液压油缸基础知识
- 格式:doc
- 大小:246.00 KB
- 文档页数:5
液压重要基础知识点液压技术是一门重要的工程技术,广泛应用于机械制造、冶金、建筑、航空航天等领域。
了解液压技术的基础知识点对于工程师和技术人员来说至关重要。
下面将介绍几个液压技术的基础知识点。
1. 液压系统的工作原理:液压系统是通过液体的传输来进行能量传递和控制的。
其基本组成部分包括液压液体、液压泵、执行元件和控制元件等。
液压泵将液体加压后输送到执行元件中,通过控制元件的控制,实现对执行元件的动作控制。
2. 液压液体的性质:常用的液压液体通常是油性液体,具有一定的粘度、流动性和润滑性。
液压液体的性质直接关系到液压系统的工作性能,因此选择合适的液压液体对于液压系统的正常运行至关重要。
3. 液压泵的分类和工作原理:液压泵可以分为容积式泵和动量式泵两大类。
容积式泵的工作原理是通过减小或增大工作腔容积来实现介质的吸入和排出。
动量式泵则是通过转子的离心力来吸入和排出液体。
4. 执行元件的分类和作用:执行元件是液压系统中负责完成各种动作的部件。
常见的执行元件包括液压缸和液压马达。
液压缸通常用于实现线性动作,而液压马达则用于实现旋转动作。
5. 控制元件的作用:控制元件是液压系统中用于控制介质流动、压力、流量等参数的部件。
常见的控制元件包括阀门、油缸和油管等。
控制元件的选择和调节能够实现对液压系统的精确控制。
以上是液压技术的一些重要基础知识点。
学习和掌握这些知识点能够帮助人们理解液压系统的工作原理,为实际应用提供基础支持。
液压技术的应用范围广泛,因此掌握基础知识对于提高工程技术人员的能力和竞争力具有重要意义。
一液压传动是以流体(液压油等)作为工作介质对能量进行传递和控制的一种传动方式。
一液压系统传动原理:液压传动的工作原理,可以用一个液压千斤顶的工作原理来说明。
图1-1液压千斤顶工作原理图1—杠杆手柄2—小油缸3—小活塞4,7—单向阀5—吸油管6,10—管道8—大活塞9—大油缸11—截止阀12—油箱图1-1是液压千斤顶的工作原理图。
大油缸9和大活塞8组成举升液压缸。
杠杆手柄1、小油缸2、小活塞3、单向阀4和7组成手动液压泵。
如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这时单向阀4打开,通过吸油管5从油箱12中吸油;用力压下手柄,小活塞下移,小活塞下腔压力升高,单向阀4关闭,单向阀7打开,下腔的油液经管道6输入举升油缸9的下腔,迫使大活塞8向上移动,顶起重物。
再次提起手柄吸油时,单向阀7自动关闭,使油液不能倒流,从而保证了重物不会自行下落。
不断地往复扳动手柄,就能不断地把油液压入举升缸下腔,使重物逐渐地升起。
如果打开截止阀11,举升缸下腔的油液通过管道10、截止阀11流回油箱,重物就向下移动。
这就是液压千斤顶的工作原理。
通过对上面液压千斤顶工作过程的分析,可以初步了解到液压传动的基本工作原理。
液压传动是利用有压力的油液作为传递动力的工作介质。
压下杠杆时,小油缸2输出压力油,是将机械能转换成油液的压力能,压力油经过管道6及单向阀7,推动大活塞8举起重物,是将油液的压力能又转换成机械能。
大活塞8举升的速度取决于单位时间内流入大油缸9中油容积的多少。
由此可见,液压传动是一个不同能量的转换过程。
三液压系统组成部分:能源装置、执行元件、控制元件、辅助元件、传动介质1.液压能源装置(液压泵)液压泵是一种将机械能转化为液压能的能量转换装置。
1)液压泵工作原理图3—1 液压泵工作原理图液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图3-1所示的是一单柱塞液压泵的工作原理图,图中柱塞2装在缸体3中形成一个密封容积a,柱塞在弹簧4的作用下始终压紧在偏心轮1上。
圆形液压油缸的介绍
圆形液压油缸是一种常见的液压传动元件,主要用于将液压能转换为机械能。
以下是一些关于圆形液压油缸的基本介绍:1.结构:圆形液压油缸通常由圆筒形的外壳、活塞、活塞杆和密封件组成。
液体通过油缸的入口流入,推动活塞产生线性运动。
2.工作原理:液压油缸的工作基于带有液体的封闭系统。
当液体被泵送到油缸内时,它对活塞施加压力,导致活塞和活塞杆的运动。
3.应用领域:圆形液压油缸广泛应用于工业、建筑、农业和航空等领域。
它们常用于推动、拉动、举升、固定和压紧等操作。
4.类型:根据结构和用途的不同,液压油缸分为单作用和双作用两种类型。
单作用油缸只有一个方向的运动,而双作用油缸可以在两个方向上执行工作。
5.优势:圆形液压油缸具有高效、可靠、紧凑的特点。
其使用可以提高机械系统的性能和精度。
请注意,液压系统的设计和使用需要专业知识,确保正确的液体压力、流量和控制是至关重要的。
油缸工作原理油缸是一种常见的液压传动元件,它通过液压油的压力来产生线性运动。
油缸的工作原理涉及到液压力的转换和传递,下面我们来详细了解一下油缸的工作原理。
首先,我们需要了解液压系统的基本原理。
液压系统是利用液体传递能量的一种动力传动系统。
在液压系统中,液压油被泵送到油缸中,通过液压油的压力来产生力和运动。
液压系统由液压泵、油箱、液压缸、液压阀等组成,其中液压缸就是实现线性运动的关键元件。
液压油被泵送到油缸中后,油压力会作用在油缸的活塞上。
根据帕斯卡定律,液体在封闭的容器中传递压力时,压力是均匀的。
因此,液压油的压力会均匀地作用在活塞的表面上,产生一个力。
这个力会推动活塞向一个方向运动,同时产生线性的力和位移。
油缸的工作原理可以简单地理解为液压力的转换。
液压泵将机械能转换为液压能,液压能通过液压油传递到油缸中,再通过活塞的运动转换为线性力和位移。
这种液压传动的工作原理使得油缸在工程机械、冶金设备、航空航天等领域得到广泛应用。
除了单作用油缸外,还有双作用油缸。
双作用油缸在液压系统中更为常见。
它不仅可以在液压油的作用下产生伸出力,也可以在液压油的作用下产生缩回力。
这是因为双作用油缸的两端都有液压油的进出口,液压油的压力可以在两端产生作用,从而实现双向的线性运动。
此外,油缸的工作原理还与密封性能密切相关。
油缸内部的密封件需要具有良好的密封性能,以防止液压油的泄漏。
同时,油缸的材料和加工工艺也会影响其工作性能和寿命。
总的来说,油缸的工作原理是利用液压力的转换和传递来产生线性运动。
液压油通过液压泵被输送到油缸中,产生的压力作用在活塞上,从而产生线性的力和位移。
油缸在工程机械、冶金设备、航空航天等领域发挥着重要作用,是液压传动系统中不可或缺的元件。
液压油缸的工作原理液压油缸是一种常见的液压执行元件,它通过液压力将能量转换为机械运动。
液压油缸的工作原理是基于液压力的传递和放大,下面我们将详细介绍液压油缸的工作原理。
液压油缸主要由缸体、活塞、活塞杆、密封件和进出口油管路等部分组成。
当液压油缸工作时,液压油从进油口进入油缸内部,施加在活塞上产生压力,从而推动活塞杆产生直线运动。
液压油缸的工作原理可以简单地概括为液压力传递和放大。
首先,液压油缸的工作原理基于液体不受压缩性的特性。
液压油缸内的液体是不可压缩的,当液压泵施加压力时,液体会传递这种压力到液压缸内部,从而产生推动活塞运动的力。
这种液压力的传递使得液压油缸能够承受较大的力和扭矩,从而实现对重型机械设备的控制和操作。
其次,液压油缸的工作原理还依赖于活塞的运动。
当液压油缸内的液压油施加压力时,活塞会受到压力的作用而产生运动,从而推动活塞杆产生直线运动。
这种直线运动可以用于推动各种机械设备的工作,如起重机、挖掘机、冲床等。
此外,液压油缸的工作原理还依赖于密封件的作用。
密封件能够有效地防止液压油泄漏,保证液压油缸内部的液压油不会外泄,从而保证了液压系统的正常工作。
密封件的作用对于液压系统的稳定运行至关重要。
总的来说,液压油缸的工作原理是基于液压力的传递和放大,依赖于液体不受压缩性的特性、活塞的运动和密封件的作用。
通过这些原理,液压油缸能够实现对机械设备的精准控制和操作,广泛应用于工程机械、冶金设备、航空航天等领域。
综上所述,液压油缸的工作原理是基于液压力的传递和放大,依赖于液体不受压缩性的特性、活塞的运动和密封件的作用。
这些原理的相互作用使得液压油缸成为一种高效、稳定的液压执行元件,为各种机械设备的运行提供了可靠的动力支持。
液压油缸顶起工作原理
液压油缸是一种利用液体压力产生力量的装置,常用于工业机械和车辆中。
它可以将液体(通常是液压油)的压力转化为机械能,用于实现顶起、顶起、推动或拉动等运动。
液压油缸的工作原理基于帕斯卡定律,即在一个封闭的液体容器中,施加在液体上的压力会均匀传递到容器的各个部分。
液压油缸由以下几部分组成:
1. 油缸筒体:通常是金属材料制成的,内部有活塞和密封件。
2. 活塞:结构类似于圆柱体,安装在油缸筒体内,它与油缸筒体之间有一定的间隙,以确保液压油的顺畅流动。
3. 密封件:用于防止液压油泄漏,保持液压油的密封性。
4. 液压油:作为传递压力的介质,常用压力高、粘度适中的液压油。
液压油缸的顶起工作原理如下:
1. 在液压油缸内注入液压油,使其充满整个油缸。
2. 当需要顶起或推动负载时,通过液压泵施加压力,在液压油缸筒体的一侧形成高压区域。
由于帕斯卡定律,这个高压会均匀传递到活塞上。
3. 高压区域使活塞受到向上的力量,从而顶起或推动负载。
同时,低压区域在活塞另一侧形成,液压油从低压区域流入,保持液压油缸内的压力平衡。
4. 当不再需要顶起或推动负载时,液压泵停止施加压力,液压油通过液压阀释放出来,压力消失,活塞受到负载的反作用力,回到原始位置。
液压油缸通过液压原理实现了力的放大和方向的转换,可以实现较大的顶起和推动力量。
它在工业和汽车等领域中被广泛应用,如起重设备、挖掘机、液压压力机等。
液压油缸基础知识液压油缸是一种常见的工业执行元件,常被用于传送和控制机械的运动。
液压油缸通常由两个主要部分组成:缸体和活塞。
缸体缸体是油缸的外壳,通常由金属制成。
缸体的设计应考虑到以下因素:材质缸体的材质通常是钢,但还有其他金属材料,例如铝合金或铜可以用于制造较小的油缸。
直径和长度油缸的直径和长度通常由具体作用所决定。
比如,更长或更大直径的油缸能产生更多的力量,但它们也需要更多的液体去工作。
因此,在选择油缸时需要考虑到这些因素。
连接方式油缸可以与其他部件连接,例如控制阀、管道和附件。
以便于油缸的运行。
活塞油缸的活塞通常是一个圆柱形的金属件,能够轻松地在缸体内移动。
活塞的设计要考虑到以下因素:直径和长度活塞的直径和长度通常与缸体的直径和长度相对应。
密封活塞要根据具体要求完全水密,并且能够与缸体紧密贴合。
通常,活塞会使用O形环和密封垫进行密封。
安装部件活塞也需要连接其他部件,例如杆和被控制的设备等。
液压系统液压油缸需要液压系统的支持来实现机械运动。
液压系统由许多不同的部件组成:液压泵液压泵将液体从储存容器中抽出,并提供所需的液压流量和压力。
液压阀液压阀控制供应液体的流量和压力,使机械能够根据需要移动。
液压液体液压液体通常是矿物油,但也可以使用其他液体,例如某些酯类。
控制部件机械运动可以由摇杆或电子控制台等控制部件进行控制。
应用液压油缸通常用于以下应用领域:挖掘机液压油缸被用于推动和移动装备,例如挖掘机的铲斗和臂架。
工业液压油缸可以用于各种各样的机械,例如压力机,卷板机,和铸造机。
农业液压油缸在农业中使用得广泛,例如用于运行后勤设备和农业机械。
液压油缸是一种常见的工业执行元件,通常由两个主要部分组成:缸体和活塞。
缸体和活塞的设计需要考虑到一些因素,例如材质、直径和长度,连接方式,密封和连接其他部件。
液压油缸需要液压系统的支持来实现机械运动,液压系统由许多不同的部件组成。
液压油缸通常应用于挖掘、工业和农业等领域。
液压油缸基础知识收藏(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除液压油缸基础知识收藏液压油缸在农业机械中已普遍运用,现按结构及用途整理,希望农机操作者多加了解......液压工作油缸按其工作条件要求不同,可把油缸结构设计成多种形式。
常见的有活塞式油缸、柱塞式油缸和复合油缸等结构形式。
(1)活塞式油缸活塞式油缸的结构组成如图1所示。
主要组成零件有:缸体、活塞、活塞杆、端板和密封圈等。
图1 活塞式油缸结构1—端盖板:2—缸体;3—活塞,4一密封环;5—活塞杆; 6—导向套;7—密封圈;8—压盖活塞式油缸在液压传动中应用较多,这种油缸工作时,主要是通过向油缸中活塞两侧交替输送液压油,利用活塞两侧液压油的压力差实现活塞的往复运动。
如果要想加快活塞的前进速度,可把油缸中的回油通过阀的控制,直接输入到进油管中,参加推动活塞工作,实现活塞的快速移动,但活塞的推力减小了许多。
(2) 柱塞式油缸柱塞式油缸的结构如图2所示。
主要组成零件有:缸体、柱塞、导向套、密封胶圈和端压盖等。
图2 柱塞式油缸结构1 —缸体;2—柱塞;3—导向套;4—密封胶圈;5—端压盖柱塞式油缸与活塞式油缸的不同之处是油缸中的活塞由轴式柱塞来代替,这种油缸多用在要求机械行程较长的液压传动中,而且只能是从一个方向输入压力油,单方向加压,形成推力推动柱塞移动。
柱塞的回程有的是靠柱塞本身自重落下,有的是依靠弹簧的弹力推回原位。
通常应用的柱塞式油缸体,其内孔不需要机械精加工,只要把柱塞外圆精磨就可以组装工作。
(3)复合式油缸图3所示充液式合模装置中用的油缸就是一种复合式油缸。
图中移模油缸是柱塞式油缸,当液压油从柱塞孔进人油缸时,使合模装置快速前移;合模接近终止时,当锁模油缸(活塞式油缸)进入液压油缸后,行程速度变慢,使锁模力达到要求吨位。
这种柱塞式和活塞式配合工作的油缸,称之为复合式油缸。
液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。
动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。
液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。
根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。
压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。
根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。
液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压系统结构液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。
液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。
液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。
在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。
空心箭头表示信号流,而实心箭头则表示能量流。
基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。
对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。
根据系统工作原理,您可对所有回路依次进行编号。
液压油缸原理液压油缸是一种常用的液压执行元件,广泛应用于工程机械、冶金设备、航空航天等领域。
液压油缸利用液体的压力来产生线性运动,具有结构简单、传动力矩大、速度可调、可靠性高等优点。
下面将介绍液压油缸的工作原理及其应用。
液压油缸的工作原理主要是利用液体在封闭的容器内传递压力,通过液体的压力来产生力和运动。
液压油缸一般由油缸本体、活塞、活塞杆、密封件、进出油口等部分组成。
当液压油缸的进出口通入液压油时,液压油进入油缸内部,活塞随之向外运动,从而产生推力。
反之,当液压油缸的进出口通入油箱时,液压油缸内的液压油流回油箱,活塞则向内运动。
通过控制液压油的进出,可以实现液压油缸的正反转运动,从而实现机械设备的运动控制。
液压油缸广泛应用于各种工程机械中,如挖掘机、起重机、推土机等。
在这些机械中,液压油缸常用于实现臂杆、铲斗、起升等部位的运动控制。
通过液压油缸的工作原理,这些机械可以实现精准的运动控制和大范围的力传递,从而提高了工作效率和精度。
除了工程机械,液压油缸还被广泛应用于冶金设备中。
在钢铁生产过程中,液压油缸常用于轧机、切割机、冷却设备等部位的控制。
通过液压油缸的工作原理,这些设备可以实现高速、高精度的运动控制,提高了生产效率和产品质量。
此外,液压油缸还被应用于航空航天领域。
在飞机、火箭等航空器中,液压油缸常用于起落架、舵机、襟翼等部位的控制。
通过液压油缸的工作原理,这些航空器可以实现复杂的运动控制和飞行姿态调整,保证了飞行安全和性能稳定。
总之,液压油缸作为一种重要的液压执行元件,具有广泛的应用前景。
通过深入了解液压油缸的工作原理,可以更好地应用于各种工程领域,实现精准的运动控制和力传递。
希望本文对液压油缸的工作原理有所帮助,谢谢阅读!。
液压油缸的基础知识解析,值得收藏液压油被压入液压筒内会产生很大的压力,这个压力已经应用到众多的机械设备中,这次我们来说说有关液压缸的内容!液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。
它结构简单、工作可靠。
用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。
液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。
缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。
01 液压缸的组成▼液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。
▲常用液压缸结构图缸筒:缸筒是液压缸的主体零件,它与缸盖、活塞等零件构成密闭的容腔,推动活塞运动。
缸盖:缸盖装在液压缸两端,与缸筒构成紧密的油腔。
通常有焊接、螺纹、螺栓、卡键和拉杆等多种连接方式,一般根据工作压力,油缸的连接方式,使用环境等因素选择。
活塞杆:活塞杆是液压缸传递力的主要元件。
材料一般选择中碳钢(如45号钢)。
油缸工作时,活塞杆受推力、拉力或弯曲力矩等,固保证其强度是必要的;并且活塞杆常在导向套中滑动,配合应合适。
活塞:是将液压能转为机械能的主要元件,它的有效工作面积直接影响液压缸的作用力和运动速度。
活塞与活塞杆连接有多种形式,常用的有卡环型、轴套型和螺母型等。
导向套:导向套对活塞杆起导向和支撑作用,它要求配合精度高,摩擦阻力小,耐磨性好,能承受活塞杆的压力、弯曲力以及冲击振动。
内装有密封装置以保证缸筒有杆腔的密封,外侧装有防尘圈,以防止杂质、灰尘和水分带到密封装置处,损坏密封。
液压油缸工作原理
液压油缸是一种常见的液压执行元件,在各种机械设备中被广泛应用。
其工作原理基于液压力学原理,并通过液压液传递力量来实现运动和力量传递。
液压油缸主要由油缸筒体、活塞、活塞杆、密封件和液压油管路等组成。
液压油缸内部充满了液压油,当液压油缸进入工作状态时,通过控制阀门控制液压油的进出,从而控制液压油的压力和流量。
当液压油通过阀门进入液压油缸的一侧时,液压油的压力会使活塞向另一侧移动。
活塞杆与活塞连接在一起,所以当活塞移动时,活塞杆也会随之移动。
液压油缸的承受力取决于液压油的压力以及活塞杆的截面积。
因此,通过改变液压油的压力和活塞杆的截面积,可以控制液压油缸的承受力大小。
液压油缸的工作原理可以总结为以下几个步骤:
1. 处于工作状态的液压油缸需要有合适的工作压力和流量。
该压力和流量可以通过液压系统提供。
2. 当阀门打开时,液压油进入液压油缸的一侧,压力将活塞向另一侧推动。
同时,防止液压油漏出的密封件起到关键作用。
3. 当活塞移动时,活塞杆也会跟随活塞一起移动。
活塞杆可以通过附件连接到被控制的部件上,以实现力量传递和运动。
4. 当阀门关闭时,液压油停止流动,活塞停止移动。
液压油缸将维持在所施加的压力和位置,直到再次打开阀门。
液压油缸的工作原理简单而可靠,其优点在于能够实现大力量
传递和精确的运动控制。
它的应用范围非常广泛,例如在起重机、挖掘机、冲床等设备中都能看到液压油缸的身影。
液压缸的基础知识
随着现代工业的发展,液压传动技术在全球许多行业得到极大应用和发展,例如工程机械的装载机、推土机和压路机等;起重运输机械的叉车、皮带运输机和汽车吊等;建筑机械的打桩机、液压千斤顶和平地机等;农业机械,汽车工业,矿山机械,冶金机械……
液压传动设备通常由动力、执行、控制和辅助等四种元件组成,像我们江山厂液压件公司生产的油缸就属于执行元件。
并且液压缸作为实现直线往复运动或小于360。
往复摆动运动的液压机构,结构简单,工作可靠,也是液压系统中应用极广泛的主要执行元件,它是将原动机以机械能形式驱动液压泵产生的液体压力能,再变成可直接驱动负载进行往复运动或小于360。
往复摆动运动的机械能的一种能量转换装置。
我们要了解液压缸,就必须知道下列的基础知识。
一、液压缸的分类和组成
液压缸按结构形式,可分为活塞缸、柱塞缸、摆动缸和特殊缸四
类;按额定压力分为高压和超高压液压缸、中高压液压缸与中低压液压缸……。
而我们江山厂液压件公司主要生产的是单杆双作用活塞液压缸,这种液压缸是结构最简单,应用最广泛的一种。
下面我就以单杆双作用活塞液压缸为例讲解液压缸的基本结构。
1、缸筒:缸筒是液压缸的主体零件,它与缸盖、活塞等零件构成密闭的容腔,推动活塞运动。
常用的缸筒结构有8类,通常根据缸筒与端盖的连接形式选用。
材料一般要求有足够的强度和冲击韧性,对焊接的还要有良好的焊接性能,所以常用材料有:25,45,ZG200~400,1Cr18Ni9等等。
缸筒毛坯多采用冷拔或热扎无缝钢管,因此工序通常是调质(保证缸筒的强度,使其能承受油压不会变形和破坏)→珩磨或镗滚压(保证缸筒内径的粗糙度、圆度、圆柱度和直线度等,使活塞密封性在长期往复运动后不变)→车(保证缸筒全长等设计尺寸要求)→钻(加工出油口孔,保证进出油路)→钳
2、缸盖:缸盖装在液压缸两端,与缸筒构成紧密的油腔。
通常有焊接、螺纹、螺栓、卡键和拉杆等多种连接方式,一般根据工作压力,油缸的连接方式,使用环境等因素选择。
3、活塞杆:活塞杆是液压缸传递力的主要元件。
材料一般选择中碳钢(如45号钢)。
油缸工作时,活塞杆受推力、拉力或弯曲力矩等,固保证其强度是必要的;并且活塞杆常在导向套中滑动,配合应合适,太紧了,摩擦力大,太松了,容易引起卡滞现象和单边磨损,这就要
求其表面粗糙度、直线度和圆度等合适。
所以,活塞杆的工艺通常是粗车→调质→半精车→淬火→镀前磨→镀铬→镀后磨→精车。
4、活塞:活塞是将液压能转为机械能的主要元件,它的有效工作面积直接影响液压缸的作用力和运动速度。
活塞与活塞杆连接有多种形式,常用的有卡环型、轴套型和螺母型等。
当无导向环时,活塞用高强度铸铁HT200~300或球墨铸铁;当有导向环时,活塞用优质碳素钢20号、35号和45号。
5、导向套:导向套对活塞杆起导向和支撑作用,它要求配合精度高,摩擦阻力小,耐磨性好,能承受活塞杆的压力、弯曲力以及冲击振动。
内装有密封装置以保证缸筒有杆腔的密封,外侧装有防尘圈,以防止杂质、灰尘和水分带到密封装置处,损坏密封。
金属导向套一般采用摩擦系数小、耐磨性好的青铜、灰铸铁、球墨铸铁和氧化铸铁等;非金属导向套可采用聚四氟乙烯和聚三氟氯乙烯等。
6、缓冲装置:活塞和活塞杆在液压力的驱动下运动时具有很大的动量,当进入油缸的端盖和缸底部分时,会引起机械碰撞,产生很大的冲击压力和噪音。
采用缓冲装置,就是为了避免这种碰撞。
其工作原理是使缸筒低压腔内油液(全部或部分)通过节流把动能转换为热能,热能则由循环的油液带到液压缸外。
缓冲装置的结构分为恒节流面积缓冲装置和变节流型缓冲装置两种。
二、液压缸的主要参数
液压缸的主要参数包括压力、流量、尺寸规格、活塞行程、运动速度、推拉力、效率和液压缸功率等。
1、压力:压力是油液作用在单位面积上的压强。
计算公式p=F/A,即作用在活塞上的载荷除以活塞的有效工作面积。
从上式可知,压力值的建立是由载荷的存在而产生的。
在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。
换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。
平常我们说的额定压力,是液压缸能以长期工作的压力。
按额定压力,液压缸压力分级见下表:单位MPa
最高允许压力指液压缸在瞬间所能承受的极限压力;而耐压试验压力是指检查液压缸质量时需承受的试验压力,这两种压力各国多数规定小于等于1.5倍额定压力。
2、流量:流量是单位时间内油液通过缸筒有效截面积的体积。
计算公式Q=V/t=vA,其中V表示液压缸活塞一次行程中所消耗的油液体积,t表示液压缸活塞一次行程所需时间,v表示活塞杆运动速度,A表示活塞的有效工作面积。
3、活塞行程:活塞行程指活塞往复运动时在两极之间走过的距离。
一般在满足了油缸的稳定性要求后,按实际工作行程选取与其相近似的标准行程。
4、活塞的运动速度:运动速度是单位时间内压力油液推动活塞移动的距离,可表示为v=Q/A。
5、尺寸规格:尺寸规格主要包括缸筒的内外径、活塞直径、活塞杆直径和缸盖尺寸等,这些尺寸根据液压缸的使用环境,安装形式,所需提供的推拉力以及行程等来计算,设计和校核。
三、液压缸常见问题及维修
液压缸作为一种元件、一种工作装置,与所有机械设备一样,在长期运行过程中不可避免地在其结构零部件中会产生不同程度的磨
损、疲劳、腐蚀、松动、老化变质甚至损坏等现象,使得液压缸工作性能、技术状况恶化,进而直接造成整台液压设备的故障,甚至失效。
因此,对液压缸日常工作中常见问题的排除和维修是非常重要的。
四、液压缸的发展动态
随着液压技术的深入普及和应用领域、场合的日益扩大,对液压缸的工作性能、构造、使用范围、制造精度、外观、材料、试验方法都不断提出新的要求,因此不断推动着液压缸的发展和进步。
其总的趋势为:1、高压化、小型化。
高压化是减少液压缸径向尺寸和减轻重量,并缩小整套液压装置体积的有效途径。
2、新材质、轻量化。
随着高压化、小型化,液压缸使用环境的考验等,新材质、轻量化也成了解决办法之一。
3、新颖结构复合化。
为了适应液压缸应用范围的扩大,各种新颖结构的液压缸不断出现,如自控液压缸、自锁液压缸、钢缆式液压缸、蠕动式液压缸和复合化液压缸等。
4、高性能、多品种。
5、节能化与耐腐蚀。