确选用两种基本原理.教学 参考 教材、教参 授课方法合作探究、讲授 教学辅助手段 多媒体 专用教室 教学教学二次备课

过程设计复习回顾: 分类计数原理: 分步计数原理: 分类计数原理与分步计数原理的区别与联系 问题 1. 某电脑用户计划使用不超过500元的 资金购买单价分别为60元、70元的单片软件 和盒装磁盘,根据需要,软件至少买3盒,磁 盘至少买2盒,问有多少种不同的选购方式? 问题 2.等腰三角形的三边均为正整数,且其 周长不大于10,这样不同形状的三角形的种数 为多少? 问题 3.将3种作物种植在如图所示的5块试 验田里,每块种植一种作物,且相邻的试验田 不能种植同一种作物,不同的种植方法共有多 少种? 当堂检测 1、某巡洋舰上有一 排四根信号旗杆,每 根旗杆上可以挂红 色、绿色、黄色三种 信号旗中的一面(每 根旗杆必须挂一 面),则这排信号旗 杆所发出的信号种 数为. 2、有三个车队分别 有5辆、6辆、7辆 车,现欲从其中两个 车队各抽掉一辆车 外出执行任务,设不 同的抽调方案数为 n,则n的值为 . 3、某同学逛书店, 发现三本喜欢的书, 决定至少买其中一 本,则购买方案有 种

知识点总结-选修2-3计数原理知识讲解

知识点总结-选修2-3 计数原理

计数原理知识点 知识网络 一、两个计数原理 1. 分类加法计数原理:完成一件事,有n 类办法, 在第1类办法中有1m 种不同的办法; 在第2类办法中有2m 种不同的方法; ..... 在第n 类办法中有n m 种不同的方法 那么,完成这件事共有n m m m N 21中不同的方法. 2. 分步乘法计数原理:完成一件事,需要分成n 个步骤, 做第1步有1m 种不同的方法; 做第2步有2m 种不同的方法; ..... 做第n 步有n m 种不同的方法 那么,完成这件事共有n m m m N 21种不同的方法.

3、两个计数原理的区别 二、排列与组合 1.排列 (1)排列定义:一般地,从n 个不同元素中取出)(n m m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 (2)排列数:从n 个不同元素中取出)(n m m 个元素的所有不同排列的个数叫 做从n 个不同元素中取出m 个元素的排列数。用符号m n A 表示. (3)排列数公式: 其中*,N m n ,并且n m 特殊的,当n m 时,即有 ! ! 121m n n m n n n n A m n 1 2321 n n n A n n

n n A 称为n 的阶乘,通常用!n 表示,即 !n A n n 2. 组合: (1)组合定义:一般地,从n 个不同元素中取出)(n m m 个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 (2)组合数:从n 个不同元素中取出)(n m m 个元素的所有不同组合的个数叫 做从n 个不同元素中取出m 个元素的组合数。用符号m n C 表示。 (3)组合数公式: 其中*,N m n ,并且n m , 规定10 n C 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”. (4)组合数的性质: 三、二项式定理 1. 二项式定理:一般地,对于*N n ,有 *)()(222110N n b C b a C b a C b a C a C b a n n n r r n r n n n n n n n n . 右边的多项式叫做n b a )( 的二项展开式,它一共有1 n 项,其中r r n r n b a C 叫做二项展开式的第1 r 项(也称通项),用1 r T 表示,即 r r n r n r b a C T 1 如果在二项式定理中,设x b a ,1,则可以得到公式: ! !! !121m n m n m m n n n n C m n m n n m n C C m n m n m n C C C 1 1

相关主题
文本预览
相关文档 最新文档