(完整版)解三角形中的最值问题
- 格式:doc
- 大小:315.01 KB
- 文档页数:3
解三角形的范围与最值问题解三角形的范围与最值问题三角形是我们初中数学中常见的几何图形,解决三角形的范围和最值问题是三角函数的重要内容。
本文将从范围和最值两个方面进行探讨。
一、解三角形的范围问题解三角形的范围问题主要是要找到三角函数定义域中的解集,也就是角的取值范围。
1. 正弦函数正弦函数的定义域为全集R,一个完整的正弦函数周期为360度,即sinθ=sin(θ+360°)。
因此,对于任意θ∈R,正弦函数的值总是在[-1,1]之间取值。
2. 余弦函数余弦函数的定义域为全集R,一个完整的余弦函数周期为360度,即cosθ=cos(θ+360°)。
因此,对于任意θ∈R,余弦函数的值总是在[-1,1]之间取值。
3. 正切函数正切函数的定义域由其分母不为零的限定,即tanθ存在当且仅当cosθ≠0,即θ∈R\{nπ+π/2|n∈N}。
对于任意θ∈R,正切函数没有上下界,其取值范围为全集R。
4. 余切函数余切函数的定义域由其分母不为零的限定,即cotθ存在当且仅当sinθ≠0,即θ∈R\{nπ|n∈N}。
对于任意θ∈R,余切函数没有上下界,其取值范围为全集R。
以上是几个常见三角函数的定义域和取值范围,要求掌握它们的基本特征和计算方法。
二、解三角形的最值问题解三角形的最值问题主要是要找到三角函数在定义域中的最大值和最小值,其思路一般是利用极值点或者函数的单调性来进行分析。
1. 正弦函数和余弦函数的最值正弦函数和余弦函数的最值为1和-1,当且仅当θ=nπ(n∈N)时取到。
当θ非整数倍π时,正弦函数和余弦函数的值位于-1和1之间。
2. 正切函数和余切函数的最值正切函数和余切函数都没有最值,但它们在某些点上趋近于无穷或者负无穷,这些点称为函数的特殊点。
正切函数的特殊点为θ=nπ+π/2(n∈Z),此时tanθ趋近于正无穷或负无穷,取决于极限方向。
余切函数的特殊点为θ=nπ(n∈Z),此时cotθ趋近于正无穷或负无穷,取决于极限方向。
【高考地位】三角形中的范围与最值问题,是学生学习解三角形的过程中比较害怕的问题,它不仅仅需要用到三角变换、正余弦定理,往往还需要涉及基本不等式以及求函数值域. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题.【方法点评】类型一 求三角形面积的最值问题使用情景:一般三角形中解题模板:第一步 通过观察分析,决定选用合适的公式;第二步 通过运算、变形,利用三角函数的诱导公式、恒等变换以及边角转化、正弦余弦定理等,将问题转化为三角变换、基本不等式、函数值域等类型加以解决;第三步 得出结论.例1 求满足2,AB AC ==的ABC 的面积的最大值.【答案】【点评】本题结合函数的知识,以学生熟悉的三角形为载体,考察了面积公式、余弦定理等知识,是一道考察解三角形的好题.例2 在ABC 中,22223a b c ab +=+,若ABC ,求ABC 的面积的最大值.【答案】【解析】由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以sin C =,【点评】先利用余弦定理求cos A 的大小,再利用面积公式结合基本不等式,求面积的最大值,要注意正弦定理与余弦定理的综合应用.【变式演练1】已知ABC 外接圆的半径为6,若面积22()ABC S a b c =--且4sin sin 3B C +=,则sin A = ,ABC S的最大值为 【答案】8sin 17A =,25617.考点:1.正弦定理;2.解斜三角形.【变式演练2】在ABC 中,(sin ,cos ),(cos ,sin )m A C n B A ==,且sin sin m n B C ⋅=+(1)求证:ABC 为直角三角形;(2)若ABC 外接圆的半径为1,求ABC 的周长的取值范围.【答案】(1)由(sin ,cos ),(cos ,sin )m A C n B A ==,且sin sin m n B C ⋅=+,得sin cos sin cos sin sin A B A C B C +=+,由正弦定理得cos cos a B a C b c +=+,由余弦定理得22222222a c b a b c a a b c ac ab+-+-⋅+⋅=+,整理得222()()0b c a b c +--=,又由于0b c +>,故222a b c =+,即ABC 是直角三角形.(或者:由sin cos sin cos sin sin A B A C B C +=+得,sin cos sin cos sin()sin()A B A C A C A B +=+++,化简得cos (sin sin )0A B C +=,由于sin sin 0B C +>,故cos 0A =,即ABC 是直角三角形).(2)ABC 的周长的取值范围为(4,2+.【变式演练3】在ABC 中,,A B C 所对的边分别为,,a b c A =(1)若222a c b mbc -=-,求实数m 的值;(2)若a =ABC 面积的最大值.【答案】(1)1m =.(2类型二 求三角形中边或角的取值范围使用情景:三角形中解题模板:第一步 通过观察分析,将所给的边或角的关系转化为角或边之间的关系;第二步 利用三角恒等变换、正弦定理、余弦定理及其辅助角公式等转化;第三步 得出结论.例3 在锐角ABC 中,2A B =,则c b的取值范围是 . 【答案】(1,2).【点评】①本题易错在求B 的范围上,容易忽视“ABC 是锐角三角形”这个条件;②本题涉及三角形边角之间的关系,考察边角互化,化多元为一元,体现了解题的通性通法.例4 若ABC 的三边,,a b c 成等比数列,,,a b c 所对的角依次为,,A B C ,则sin cos B B +的取值范围是 .【答案】.【点评】本题将数列、基本不等式、三角函数、解三角形等知识结合起来,有利于提高学生解题的综合能力.【变式演练4】在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列。
完整版)解三角形中的最值问题解三角形中的最值问题1.在三角形ABC中,已知角A,B,C所对边长分别为a,b,c,且a²+b²=2c²,求cosC的最小值。
解析:由余弦定理知cosC=(a²+b²-c²)/(2ab),代入已知条件得cosC≥-1/2.因此cosC的最小值为-1/2.2.在三角形ABC中,已知角B=60°,AC=3,求AB+2BC的最大值。
解析:根据余弦定理,AB²=AC²+BC²-2AC·BCcosB,代入已知条件得AB²=9+BC²-6BC·1/2,即AB²=BC²-3BC+9.由于AB+2BC=AB+BC+BC,因此可将其转化为求AB+BC的最大值。
设x=BC,则AB²=x²-3x+9,求导得x=3/2时,AB+BC取得最大值,即AB+2BC的最大值为9/2.3.在三角形ABC中,已知角A,B,C的对边分别为a,b,c,且a≥b,sinA+3cosA=2sinB。
(1)求角C的大小;(2)求(a+b)/c的最大值。
解析:(1)由sinA+3cosA=2sinB得2sin(A+π/3)=2sinBsinA/3,因此sin(A+π/3)=sinB/3.由于a≥b,因此A≥B,所以A+π/3=B/3,即A=π/3-B/3.由正弦定理得c/sinC=2b/sinB,代入已知条件得c=2b(sinA+3cosA)/sinB=6b/√3=2√3b,因此角C的大小为π/3.2)由正弦定理得(a+b)/c=sinA+sinB/sinC,代入已知条件得(a+b)/c=2sinB/sinC,即sinC=2sinB(a+b)/c。
由于sinC≤1,因此(a+b)/c≤1/2.当且仅当A=π/2时,(a+b)/c取得最大值1/2.4.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且a=___。
解三角形中的最值(范围)问题解三角形中的最值问题1.锐角三角形ABC满足$2B=A+C$,设最大边与最小边之比为$m$,求$m$的取值范围。
分析:由题意可知$\angle B=60^\circ$,且$A\leq B\leqC<90^\circ$。
不妨令$m=\dfrac{c}{a}$,则有:m=\dfrac{c}{a}=\dfrac{\sin C}{\sin A}\leq\dfrac{\sinC}{\sin B}\leq\dfrac{\sin C}{\sin(\pi/3)}=2\sin C$$又因为$\sin A\geq\dfrac{1}{2}$,$\tanA\geq\dfrac{\sqrt{3}}{3}$,所以:dfrac{1}{2}\leq\sin A\leq 1,\quad \dfrac{\sqrt{3}}{3}\leq\tan A\leq\sqrt{3}$$从而有:1\leq m=\dfrac{c}{a}\leq 2$$2.锐角三角形ABC的面积为$S$,角C既不是最大角,也不是最小角。
若$k=\dfrac{a+b}{c}$,求$k$的取值范围。
分析:由正弦定理得:dfrac{c^2-a^2-b^2+2ab\cos C}{2ab}= \dfrac{\sin C}{\sinA\sin B}=\dfrac{2S}{ab\sin C}$$又因为$\cos C<1$,所以:dfrac{2S}{ab\sin C}<\dfrac{c^2-a^2-b^2+2ab}{2ab}=\dfrac{(c-a+b)(c+a-b)}{2ab}=\dfrac{(c-a+b)}{2}\cdot\dfrac{(c+a-b)}{2ab}\leq\dfrac{1}{4}$$又因为$\sin C\geq\dfrac{1}{2}$,所以:k=\dfrac{a+b}{c}\geq\dfrac{2\sqrt{ab}}{c}\geq 2\sqrt{\sinA\sin B}\geq\sqrt{2\sin A}\geq\sqrt{2}\sin\dfrac{A}{2}$$ 又因为$A0$,所以$k>0$。
解三角形中的范围与最值问题目录01方法技巧与总结02题型归纳与总结题型一:周长问题题型二:面积问题题型三:长度和差比问题题型四:转化为角范围问题题型五:倍角问题题型六:角平分线问题与斯库顿定理题型七:中线问题题型八:四心问题题型九:坐标法题型十:隐圆(阿波罗尼斯圆)问题题型十一:两边逼近思想题型十二:转化为正切有关的最值问题题型十三:最大角(米勒问题)问题题型十四:费马点、布洛卡点、拿破仑三角形问题题型十五:托勒密定理及旋转相似题型十六:三角形中的平方问题题型十七:等面积法、张角定理03过关测试1、在解三角形专题中,求其“范围与最值”的问题,一直都是这部分内容的重点、难点.解决这类问题,通常有下列五种解题技巧:(1)利用基本不等式求范围或最值;(2)利用三角函数求范围或最值;(3)利用三角形中的不等关系求范围或最值;(4)根据三角形解的个数求范围或最值;(5)利用二次函数求范围或最值.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.2、解三角形中的范围与最值问题常见题型:(1)求角的最值;(2)求边和周长的最值及范围;(3)求面积的最值和范围.题型一:周长问题1(2024·全国·二模)在△ABC中,内角A,B,C所对的边分别为a,b,c,2a cos A=b cos C+c cos B,且a=4sin A,则△ABC周长的最大值为()A.42B.62C.43D.63【答案】D【解析】因为2a cos A=b cos C+c cos B,由正弦定理得2sin A cos A=sin B cos C+sin C cos B=sin B+C=sin A,因为sin A≠0,所以cos A=12,由于A∈0,π,故A=π3,则a=4sinπ3=23,由正弦定理得asin A=bsin B=csin C=4,故b +c =4sin B +4sin C =4sin B +4sin B +π3 =4sin B +2sin B +23cos B =43sin B +π6 ,又B ∈0,2π3 ,则B +π6∈π6,5π6,所以sin B +π6 ∈12,1 ,则b +c ∈23,43 ,故△ABC 周长a +b +c 的最大值为63.故选:D .2(2024·广西河池·模拟预测)已知△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,且2c cos A =a cos B +b cos A .(1)求角A ;(2)若a =3,求△ABC 的周长的最大值,并求出此时角B ,角C 的大小.【解析】(1)由2c cos A =a cos B +b cos A ,则有2sin C cos A =sin A cos B +sin B cos A ,即2sin C cos A =sin A cos B +sin B cos A =sin A +B =sin C ,由C ∈0,π ,故sin C >0,则有2cos A =1,即cos A =12,即A =π3;(2)由余弦定理a 2=b 2+c 2-2bc cos A ,可得3=b 2+c 2-bc ,则3=b +c 2-3bc ,故b +c 2-3=3bc ≤3⋅b +c 2 2,当且仅当b =c 时,等号成立,即b +c 2≤12,即b +c ≤23,即△ABC 的周长的最大值为33,此时a =b =c =3,即B =C =π3.3(2024·江西南昌·三模)在锐角△ABC 中,a =23,(2b -c )cos A =a cos C ,(1)求角A ;(2)求△ABC 的周长l 的范围.【解析】(1)∵(2b -c )cos A =a cos C ,∴2b cos A =a cos C +c cos A ,所以2sin B cos A =sin A cos C +sin C cos A ,所以2sin B cos A =sin (A +C )=sin B ,因为sin B ≠0,所以cos A =12,∵A ∈0,π2 ,所以A =π3.(2)∵a sin A =2332=4,所以b sin B =c sin C =4,所以b =4sin B ,c =4sin C =4sin 2π3-B ,所以l=a+b+c=23+4sin B+4sin2π3-B=23+43sin B+π6,因为△ABC是锐角三角形,且A=π3,所以0<B<π20<2π3-B<π2,解得π6<B<π2,所以B+π6∈π3,2π3,所以sin B+π6∈32,1,所以l∈(6+23,63].4(2024·广东广州·一模)△ABC的内角A,B,C的对边分别为a,b,c且满足a=2,a cos B= 2c-bcos A.(1)求角A的大小;(2)求△ABC周长的范围.【解析】(1)由余弦定理,a⋅a2+c2-b22ac=(2c-b)⋅c2+b2-a22bc,化简得b2+c2-a2=bc,所以cos A=c2+b2-a22bc=12,因为0<A<π,所以A=π3.(2)由正弦定理:bsin B =csin C=asin A=232=433,则b=433sin B,c=433sin C,由(1)B+C=2π3,故a+b+c=2+433sin B+sin C=2+433sin B+sin2π3-B=2+433sin B+32cos B+12sin B=2+43332cos B+32sin B=2+4sin B+π6因为0<B<2π3⇒π6<B+π6<5π6,则12<sin B+π6≤1,所以4<a+b+c≤6,即周长范围是4,6.5(2024·贵州贵阳·模拟预测)记△ABC内角A,B,C的对边分别为a,b,c,且a2+b2-c2a cos B+b cos A=abc.(1)求C;(2)若△ABC为锐角三角形,c=2,求△ABC周长范围.【解析】(1)在△ABC中,由射影定理得a cos B+b cos A=c,则题述条件化简为a2+b2-c2=ab,由余弦定理得a2+b2-c2=2ab cos C.可得cos C=12,C∈0,π,所以C=π3.(2)在△ABC中,由正弦定理得asin A=bsin B=csin C=2sinπ3=433,则△ABC周长C△ABC=a+b+2=2+433(sin A+sin B)=2+433sin A+sin2π3-A,因为sin A+sin2π3-A=3sin A+π6,则C△ABC=2+4sin A+π6,因为△ABC为锐角三角形,A+B=2π3,则得A∈π6,π2,A+π6∈π3,2π3,故sin A+π6∈32,1,C△ABC∈(2+23,6].题型二:面积问题1(2024·四川德阳·模拟预测)在△ABC中,角A、B、C所对的边分别为a、b、c,且sin C=c3cos B2,b=3.(1)求B;(2)若△ABC为锐角三角形,求△ABC的面积范围.【解析】(1)因为sin C=c3cos B2,b=3,所以sin B sin C=sin C cos B 2,因为sin C≠0,所以sin B=cos B2,则2sinB2cos B2=cos B2,因为cos B2≠0,所以sin B2=12,又B2∈0,π2,则B2=π6,所以B=π3.公众号:慧博高中数学最新试题(2)设△ABC的外接圆半径为R,则2R=bsin B=23,所以S△ABC=12ac sin B=122R sin A2R sin C sin B=33sin A sin2π3-A,=33sin A 32cos A +12sin A,=92sin A cos A +332sin 2A =94sin2A +332⋅1-cos2A 2,=94sin2A -334cos2A +334,=332sin 2A -π6 +334,因为△ABC 为锐角三角形,所以0<A <π20<2π3-A <π2 ,解得π6<A <π2,则π6<2A -π6<5π6,则12<sin 2A -π6≤1,所以332<S △ABC ≤934,所以△ABC 的面积范围332,934.2(2024·全国·模拟预测)已知在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且m =2sin x ,3 ,n =cos x ,cos2x ,f x =m ⋅n,f B +C =0.(1)求角A 的值;(2)若b =1,求△ABC 面积的范围.【解析】(1)∵m =2sin x ,3 ,n =cos x ,cos2x ,f x =m ⋅n ,∴f x =2sin x cos x +3cos2x=sin2x +3cos2x =2sin 2x +π3 .又f B +C =0,∴sin 2B +C+π3=0.又△ABC 为锐角三角形,∴2B +C +π3=2π或π∴B +C =5π6或π3(舍去),∴A =π6.(2)由正弦定理知a sin A=b sin B =c sin C ,又∵b =1,A =π6,∴a =12sin B ,∴S =12ab sin C =sin π6+B 4sin B=38+18⋅cos B sin B =38+18⋅1tan B .B ∈0,π2 56π-B ∈0,π2故得到:π3<B <π2,∴38<S <36,∴△ABC 面积的范围为38,363(2024·四川攀枝花·三模)已知ΔABC的内角A、B、C的对边分别为a、b、c其面积为S,且(b+c2-a2=43S.(Ⅰ)求角A;(II)若a=3,b=m(m>0),当ΔABC有且只有一解时,求实数m的范围及S的最大值.【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简(b+c)2-a2=43S得到sin A - π6=12,再解这个三角方程即得A的值.(II)先根据ΔABC有且只有一解利用正弦定理和三角函数的图像得到m的取值范围m∈0,3∪2 ,再写出S的函数表达式求其最大值.(Ⅰ)由已知b2+c2-a2+2bc=23bc sin A由余弦定理得2bc cos A+2bc=23bc sin A,所以cos A+1=3sin A,即sin A-π6=12,∵A∈0,π,∴A-π6∈-π6,5π6,A-π6=π6,所以A=π3.(Ⅱ)由已知,当ΔABC有且只有一解时,m sinπ3=3或0<m≤3,所以m∈0,3∪2 ;(i)当m=2时,ΔABC为直角三角形,S=12•1•3=32(ii)当0<m≤3时,由正弦定理msin B=3sinπ3⇒m=2sin B,S=12•3sin B•sin C=3sin B•sin2π3-B=32sin B cos B+32sin2B=32sin B cos B+32sin2B+32•1-cos2B2=32sin2B-π6+34∵0<B≤π3,∴π6<2B-π6≤π2,所以,当B=π3时,S max=334>32综上所述,S max=33 4.4(2024·陕西安康·模拟预测)如图,在平面四边形ABCD中,AB=AC=BD=10,当四边形ABCD的面积最大时,BC2+CD2+DA2的最小值为.【答案】700-4002【解析】如图,设AC∩BD=O,∠AOD=θ,则四边形ABCD的面积为S=S△ABD+S△BCD=12BD×AO sinθ+12BD×CO sinθ=12BD×AC sinθ=50sinθ,因0<θ<π,故当且仅当sinθ=1,即θ=π2时,S max=50.当θ=π2时,设AO=x,OB=y,则CO=10-x,OD=10-y,于是BC2+CD2+DA2=y2+(10-x)2+(10-y)2+(10-x)2+x2+(10-y)2=3(x2+y2)-40(x+y)+ 400,因AO2+BO2=100,即x2+y2=100,由(x+y)2=x2+y2+2xy≤2(x2+y2)=200,则有x+y≤102,当且仅当x=y=52时取等号,即当x=y=52时,BC2+CD2+DA2的最小值为300-40×102+400=700-4002.故答案为:700-4002.5(2024·陕西西安·模拟预测)在△ABC中,内角A,B,C的对边分别为a,b,c,且a=6,6cos B=3c -b cos A ,则△ABC 面积的最大值为.【答案】322/322【解析】因为a =6,6cos B =3c -b cos A ,所以6cos B =a cos B =3c -b cos A ,由正弦定理可得sin A cos B =3sin C cos A -sin B cos A ,即sin A +B =3sin C cos A ,sin C =3sin C cos A ,因为C ∈0,π ,所以sin C ≠0,故cos A =13,由余弦定理a 2=b 2+c 2-2bc cos A 得6 2=b 2+c 2-23bc ,所以6=b 2+c 2-23bc ≥2bc -23bc ,即bc ≤92,当且仅当b =c =322时取等号,由cos A =13,A ∈0,π ,得sin A =223,所以S △ABC =12bc sin A =12×223bc ≤23×92=322.故答案为:322.题型三:长度和差比问题1(2024·广东深圳·模拟预测)已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,且满足3c +b sin A =3a cos B .(1)求角A 的大小;(2)若D 是边BC 上一点,且AD 是角A 的角平分线,求BC AD的最小值.【解析】(1)由题意知△ABC 中,3c +b sin A =3a cos B ,故3sin C +sin B sin A =3sin A cos B即3sin (A +B )+sin B sin A =3sin A cos B ,即3(sin A cos B +cos A sin B )+sin B sin A =3sin A cos B ,所以3cos A sin B +sin B sin A =0,而B ∈0,π ,故sin B ≠0,故3cos A +sin A =0,即tan A =-3,又A ∈0,π ,故A =2π3;(2)由余弦定理:BC =b 2+c 2-2bc cos A =b 2+c 2+bc ,又S △ABD +S △ACD =S △ABC ,公众号:慧博高中数学最新试题所以12c ⋅AD sin60°+12 b ⋅AD sin60°=12bc sin120°,所以AD =bc b +c,所以BC AD =b 2+c 2+bcbcb +c ≥2bc +bcbc b +c =3⋅b +c bc ≥3⋅2bc bc=23,当且仅当b=c时,取等号,则BCAD的最小值为23.2(2024·山西运城·模拟预测)△ABC的内角A,B,C的对边分别为a,b,c.(1)求证:sin(A-B)sin A+sin B =a-bc;(2)若△ABC是锐角三角形,A-B=π3,a-b=2,求c的范围.【解析】(1)由两角差的正弦公式,可得sin(A-B)sin A+sin B=sin A cos B-cos A sin Bsin A+sin B,又由正弦定理和余弦定理,可得sin A cos B-cos A sin B sin A+sin B =a⋅a2+c2-b22ac-b⋅b2+c2-a22bca+b=2a2-2b2 2c(a+b)=(a+b)(a-b)c(a+b)=a-bc,所以sin(A-B)sin A+sin B=a-bc(2)由(1)知c=(a-b)(sin A+sin B)sin(A-B)=43(sin A+sin B)=43sin B+π3+sin B=4332sin B+32cos B=432sin B+12cos B=4sin B+π6因为△ABC是锐角三角形,所以A=B+π3<π2,可得0<B<π6,又由A+B>π2,可得B+π3+B>π2,所以B>π12,所以π4<B+π6<π3,所以22<sin B+π6<32,可得22<c<23,符合c>a-b=2.所以实数c的取值范围是(22,23).3(2024·山东潍坊·一模)在①tan A tan C-3tan A=1+3tan C;②2c-3acos B= 3b cos A;③a-3csin A+c sin C=b sin B这三个条件中任选一个,补充在下面问题中并作答.问题:在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求角B的大小;(2)已知c=b+1,且角A有两解,求b的范围.【解析】(1)若选①:整理得1-tan A tan C=-3tan A+tan C,因为A+B+C=π,所以tan B=-tan A+C=-tan A+tan C1-tan A tan C=33,因为B∈0,π,所以B=π6;若选②:因为2c-3acos B=3b cos A,由正弦定理得2sin C-3sin Acos B=3sin B cos A,所以2sin C cos B =3sin A +B =3sin C ,sin C >0,所以cos B =32,因为B ∈0,π ,所以B =π6;若选③:由正弦定理整理得a 2+c 2-b 2=3ac ,所以a 2+c 2-b 22ac =32,即cos B =32,因为B ∈0,π ,所以B =π6;(2)将c =b +1代入正弦定理b sin B =c sin C ,得b sin B =b +1sin C,所以sin C =b +12b ,因为B =π6,角A 的解有两个,所以角C 的解也有两个,所以12<sin C <1,即12<b +12b <1,又b >0,所以b <b +1<2b ,解得b >1.4在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =23,2c -a sin C =b 2+c 2-a 2sin Bb(1)求角B ﹔(2)求2a -c 的范围.【解析】(1)2c -a sin C =b 2+c 2-a 2sin Bb⇒2c -a c =b 2+c 2-a 2⇒c 2+a 2-b 2=ac ,又cos B =a 2+c 2-b 22ac ,所以cos B =12,因为B ∈0,π ,所以B =π3.(2)在△ABC 中,由(1)及b =23,得b sin B =a sin A=c sin C =2332=4,故a =4sin A ,c =4sin C ,2a -c =8sin A -4sin C =8sin A -4sin 2π3-A =8sin A -23cos A -2sin A=6sin A -23cos A =43sin A -π6,因为0<A <2π3,则-π6<A -π6<π2,-12<sin A -π6 <1,-23<43sin A -π6<43﹒所以2a -c 的范围为-23,43 .5(2024·重庆·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b =2b cos 2π12-A 2 -a sin B 2cos B2.(1)求角A 的大小;(2)若BP =PC ,且b +c =2,求AP 的最小值.【解析】(1)在△ABC 中,由正弦定理a sin A=bsin B ,可得a sin B =b sin A 又由b =2b cos 2π12-A 2 -a sin B 2cos B 2知2a sin B 2cos B 2=b ⋅2cos 2π12-A 2-1 ,即a sin B =b cos π6-A,得b sin A =b cos π6-A ,得sin A =cos π6-A =32cos A +12sin A ,得12sin A =32cos A ,所以tan A =3;又因为A ∈0,π ,所以A =π3.(2)由BP =PC ,得AP =12AB +12AC ,所以AP 2=12AB +12AC 2=14AB 2+14AC 2+12AB ⋅AC=14c 2+14b 2+12bc cos A =14c 2+14b 2+14bc =14b +c 2-bc ≥14b +c 2-b +c 2 2 =316b +c 2=34,当且仅当b =c b +c =2,即b =c =1时等号成立,故AP 的最小值为32.6(2024·安徽亳州·高三统考期末)在锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a sin C=c cos A -π6.(1)求角A 的大小;(2)设H 为ΔABC 的垂心,且AH =1,求BH +CH 的范围.【解析】(1)由a sin C =c cos A -π6,结合正弦定理得sin A =cos A -π6,整理得sin A -π3 =0,又A 为锐角,故A =π3.(2)由ΔABC 是锐角三角形,则垂心H 必在ΔABC 内部,不妨设∠BAH =α,则α∈0,π3.公众号:慧博高中数学最新试题由H 为ΔABC 的垂心,则∠ABH =∠ACH =π6.在ΔABH 中使用正弦定理得,AH sin ∠ABH =BHsin ∠BAH ,整理得:BH =2sin α.同理在ΔACH 中使用正弦定理得,CH =2sin π3-α .BH +CH =2sin α+2sin π3-α =2sin π3+α ,结合α∈0,π3可得BH +CH ∈3,2 .题型四:转化为角范围问题1在锐角ΔABC中,内角A,B,C的对边分别为a,b,c,且(a+b)(sin A-sin B)=(c-b)sin C.(1)求A;(2)求cos B-cos C的取值范围.【解析】(1)因为a+bsin A-sin B=c-bsin C,所以a+ba-b=c-bc,即a2=b2+c2-bc.因为a2=b2+c2-2b cos A,所以cos A=1 2.因为A∈0,π2,所以A=π3.(2)由(1)知cos B-cos C=cos B-cos2π3-B=cos B+12cos B-32sin B=32cos B-32sin B=3cos B+π6.因为0<2π3-B<π20<B<π2,所以π6<B<π2,因为π3<B+π6<2π3,所以cos B+π6∈-12,12,所以cos B-cos C∈-32,32,即cos B-cos C的取值范围是-32,32.2已知△ABC的内角A、B、C的对边分别为a、b、c,且a-b=c cos B-cos A.(1)判断△ABC的形状并给出证明;(2)若a≠b,求sin A+sin B+sin C的取值范围.【解析】(1)△ABC为等腰三角形或直角三角形,证明如下:由a-b=c cos B-cos A及正弦定理得,sin A-sin B=sin C cos B-cos A,即sin B+C-sin A+C=sin C cos B-cos A,即sin B cos C+cos B sin C-sin A cos C-cos A sin C=sin C cos B-sin C cos A,整理得sin B cos C-sin A cos C=0,所以cos C sin B-sin A=0,故sin A=sin B或cos C=0,公众号:慧博高中数学最新试题又A、B、C为△ABC的内角,所以a=b或C=π2,因此△ABC为等腰三角形或直角三角形.(2)由(1)及a≠b知△ABC为直角三角形且不是等腰三角形,且A+B=π2,C=π2故B=π2-A,且A≠π4,所以sin A+sin B+sin C=sin A+sin B+1=sin A+cos A+1=2sin A+π4+1,因为A ∈0,π4 ∪π4,π2 ,故A +π4∈π4,π2 ∪π2,3π4,得sin A +π4 ∈22,1,所以2sin A +π4 +1∈2,2+1 ,因此sin A +sin B +sin C 的取值范围为2,2+1 .3(2024·山西·模拟预测)钝角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos B =c sin A ,则sin A +2sin B 的最大值是.【答案】54【解析】因为a cos B =c sin A ,由正弦定理得sin A cos B =sin C sin A ,又因为A ∈(0,π),可得sin A ≠0,所以sin C =cos B ,则C =π2-B 或C =π2+B .当C =π2-B 时,可得A =π2,与△ABC 是钝角三角形矛盾,所以C =π2+B ,由0<A <π20<B <π2A +B +C =π,则A =π2-2B >0,可得0<B <π4,所以sin A +2sin B =sin B +C +2sin B =cos2B +2sin B =-2sin 2B +2sin B +1=-2sin B -242+54,所以当sin B =24时,sin A +2sin B 的最大值为54.故答案为:54.4在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知a =1,b =2.(1)若∠B =π4,求角A 的大小;(2)求cos A cos A +π6的取值范围.【解析】(1)由正弦定理得:sin A =a sin B b=12,∵0<A <π,∴A =π6或5π6,当A =5π6时,此时A +B >π,所以A =5π6舍去,所以A =π6.(2)cos A cos A +π6 =cos A 32cos A -12sin A =341+cos2A -14sin2A =34+1232cos2A -12sin2A=-12sin 2A -π3 +34(或者用积化和差公式一步得到12cos 2A +π6 +34)∵a <b ,∴A <B ,所以A 为锐角,又sin A =a sin B b≤22,所以A ∈0,π4 ,所以2A -π3∈-π3,π6,所以sin 2A -π3 ∈-32,12,所以cos A cos A +π6 ∈3-14,32.题型五:倍角问题1(多选题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b +2b cos A ,则下列结论正确的有()A.A =2BB.B 的取值范围为π6,π3C.ab的取值范围为(2,3)D.1tan B -1tan A+2sin A 的取值范围为533,3 【答案】ACD【解析】因为c =b +2b cos A ,所以由正弦定理得sin C =sin B +2sin B cos A ,又因为sin C =sin (A +B ),所以sin A +B =sin B +2sin B cos A ,即sin A cos B +sin B cos A =sin B +2sin B cos A ,整理得sin A cos B -sin B cos A =sin B ,即sin (A -B )=sin B对于A 项,因为A 、B 、C 均为锐角,所以A -B =B ,即A =2B ,故A 项正确;对于B 项,因为A =2B ,A +B +C =π,所以C =π-3B ,因为A 、B 、C 均为锐角,所以0<A <π20<B <π20<C <π2 ,即0<2B <π20<B <π20<π-3B <π2,解得π6<B <π4,所以B 的取值范围为π6,π4,故B 项错误.对于C 项,由正弦定理得a b=sin A sin B =sin2B sin B =2cos B ,B ∈π6,π4 ,所以cos B ∈22,32,所以ab=2cos B ∈(2,3).故C 项正确.对于D 项,由A 项知,A =2B ,由B 项知,π6<B <π4,所以π3<A <π2,所以1tan B -1tan A +2sin A =tan A -tan B tan B tan A +2sin A =sin A cos B -sin B cos Asin B sin A+2sin A =sin A -B sin B sin A +2sin A =sin B sin B sin A +2sin A =1sin A +2sin A ,A ∈π3,π2 ,令t =sin A ,则t ∈32,1,所以1tan B -1tan A+2sin A =1t +2t ,t ∈32,1 ,令h (t )=1t +2t ,t ∈32,1 ,则h(t )=-1t 2+2=2t 2-1t 2>0,所以h (t )在32,1 上单调递增,又h 32=533,h (1)=3,所以h (t )∈533,3 ,即1tan B -1tan A +2sin A 范围为533,3 ,故D 项正确.故选:ACD .2(多选题)(2024·河北·三模)已知△ABC 内角A 、B 、C 的对边分别是a 、b 、c ,A =2B ,则()A.a 2=c b +cB.b c +a 2b 2的最小值为3C.若△ABC 为锐角三角形,则cb∈1,2 D.若a =26,b =3,则c =5【答案】BCD【解析】由A =2B ,得sin A =sin2B =2sin B cos B ,由正弦定理得a =2b cos B ,由余弦定理得a =2b ⋅a 2+c 2-b 22ac,则c -b a 2-b 2-bc =0,当b ≠c 时,a 2-b 2-bc =0,即a 2=b b +c ,当b =c 时,B =C ,又A =2B ,所以A =90°,B =C =45°,所以a =2b ,所以a 2-b 2-bc =2b 2-b 2-b ⋅b =0,所以a 2=b b +c ,故选项A 错误;由a 2=b b +c ,则b c +a 2b 2=b c +b 2+bc b2=b c +c b +1≥3,当且仅当b =c 时,故选项B 正确;在△ABC 中,sin B ≠0,由正弦定理,c b =sin C sin B =sin 2B +B sin B =sin2B cos B +cos2B sin B sin B =2sin B cos 2B +2cos 2B -1 sin Bsin B =4cos 2B -1,若△ABC 为锐角三角形,又A =2B ,则B ∈0,π4 ,C =π-3B <π2,故B >π6,所以B ∈π6,π4,所以cos B ∈22,32,则cos 2B ∈12,34 ,所以4cos 2B -1∈1,2 ,故选项C 正确;公众号:慧博高中数学最新试题在△ABC 中,由正弦定理a sin A=b sin B =csin C ,又A =2B ,a =26,b =3,得3sin B =26sin2B =262sin B cos B,则cos B =63由余弦定理,b 2=a 2+c 2-2ac cos B ,得9=24+c 2-2×26×63c ,整理得c2-8c+15=0,解得c=5,或c=3,当c=3时,有C=B,又A=2B,所以B=C=45°,A=90°,因为b2+c2≠a2,则c=3不成立,故选项D正确.故选:BCD .3(2024·江西九江·一模)锐角三角形ABC中,若∠C=2∠B,则ABAC的范围是()A.(0,2)B.(2,2)C.(2,3)D.(3,2)【答案】C【解析】由正弦定理得ABAC=cb=sin Csin B=sin2Bsin B=2sin B cos Bsin B=2cos B,由于三角形ABC为锐角三角形,故0<B<π20<C=2B<π2π2<B+C=3B<π,所以π6<B<π4,所以2cos B∈2,3.故选C.4在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若a2=b2+bc,则cb+2cos2B的最小值为.【答案】42-1/-1+42【解析】由余弦定理得a2=b2+c2-2bc cos A,又a2=b2+bc,所以b2+bc=b2+c2-2bc cos A,即bc=c2-2bc cos A,所以b=c-2b cos A,由正弦定理得sin B=sin C-2sin B cos A,即sin B=sin A+B-2sin B cos A=sin A cos B-cos A sin B=sin A-B,因为A,B∈0,π,所以A-B∈-π,π,所以B=A-B或B+A-B=π(舍去),所以A=2B,c b +2cos2B=sin Csin B+2cos2B=sin A+Bsin B+2cos2B=sin3Bsin B +2cos2B=sin B cos2B+cos B sin2Bsin B+2cos2B=cos2B-sin2B+2cos2B sin Bsin B +2 cos2B=4cos2B+2cos2B -1≥24cos2B⋅2cos2B-1=42-1,当且仅当4cos2B=2cos2B,即cos2B=22时取等号,所以c b +2cos 2B的最小值为42-1.故答案为:42-1.题型六:角平分线问题与斯库顿定理1△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4a sin A =b sin C cos A +c sin A cos B .(1)求sin Asin C的值;(2)若BD 是∠ABC 的角平分线.(i )证明:BD 2=BA ·BC -DA ·DC ;(ii )若a =1,求BD ⋅AC 的最大值.【解析】(1)因为△ABC 中,4a sin A =b sin C cos A +c sin A cos B ,故4sin 2A =sin B sin C cos A +sin C sin A cos B =sin C (sin B cos A +sin A cos B )=sin C sin A +B =sin 2C ,因为A ,C ∈(0,π),∴sin A ,sin C >0,故sin A sin C =12;(2)(i )证明:△ABD 中,由正弦定理得AD sin ∠ABD =ABsin ∠ADB ①,又AB 2=AD 2+BD 2-2AD ⋅BD ⋅cos ∠ADB ②,同理在△BCD 中,CD sin ∠CBD =BCsin ∠CDB ③,BC 2=CD 2+BD 2-2CD ⋅BD ⋅cos ∠CDB ④,BD 是∠ABC 的角平分线,则∠ABD =∠CBD ,则sin ∠ABD =sin ∠CBD ,公众号:慧博高中数学最新试题又∠ADB +∠CDB =π,故sin ∠ADB =sin ∠CDB ,cos ∠ADB +cos ∠CDB =0,故①÷③得AD CD =AB BC ⑤,即AD AC =AB AB +BC ,∴CD AC =BC AB +BC,由CD ×②+AD ×④得,CD ⋅AB 2+AD ⋅BC 2=CD ⋅AD AD +CD +CD +AD ⋅BD 2=CD ⋅AD ⋅AC +AC ⋅BD 2,则BD 2=CD ⋅AB 2+AD ⋅BC 2AC-CD ⋅AD=BC ⋅AB 2+AB ⋅BC 2AB +BC -CD ⋅AD =BA ⋅BC -DA ⋅DC ,即BD 2=BA ·BC -DA ·DC ;(ii)因为sin Asin C =12,故c=2a,则由⑤得ADCD=ABBC=2,则AD=23AC,DC=13AC,由a=1以及(i)知BD2=2-29AC2,即BD2+29AC2=2,则BD2+29AC2≥223BD⋅AC,当且仅当BD2=29AC2,结合BD2+29AC2=2,即BD=1,AC=322时等号成立,故BD⋅AC≤322,即BD⋅AC的最大值为322.2在△ABC中,内角A,B,C的对边分别是a,b,c,a=23,6cos C-a sin C=3b.(1)求角A的大小;(2)设∠ABC的平分线与AC交于点D,当△ABC的面积最大时,求BD的长.【解析】(1)6cos C-a sin C=3b,a=23,所以3a cos C-a sin C=3b,由正弦定理得3sin A cos C-sin A sin C=3sin B=3sin(A+C),即3sin A cos C-sin A sin C=3sin A cos C+3sin C cos A,得-sin A sin C=3sin C cos A,又sin C>0,所以-sin A=3cos A,即tan A=-3,又0<A<π,所以A=2π3;公众号:慧博高中数学最新试题(2)由余弦定理得a2=b2+c2-2bc cos A 即b2+c2+bc=12,而b≥0,c≥0,∴12=b2+c2+bc≥3bc,即bc≤4,∴S△ABC=12bc sin A=34bc≤ 3.当且仅当b=c=2取等号此时∠ABC=∠C=π6,则∠ABD=π12,∠ADB=π4,在△ABD中,由正弦定理得ABsin∠ADB=BDsin A,即2sinπ4=BDsin2π3,解得BD=6.3(2024·山西吕梁·一模)设△ABC的内角A,B,C的对边分别为a,b,c,已知b cos C+2a cos A=-c cos B.(1)求A;(2)设A的角平分线交BC于点M,AM=1,求b+4c的最小值.【解析】(1)∵b cos C+2a cos A=-c cos B.由正弦定理,得sin B cos C+sin C cos B=-2sin A cos A∴sin(B+C)=-2sin A cos A,即sin A=-2sin A cos A∵A∈0,π∴sin A>0∴cos A=-12,即A=2π3(2)由题意可得,S△ABM+S△AMC=S△ABC∴1 2c⋅AM⋅sin60°+12b⋅AM⋅sin60°=12bc sin120°∴b+c=bc即1b+1c=1∴b+4c=(b+4c)1b +1 c=5+b c+4c b≥5+2b c⋅4c b=9当且仅当bc=4cb,即b=3,c=32时,等号成立,所以b+4c的最小值为9.4(2024·广东佛山·模拟预测)记锐角△ABC的内角A、B、C的对边分别为a、b、c,已知sin2C+ sin2B-sin2A=sin B sin C.(1)求A;(2)已知A的角平分线交BC于点D,求BDCD的取值范围.【解析】(1)因为sin2C+sin2B-sin2A=sin B sin C,由正弦定理可得c2+b2-a2=bc,所以cos A=c2+b2-a22bc=12,又A∈0,π,所以A=π3.(2)因为BDCD =S△ABDS△ACD=12AB⋅AD sin∠BAD12AC⋅AD sin∠CAD=ABAC=cb=sin C sin B =sin2π3-Bsin B=sin2π3cos B-cos2π3sin Bsin B=32tan B+12,因为△ABC为锐角三角形,所以0<B<π20<2π3-B<π2,解得π6<B<π2,所以tan B>33,所以12<32tan B+12<2,即BDCD的取值范围为12,2.题型七:中线问题1在△ABC 中,∠B =π3,D 在边AC 上,∠A ,∠B .∠C 对应的边为a ,b ,c .(1)当BD 为∠B 的角平分线且BD =3时,求1a +1c的值;(2)当D 为AC 的中点且BD =23时,求2c +a 的取值范围.【解析】(1)由题意知,BD 为角平分线且长度已知,则利用面积相等可得12ac sin π3=12BD ⋅c ⋅sin π6+12BD ⋅a ⋅sin π6,整理可得32ac =32a +c ,所以1a +1c =c +aac=1.(2)以a ,c 为边做平行四边形,另一个端点设为M ,连接BM ,易知BM 交AC 于点D .设∠DBC =θ,则由正弦定理知:c sin θ=43sin 2π3=a sin π3-θ 化简可得c =8sin θ,a =8sin π3-θ ,.则2c +a =16sin θ+8sin π3-θ ,合并化简可2c +a =83sin θ+π6,易知θ∈0,π3 ,则θ+π6∈π6,π2,∴2c +a =83sin θ+π6∈43,83 .∴2c +a 的取值范围为43,83 .2(2024·高三·黑龙江大庆·期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin C =c 3cos B2,b =3.(1)求B ;(2)求△ABC 的AC 边中线BD 的最大值.【解析】(1)由题意sinB 2>0,结合已知有2sin B 2sinC =c 3×2⋅sin B 2cos B 2=c3sin B ,所以2c ⋅sin B 2=c3⋅b ,而b =3,所以sinB 2=12,而B 2∈0,π2 ,所以B 2=π6,解得B =π3.(2)由题意BD =12BA +BC ,所以BD =12BA +BC =12BA +BC 2=12BA 2+2BA ⋅BC +BC 2=12c 2+ac +a 2,而由余弦定理有9=b 2=a 2+c 2-2ac cos π3=a 2+c 2-ac ,所以BD =129+2ac ,由基本不等式可得9=a 2+c 2-ac ≥2ac -ac =ac ,当且仅当a =c =3时,等号成立,即ac max =9,所以BD max =129+2ac max =332,即△ABC 的AC 边中线BD 的最大值为332.3(2024·河北·模拟预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin A -3sin B a =c -b sin C +sin B .(1)求角C 的大小;(2)若边c =2,边AB 的中点为D ,求中线CD 长的最大值.【解析】(1)因为sin A -3sin B a =c -b sin C +sin B ,由正弦定理可得:a -3b a =c -b c +b ,则a 2-3ab =c 2-b 2,即a 2+b 2-c 2=3ab ,由余弦定理可得:cos C =a 2+b 2-c 22ab =3ab 2ab=32,因为C ∈0,π ,所以C =π6.(2)因为D 为AB 的中点,所以CD =12CA +CB,则CD 2=14CA +CB 2=14CA 2+12CA ⋅CB +14CB 2=14a 2+3ab +b 2 ,又由余弦定理得,c 2=a 2+b 2-2ab cos B ,即4=a2+b2-3ab,所以CD2=144+23ab=1+32ab.由4=a2+b2-3ab得,4+3ab=a2+b2≥2ab,则ab≤42+3,当且仅当a=b=22+3取等号,即CD2≤1+32×42+3=1+232+3=7+43=3+22,所以CD≤3+2,即中线CD长的最大值为3+2.4(2024·高三·河北张家口·期末)在△ABC中,内角A,B,C的对边分别为a,b,c,a cos C-2b cos B+c cos A=0.(1)若a=3,b=7c,求△ABC的面积;(2)已知AD为边BC的中线,且AD=3,求a+c的最大值.【解析】(1)由正弦定理,得sin A cos C-2sin B cos B+sin C cos A=0,所以sin A+C=2sin B cos B.又A+B+C=π,所以sin B=2sin B cos B,又sin B≠0,所以cos B=12,又B∈0,π,故B=π3.由余弦定理,得b2=a2+c2-2ac cos B⇒7c2=9+c2-3c,由c>0,解得c=1,所以△ABC的面积S=12ac sin B=12×3×1×32=334.(2)设∠BDA=θ,则∠BAD=2π3-θ.由B=π3及正弦定理可得,csin∠BDA=a2sin∠BAD=ADsin B=2,所以c=2sinθ,a=4sin2π3-θ ,故a+c=4sin2π3-θ+2sinθ=4sinθ+23cosθ=2727sinθ+37cosθ=27sinθ+φ,其中tanφ=32,φ∈0,π4,当sinθ+φ=1时,a+c的最大值为27.5(2024·浙江·模拟预测)在△ABC中,角A,B,C的对边分别为a,b,c且b cos C+c sin B=a, a+2bsin A+2sin B=62,(1)求b;(2)求AC边上中线长的取值范围.【解析】(1)因为b cos C+c sin B=a,由正弦定理可得sin B cos C +sin C sin B =sin A =sin B +C =sin B cos C +cos B sin C ,整理得sin C sin B =cos B sin C ,且C ∈0,π ,则sin C ≠0,可得sin B =cos B ,即tan B =1,且B ∈0,π ,则B =π4,由正弦定理a sin A =bsin B =2R ,其中R 为△ABC 的外接圆半径,可得a =2R sin A ,b =2R sin B ,又因为a +2b sin A +2sin B =2R sin A +4R sin B sin A +2sin B=2R =62,所以b =2R sin B =62×22=6.(2)在△ABC 中,由余弦定理b 2=a 2+c 2-2ac cos B ,即36=a 2+c 2-2ac ,则a 2+c 2=36+2ac ≥2ac ,当且仅当a =c 时,等号成立,可得ac ≤362-2=182+2 ,即ac ∈0,182+2设AC 边上的中点为D ,因为BD =12BA +12BC ,则BD 2=12BA +12BC 2=14BA 2+12BA ⋅BC +14BC2=14a 2+c 2 +12ac cos B =1436+2ac +24ac =9+22ac ∈9,27+182 ,即BD ∈3,3+32 ,所以AC 边上中线长的取值范围为3,3+32 .题型八:四心问题1(2024·全国·模拟预测)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b sin C =a cos C -b sin B +a cos B sin C .(1)求角A ;(2)若H 为△ABC 的垂心,a =2,求△HBC 面积的最大值.【解析】(1)由题可得,c -b sin C =a cos C sin B -b sin B +a cos B sin C =a sin B +C -b sin B =a sin A -b sin B结合正弦定理可得c -b c =a 2-b 2,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc=12,又A ∈0,π2 ,∴A =π3.(2)设边AC ,AB 上的高分别为BE ,CF 则H 为BE 与CF 的交点,则在四边形AFHE 中,∠FAE +∠FHE +π2+π2=2π,∵∠FAE =π3,∴∠FHE =2π3,故∠BHC =2π3,在△BHC 中,S △BHC =12BH ⋅HC sin 2π3=34BH ⋅HC ,BH 2+HC 2-2BH ⋅HC ⋅cos 2π3=4,则4=BH 2+HC 2+BH ⋅HC ≥2BH ⋅HC +BH ⋅HC ,即BH ⋅HC ≤43,当且仅当BH =HC 时取等号.∴S △BHC ≤33,故△HBC 面积的最大值为33.2在锐角△ABC 中,cos A =22,点O 为△ABC 的外心.(1)若AO =xAB +yAC,求x +y 的最大值;(2)若BC =2.①求证:OA +sin2B ⋅OB -cos2B ⋅OC =0;②求3OA +2OB +OC的取值范围.【解析】(1)取AB 的中点D ,连接OD ,则OD ⊥AB ,不妨设|AB |=m ,|AC |=n ,因AO ⋅AB =(AD +DO )⋅AB =AD ⋅AB =12m 2,同理可得AO ⋅AC =12n 2,则由AO =xAB +yAC 可得AO ⋅AB =x |AB |2+yAB ⋅AC=xm 2+ymn cos A =xm 2+22ymn =12m 2,即得:2mx +2ny =m ①又由AO =xAB +yAC 可得AO ⋅AC =xAB ⋅AC +y |AC |2=xmn cos A +yn 2=22xmn +yn 2=12n 2,即得:2mx +2ny =n ②联立①,②,解得:x =1-2n2m y =1-2m 2n,则x +y =1-2n 2m +1-2m 2n =2-22n m +m n,因n m +mn≥2,当且仅当m =n 时等号成立.即当m =n 时,x +y 取得最大值2-2.(2)①由cos A =22,0<A <π2,则A =π4,由图知∠BOC =2∠A =π2,则OB ⋅OC =0,设△ABC 的外接圆半径为R ,公众号:慧博高中数学最新试题则|sin2B ⋅OB -cos2B ⋅OC |2=sin 22B ⋅|OB |2+cos 22B ⋅|OC|2=R 2,即|sin2B ⋅OB -cos2B ⋅OC |=R ,又OA ⋅(sin2B ⋅OB -cos2B ⋅OC)=R 2(sin2B cos ∠AOB -cos2B cos ∠AOC ),而∠AOB =2π-∠BOC -∠AOC =3π2-∠AOC ,则cos ∠AOB =-sin ∠AOC =-sin2B ,而cos ∠AOC =cos2B ,故OA ⋅(sin2B ⋅OB -cos2B ⋅OC)=-R 2(sin 22B +cos 22B )=-R 2,不妨设OA 与sin2B ⋅OB -cos2B ⋅OC的夹角为θ,则cos θ=OA ⋅(sin2B ⋅OB -cos2B ⋅OC )|OA |⋅|sin2B ⋅OB -cos2B ⋅OC |=-R 2R 2=-1,因θ∈[0,π],故θ=π,即OA =-sin2B ⋅OB +cos2B ⋅OC,故OA +sin2B ⋅OB -cos2B ⋅OC =0 ,得证.②因|BC |=2,∠BOC =π2,则|BC |=2R =2,即R =1,3OA +2OB +OC 2=9OA 2+4OB 2+OC 2+12OA ⋅OB +6OA ⋅OC +4OB ⋅OC =14+12cos2C +6cos2B +4cos2A =14+12cos2C -6sin2C =14+65cos (2C +θ),其中,tan θ=12,且θ为锐角,故0<θ<π4,因0<C <π20<B =3π4<π2, 可得C ∈π4,π2 ,则2C ∈π2,π ,2C +θ∈π2+θ,π+θ .又由tan θ=sin θcos θ=12sin 2θ+cos 2θ=10<θ<π4 ,解得:sin θ=55cos θ=255, 因π2<π2+θ<3π4,而函数y =cos x 在π2+θ,π 上单调递减,在(π,π+θ)上单调递增,又由cos π2+θ=-sin θ=-55,cos (π+θ)=-cos θ=-255,故-1≤cos (2C +θ)<-55,则14-65≤14+65cos (2C +θ)<8,于是3-5=14-65≤3OA +2OB +OC<8,即3OA +2OB +OC的范围为[3-5,22).3已知△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,点O 是△ABC 所在平面内的一点.(1)若点O 是△ABC 的重心,且OA ⋅OB=0,求cos C 的最小值;(2)若点O 是△ABC 的外心,BO =λBA +μBC (λ,μ∈R ),且a =4,c =6,mλ+μ-12sin 2B (m ∈R )有最小值,求m 的取值范围.【解析】(1)延长AO ,BO ,CO 分别交边BC ,AC ,AB 于点D ,E ,F ,依题意有FO =12AB =12c ,CF =32c .在△CAF和△CAB中,由余弦定理有cos∠CAF=cos∠CAB,即b2+c22-3c2 22b⋅c2=b2+c2-a22bc,化简有a2+b2=5c2,cos C=a2+b2-c22ab=a2+b2-a2+b252ab=45⋅a2+b2 2ab ≥45⋅2ab2ab=45.当且仅当a=b时,等号成立,所以cos C的最小值为4 5.(2)由题意可知:BO⋅BA=18=36λ+24μcos B BO⋅BC=8=24λcos B+16μ,解得λ=3-2cos B6sin2Bμ=2-3cos B4sin2B,则mλ+μ-1 2sin2B=m(3-2cos B)6+2-3cos B4-sin2B2=6cos2B-(4m+9)cos B+6m12.今t=cos B,t∈(-1,1),原式=6t2-(4m+9)t+6m有最小值,所以t-4m+912∈(-1,1).解得m∈-214,34.4从①(a+b+c)⋅(sin A+sin B-sin C)=a sin B+2b sin A;②2a sin A cos B+b sin2A= 23a cos C这两个条件中任选一个,补充在下面的问题中,并解答.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足:.(1)求角C的大小;(2)若c=3,△ABC的内心为I,求△ABI周长的取值范围.注:如果选择多个条件分别作答,按第一个解答计分.【解析】(1)选择条件①,(a+b+c)(sin A+sin B-sin C)=a sin B+2b sin A,在△ABC中,由正弦定理得(a+b+c)(a+b-c)=ab+2ba,整理得a2+b2-c2=ab,则由余弦定理,cos C=a2+b2-c22ab=12,又C∈(0,π),所以C=π3.选择条件②,2a sin A cos B+b sin2A=23a cos C,于是a sin A cos B+b sin A cos A=3a cos C,在△ABC中,由正弦定理得,sin2A cos B+sin A sin B cos A=3sin A cos C,。
三角形中的最值或范围问题在解三角形时,往往会遇到求边、角、周长、面积等问题的最值或范围,我们只需综合运用正余弦定理、三角恒等变换、面积公式,结合基本不等式与三角函数等知识求解即可.一、角的范围或最值[解析]:因为2b ac =,又由余弦定理知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,所以03B π<≤,又7sin cos )44412B B B B ππππ+=+<+<且,)4B π+∈,即sin cos B B +的取值范围是.[解析]:由BA BC ⋅=,得1cos sin 2ca B ac B =,即cos B B =, 又22cos sin 1B B +=,所以3cos 4B =. 221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B A C -+=3cos()14A C -+.因为0A B π<<-,0C B π<<-,所以B A C B ππ-<-<-, 所以当A C =时,max cos()1A C -=,当A C B π-=-或A C B π-=-时,min 3cos()cos 4A CB -=-=-,所以737cos()11644A C <-+≤, 即22sin sin A C +的取值范围是77(,]164.点评:求角的范围问题一般是转化为利用三角函数的范围来求.二、边的范围或最值【例2】:在锐角△ABC 中,A=2B ,则cb的取值范围是 .[解析]:由0222A B C A B πππ<=<<=--<且0,得64B ππ<<,所以2sin sin 3sin 2cos cos 2sin 4cos 1sin sin sin c C B B B B B B b B B B+====-,又23cos (,)22B ∈所以24cos 1(1,2)cB b=-∈. 【变式】:在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且BC 边上的高为a 63,则cb bc + 的最大值是( )A.8B. 6C.23D.4[解析]:由已知得,在△ABC 中,A bc a a sin 216321=⋅, 即A bc a sin 322=,又由余弦定理得A bc c b a cos 2222-+=,即222cos 2c b A bc a +=+,所以4)6sin(4cos 2sin 32cos 2sin 3222≤+=+=+=+=+πA A A bc A bc A bc bc c b c b b c . 故选D.点评:把边的问题转化为角的问题,化多元为一元,体现了解题的通性通法.下面这道高考题只需运用正弦定理即可,能想到方法就很简单,想不到就太难了,不愧是高考题!【好题欣赏】:(2015·新课标I )在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .[解析]: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =, 由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2; 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=, 由正弦定理知o osin 30sin 75BF BC=,解得62BF =-, 所以AB 的取值范围为(62,6+2)-.三、周长的范围或最值【例3】: 已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos 3sin 0a C a C b c +--=. (1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.[解析]:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+, 即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得,1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理22222231492cos()3()()()344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ 当且仅当b =c =7时等号成立,∴2()449b c +≤⨯,又∵b +c >7,∴7<b +c ≤14, 从而△ABC 的周长的取值范围是(14,21].【变式】: 在△ABC 中,角A,B,C 的对边分别为a,b,c ,且cos cos 2cos a C c A b B +=. (1)求B 的大小.(2)若b=5,求△ABC 周长的取值范围.[解析]:(1)因为cos cos 2cos a C c A b B +=,由正弦定理得sin cos sin cos 2sin cos A C C A B B +=,所以sin()2sin cos A C B B +=,于是1cos ,23B B π==.(2)由正弦定理10sin sin sin 3a b c A B C ===, 所以101010210sin 5sin 5sin()sin 510sin()363333a b c A C A A A ππ++=++=+-+=++又由02A π<<得2663A πππ<+<, 所以510sin()(10,15]6a b c A π++=++∈.点评:例4是运用余弦定理结合基本不等式求周长的范围,而变式是运用正弦定理结合三角函数求周长的范围,各有千秋,好好体会.四、面积的范围与最值【例4】:在△ABC 中,22223a b c ab +=+,若△ABC 的外接圆半径为322,则△ABC 的面积的最大值为 .[解析]:由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以22sin 3C =,又由于2sin 4c R C ==,所以2222cos c a b ab C =+-,即2221623ab a b ab +=+≥,所以12ab ≤,又由于12sin 4223S ab C ab ==≤, 故当且仅当23a b ==时,ABC 的面积取最大值42.【变式】: 如图,在等腰直角三角形OPQ 中,∠POQ =90°,22=OP ,点M 在线段PQ 上. (1)若5OM =,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.[分析]:第(2)题求△OMN 的面积最小值,前面的要求也很明确:以∠POM 为自变量,因此,本题主要是如何将△OMN 的面积表示为∠POM 的函数关系式,进而利用函数最值求解.其中,利用正弦定理将OM 和ON 的长表示为∠POM 的函数是关键.[解析]:(1)在OMP ∆中,45OPM ∠=︒,OM =OP =, 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=, 解得1MP =或3MP =. (2)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠,所以()sin 45sin 45OP OM α︒=︒+, 同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMNS OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值. 即30POM ∠=︒时,△OMN 的面积的最小值为8-点评:面积问题是边长与角问题的综合,在例5中,知道角的具体值,就考虑边的变化,利用余弦定理结合基本不等式来求,而在变式中,不知道角的具体值,就考虑角的变化,利用三角函数范围求解.巩固训练:[解析]:设,,AB c AC b BC a ===,由余弦定理的推论222cos 2a c b B ac+-=,所以2223a c ac b +-==, 因为由正弦定理得2233sin sin sin ====BbC c A a ,所以C c sin 2=,A a sin 2=, 所以)sin 2(sin 2sin 22sin 22A C A R C R a c +=⨯+=+⎪⎭⎫ ⎝⎛-+=)32sin(2sin 2C C π ()α+=+=C C C sin 72)cos 3sin 2(272≤,(其中23tan =α), 另解:本题也可以用换元法设2c a m +=,代入上式得227530a am m -+-=,因为28430m =-≥,故m ≤当m =,此时a c ==符合题意,因此最大值为.[解析]:(1)由余弦定理知:2221cos 22b c a A bc +-==,∴3A π∠=; (2)由正弦定理得:2sin sin sin b c aB C A====,∴2sin b B =,2sin c C =, ∴22224(sin sin )b c B C +=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-+-=B B C B 322cos 22cos 24)2cos 12cos 1(2π⎪⎭⎫⎝⎛---=B B 234cos 22cos 24π)62sin(242sin 32cos 4π-+=+-=B B B ,又∵203B π<<0,∴72666B πππ-<-<,∴12sin(2)26B π-<-≤, ∴2236b c <+≤.3.己知在锐角三角形中,角A ,B ,C 所对的边分别为a ,b ,c ,且222tan abC a b c =+-,(1)求角C 大小;(2)当c=1时,求ab 的取值范围.[解析]:(1)由已知及余弦定理,得sin 1,sin ,cos 2cos 2C ab C C ab C ==因为C 为锐角,所以 30=C , (2)由正弦定理,得121sin sin sin 2a b c A B C ====, 2sin ,2sin 2sin(30).a A b B A ∴===+︒4sin sin 4sin sin()6ab A B A A π==+2314sin (sin cos )23sin 2sin cos 22A A A A A A =+=+3sin 23cos2A A =+-32sin(2)3A π=+- 由090,015090A A ︒<<︒⎧⎨︒<︒-<︒⎩得6090.A ︒<<︒60260120,A ∴︒<-︒<︒3sin(2)123A π<-≤ 2332ab ∴<≤+.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.[解析]:(1)由正弦定理sin sin sin a b cA B C==可将2sin (2)sin (2)sin a A b c B c b C =+++变形为22(2)(2)a b c b c b c =+++, 整理可得222a b c bc =++,222b c a bc ∴+-=-,2221cos 222b c a bc A bc bc +--∴===-,0180A <<,∴120A =;(2) 由正弦定理得334sin sin ==C c B b , ∴[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B -+= )60sin(334cos 23sin 21334+=⎪⎪⎭⎫ ⎝⎛+=B B B ,∵ 120=A ,∴() 60,0∈B ,∴() 120,6060∈+B ,∴⎥⎦⎤ ⎝⎛∈+1,23)60sin( B ,∴⎥⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b , ∴周长⎥⎦⎤⎝⎛+∈++3342,4c b a[解析]:由2a =且 (2)(sin sin )()sin b A B c b C +-=-, 即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=, ∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤故答案为3.6. 在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点. (1)若BC=a=20,求存储区域面积的最大值;(2)若AB+AC=10,在折线MBCN 内选一点D,使BD+DC=20,求四边形存储区域DBAC 的最大面积.[解析]:(1)设AB x =,AC y =,0,0x y >>. 由22200202cos12022cos120x y xy xy xy =+-≥-,得22020202022cos1204sin 60xy ≤=-, ∴22020002000112020cos 60201003sin1202sin 60cos 60224sin 604sin 604tan 60S xy =≤⨯⨯===即四边形DBAC 面积的最大值为10033,当且仅当x y =时取到. (2)由20=+DC DB ,知点D 在以B,C 为焦点的椭圆上,∵32523101021=⨯⨯⨯=∆ABC S , ∴要使四边形DBAC 面积最大,只需△DBC 的面积最大,此时点D 到BC 的距离最大,即D 为椭圆短轴顶点,由310=BC ,得短半轴长5=b ,()325531021max =⨯⨯=∆BCD S ,因此,四边形ACDB 的面积的最大值为350.7.已知3()3f x x x m =-+,在区间[0,2]上任取三个数a,b,c,均存在以()()(),,f a f b f c 为边长的三角形,则m 的取值范围是( )出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.[解析]:由0)1)(1(333)('2=-+=-=x x x x f 得到1,121-==x x (舍去), ∵函数的定义域为[0,2],∴函数在(0,1)上0)('<x f ,在(1,2)上0)('>x f , ∴函数)(x f 在区间(0,1)单调递减,在区间(1,2)单调递增, 则,)0(,2)2()(,2)1()(max min m f m f x f m f x f =+==-== 由题意知,02)1(>-=m f ①;)2()1()1(f f f >+,即m m +>+-224②;由①②得6>m 为所求,故选B.。
与三角形有关的范围最值问题模型1 已知三角形的一角及其对边如图,已知ABC ∆的三个内角为A ,B ,C ,及其对应边分别为,,a b c ,且60,2A a ==(即已知三角形的一角及其对边),则根据三角形的边角关系就可得到以下三个隐含的解题条件: ①23B C A ππ+=-=②正弦定理:2432sinB sinC sin sin 60b c a R A ︒=====R 为ABC ∆外接圆的半径)(实现了边角的相互转化)③余弦定理:2222cos a b c bc A =+-,即224b c bc =+-(可看作,b c 的方程) 变形:24()3b c bc =+-以上三个隐含的解题条件深刻揭示了解三角形中“已知一角及其对边”的本质:角的关系(内角和定理)、边角的关系(正余弦定理).掌握这个本质就可解决多种不同类型的问题,进而得到解决此类问题的系统方法. 例如,在上述条件下可求: (1)B C +;(2)ABC ∆外接圆的半径;(3)sin sin B C +的取值范围(拓展到求1212sin sin (0)t B t C t t +≠的最值); 类似还有:sin sin ,cos cos ,cos cos B C B C B C +(4)b c +的取值范围(拓展到求(0)b c λμλμ+≠的最值); (5)bc 的取值范围(6)ABC ∆周长的最大值(即求a b c ++的最大值); (7)ABC ∆面积的最大值 (8)22b c +已知三角形的一角及对边,求三角形面积、周长等的最值①已知条件为三角形的一边和对角,可以借助正弦定理,转化为角,求三角函数最值 (口诀:正弦定理化角,三角函数求最值) 基本步骤:(1)利用正弦定理化边为角,并将式子中的角都化为唯一角 (2)将所求式子化简为)sin(ϕω+=x A y 的形式或二次函数型(3)确定此唯一角的取值范围(利用三个内角都在0到π之间)注:如果ABC ∆是锐角三角形,则需要满足 20π<<A ,20π<<B ,20π<<C(4)根据角的范围求最值(范围)②问题涉及三角形的一边和对角,可以借助余弦定理,转化为边,利用基本不等式求值。
解三角形中的最值问题
1、在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,求cos C 的最小值。
【解析】由余弦定理知2
14242)
(21
2cos 2222222
2
2
=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,
2、在ABC ∆中,60,3B AC ==,求2AB BC +的最大值。
3、在ABC ∆中,已知角,,A B C 的对边分别为a ,b ,c ,且,sin 32sin a b A A B ≥+=。
(1)求角C 的大小;(2)求
a b
c
+的最大值。
解析:(1)由sin 32sin A A B +=得2sin 2sin 3A B π⎛⎫
+
= ⎪⎝
⎭,则sin sin 3A B π⎛
⎫+= ⎪⎝⎭
,因为,a b ≥则A B ≥,所以3
A B π
π+
=-,故2,33
A B C ππ+=
=。
(2)由正弦定理及(1)得sin sin =sin sin 3cos 2sin sin 363a b A B A A A A A c C ππ++⎤⎛⎫⎛
⎫=+++=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦
所以当3
A π
=
时,
a b
c
+取得最大值2. 4、△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求△ABC 面积的最大值.
【答案】
5、在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值. 解:
6、在ABC ∆中,角A B C 、、的对边分别为,,a b c ,且满足2)a c BA BC cCB CA -⋅=⋅。
(1)求角B 的大小;
(2)若||6BA BC -=,求ABC ∆面积的最大值。
答案:(1))cos cos c B b C -=,由正弦定理得sin )cos sin cos ,A C B B C -=
cos sin()A B C B =+cos sin A B A =,所以cos 2B =
,即4
B π
=。
(2)因为||6BA BC -=
||6CA =,即b =
2
2
2
2(2b a c ac ac =+≥-=-,即3(2ac ≤+
13
sin 242
S ac B =
=≤ 7、已知()
()2cos 23sin ,1,,cos a x x b y x =+=,且a ⫽b 。
(1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期;(2)记()f x 的最大值为M ,,,a b c 分别为ABC ∆的三个内角,,A B C 对应的边长,若2A f M ⎛⎫
= ⎪⎝⎭
,且2a =,求bc 的最大值。
答案:(1)由a ⫽b 得2
2cos cos 0,x x x y +-=即
2
2cos cos cos 2212sin 216y x x x x x x π⎛
⎫=+=+=++ ⎪⎝
⎭
所以()2sin 216f x x π⎛
⎫
=+
+ ⎪⎝
⎭
,所以函数()f x 的最小正周期为π。
(2)由(1)易得3M =,于是有3,2A f M ⎛⎫==
⎪⎝⎭即2sin 136A π⎛⎫++= ⎪⎝⎭,所以sin 16A π⎛
⎫+= ⎪
⎝
⎭,故3A π=。
由余弦定理2
2
2
2cos a b c bc A =+-得2
2
42b c bc bc bc bc =+-≥-=解得4bc ≤
8、在ABC ∆中,角A B C 、、的对边分别为,,a b c ,不等式2
cos 4sin 60x C x C ++≥对于一切实数x 恒成立。
(1)求角C 的最大值;(2)当角C 取得最大值时,若2a b +=,求c 的最大值。
答案:(1)因为max
2
cos 01
cos ,16sin 24cos 0
23
C C C
C C π
>⎧⇒≥∴=
⎨
∆=-≤⎩
(2)222
2cos ,c a b ab C =+-由(1)得2
2
2
()34312a b c a b ab +⎛⎫=+-≥-= ⎪⎝⎭
,所以c 的最小值为1.。