2021年北京市高考数学总复习专题7:数列与集合新定义解答题(附答案解析)
- 格式:docx
- 大小:2.04 MB
- 文档页数:42
2021年北京市高考数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的的四个选项中,选出符合题目要求的一项。
1.(4分)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B =()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}2.(4分)在复平面内,复数z满足(1﹣i)•z=2,则z=()A.2+i B.2﹣i C.1﹣i D.1+i3.(4分)设函数f(x)的定义域为[0,1],则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.25.(4分)双曲线C:﹣=1过点(,),离心率为2,则双曲线的解析式为()A.﹣y2=1B.x2﹣=1C.﹣=1D.﹣=16.(4分)已知{a n}和{b n}是两个等差数列,且(1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为()A.64B.100C.128D.1327.(4分)已知函数f(x)=cosx﹣cos2x,试判断该函数的奇偶性及最大值()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为D.偶函数,最大值为8.(4分)对24小时内降水在平地上的积水厚度(mm)进行如下定义:0~1010~2525~5050~100小雨中雨大雨暴雨小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级()A.小雨B.中雨C.大雨D.暴雨9.(4分)已知圆C:x2+y2=4,直线l:y=kx+m,若当k的值发生变化时,直线被圆C所截的弦长的最小值为2,则m的取值为()A.±2B.±C.±D.±3 10.(4分)数列{a n}是递增的整数数列,且a1≥3,a1+a2+a3+…+a n =100,则n的最大值为()A.9B.10C.11D.12二、填空题共5小题,每小题5分,共25分。
北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案知识网络:目标认知考试大纲要求: 1.等差数列、等比数列公式、性质的综合及实际应用; 2.掌握常见的求数列通项的一般方法; 3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题. 4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题.重点: 1.掌握常见的求数列通项的一般方法; 3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题难点: 用数列知识解决带有实际意义的或生活、工作中遇到的数学问题.知识要点梳理知识点一:通项与前n项和的关系 任意数列的前n项和; 注意:由前n项和求数列通项时,要分三步进行: (1)求, (2)求出当n≥2时的, (3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.知识点二:常见的由递推关系求数列通项的方法1.迭加累加法: , 则,,…,2.迭乘累乘法: , 则,,…,知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型. 2.建立数学模型的一般方法步骤. ①认真审题,准确理解题意,达到如下要求: ⑴明确问题属于哪类应用问题; ⑵弄清题目中的主要已知事项; ⑶明确所求的结论是什么. ②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达. ③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).规律方法指导 1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想; 2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意: (1)通过知识间的相互转化,更好地掌握数学中的转化思想; (2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.经典例题精析类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】 【变式2】数列中,,求通项公式. 【答案】.类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时,, 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,,,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴类型三:倒数法求通项公式 3.数列中,,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】 【变式2】数列中,,,求. 【答案】.类型四:待定系数法求通项公式 4.已知数列中,,,求. 法一:设,解得 即原式化为 设,则数列为等比数列,且 ∴ 法二:∵ ① ② 由①-②得: 设,则数列为等比数列 ∴ ∴ ∴ 法三:,,,……, , ∴ 总结升华: 1.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法. 2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得. 举一反三: 【变式1】已知数列中,,求 【答案】令,则, ∴,即 ∴, ∴为等比数列,且首项为,公比, ∴, 故. 【变式2】已知数列满足,而且,求这个数列的通项公式. 【答案】∵,∴ 设,则,即, ∴数列是以为首项,3为公比的等比数列, ∴,∴. ∴.类型五:和的递推关系的应用 5.已知数列中,是它的前n项和,并且, . (1)设,求证:数列是等比数列; (2)设,求证:数列是等差数列; (3)求数列的通项公式及前n项和. 解析: (1)因为,所以 以上两式等号两边分别相减,得 即,变形得 因为,所以 由此可知,数列是公比为2的等比数列. 由,, 所以, 所以, 所以. (2),所以 将代入得 由此可知,数列是公差为的等差数列,它的首项, 故. (3),所以 当n≥2时, ∴ 由于也适合此公式, 故所求的前n项和公式是. 总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略. 举一反三: 【变式1】设数列首项为1,前n项和满足. (1)求证:数列是等比数列; (2)设数列的公比为,作数列,使,,求的通项公式. 【答案】 (1), ∴ ∴, 又 ①-② ∴, ∴是一个首项为1公比为的等比数列; (2) ∴ ∴是一个首项为1公比为的等差比数列 ∴ 【变式2】若, (),求. 【答案】当n≥2时,将代入, ∴, 整理得 两边同除以得(常数) ∴是以为首项,公差d=2的等差数列, ∴, ∴. 【变式3】等差数列中,前n项和,若.求数列的前n项和. 【答案】∵为等差数列,公差设为, ∴, ∴, ∴, 若,则, ∴. ∵, ∴,∴, ∴, ∴ ① ② ①-②得 ∴类型六:数列的应用题 6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少? 思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和. 解析:设将旗集中到第x面小旗处,则 从第一面旗到第面旗处,共走路程为了, 回到第二面处再到第面处是, 回到第三面处再到第面处是, , 从第面处到第面处取旗再回到第面处的路程为, 从第面处到第面处取旗再回到第面处,路程为20×2, 总的路程为: ∵,∴时,有最小值 答:将旗集中到第7面小旗处,所走路程最短. 总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程. 举一反三: 【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为( ) A. B. C. D. 【答案】D; 解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为, 则 【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则该人存款的本金为( ) A.1.5万元 B.2万元 C.3万元 D.2.5万元 【答案】B; 解析:本金利息/利率,利息利息税/税率 利息(元), 本金(元) 【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是( ) A.5月、6月 B.6月、7月 C.7月、8月 D.9月、10月 【答案】C; 解析:第个月份的需求量超过万件,则 解不等式,得,即. 【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少) 【答案】设汽车使用年限为年,为使用该汽车平均费用. 当且仅当,即(年)时等到号成立. 因此该汽车使用10年报废最合算. 【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%. (1)分别求2007年底和2008年底的住房面积; (2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01) 【答案】 (1)2007年底的住房面积为1200(1+5%)-20 =1240(万平方米), 2008年底的住房面积为1200(1+5%)2-2 0(1+5%)-20=1282(万平方米), ∴2007年底的住房面积为1240万平方米; 2008年底的住房面积为1282万平方米. (2)2007年底的住房面积为[1200(1+5%)-2 0]万平方米, 2008年底的住房面积为[1200(1+5%)2-2 0(1+5%)-20]万平方米, 2009年底的住房面积为[1200(1+5%)3-2 0(1+5%)2-20(1+5%)-20]万平方米, ………… 2026年底的住房面积为[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20]万平方米 即1200(1+5%)20―20(1+5%)19―20(1+5 %)18―……―20(1+5%)―20 ≈2522.64(万平方米), ∴2026年底的住房面积约为2522.64万平方米.高考题萃 1.(2008四川)设数列的前项和为. (Ⅰ)求; (Ⅱ)证明:是等比数列; (Ⅲ)求的通项公式. 解析: (Ⅰ)因为, ∴ 由知,得 ① 所以, , ∴ (Ⅱ)由题设和①式知 所以是首项为2,公比为2的等比数列. (Ⅲ) 2.(2008全国II)设数列的前项和为.已知,,. (Ⅰ)设,求数列的通项公式; (Ⅱ)若,,求的取值范围. 解析: (Ⅰ)依题意,,即, 由此得. 因此,所求通项公式为,.① (Ⅱ)由①知,, 于是,当时,, , 当时,. 又. 综上,所求的的取值范围是. 3.(2008天津)已知数列中,,,且. (Ⅰ)设,证明是等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项. 解析: (Ⅰ)由题设,得, 即. 又,, 所以是首项为1,公比为的等比数列. (Ⅱ)由(Ⅰ),,,……,. 将以上各式相加,得. 所以当时, 上式对显然成立. (Ⅲ)由(Ⅱ),当时,显然不是与的等差中项,故. 由可得, 由得 ① 整理得, 解得或(舍去),于是. 另一方面,, . 由①可得. 所以对任意的,是与的等差中项. 4.(2008陕西)已知数列的首项,,. (Ⅰ)求的通项公式; (Ⅱ)证明:对任意的,,; (Ⅲ)证明:.解析: (Ⅰ),,, 又,是以为首项,为公比的等比数列. ,. (Ⅱ)由(Ⅰ)知, , 原不等式成立. 另解:设, 则 ,当时,;当时,, 当时,取得最大值. 原不等式成立. (Ⅲ)由(Ⅱ)知,对任意的,有 . 令,则, . 原不等式成立.学习成果测评基础达标: 1.若数列中,且(n是正整数),则数列的通项=____. 2.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是____________. 3. 设是等比数列,是等差数列,且,数列的前三项依次是, 且,则数列的前10项和为____________. 4. 如果函数满足:对于任意的实数,都有,且,则 ____________ 5.已知数列中,,(),求通项公式. 6.已知数列中,,,,求的通项公式. 7.已知各项均为正数的数列的前项和满足,且,,求的通项公式. 8.设数列满足,. (Ⅰ)求数列的通项; (Ⅱ)设,求数列的前项和.能力提升: 9.数列的前项和为,,. (Ⅰ)求数列的通项; (Ⅱ)求数列的前项和. 10.数列的前n项和为, 已知是各项为正数的等比数列,试比较与的大小关系. 11.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加,因此,历年所交纳的储备金数目是一个公差为的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为,…….以表示到第年末所累计的储备金总额. (Ⅰ)写出与的递推关系式; (Ⅱ)求证:,其中是一个等比数列,是一个等差数列. 12.2007年底某县的绿化面积占全县总面积的40%,从2008年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化. (1)设该县的总面积为1,2007年底绿化面积为,经过n年后绿化的面积为,试用表示; (2)求数列的第n+1项; (3)至少需要多少年的努力,才能使绿化率超过60%.(参考数据:lg2=0.3010,lg3=0.4771)综合探究: 13.已知函数,设曲线在点处的切线与x轴的交点为,其中为正实数. (Ⅰ)用表示; (Ⅱ)若,记,证明数列成等比数列,并求数列的通项公式; (Ⅲ)若,,是数列的前n项和,证明.参考答案:基础达标: 1. 答案: 解析:由题设的递推公式可得 ∴ 即, 2. 答案:2n+1-2 解析:, 曲线在x=2处的切线的斜率为,切点为(2,-2n), 所以切线方程为y+2n=k(x-2), 令x=0得,令. 数列的前n项和为2+22+23+…+2n=2n+1-2 3. 答案:978 4. 答案: 5. 解析:将递推关系整理为 两边同除以得 当时, ,,……, 将上面个式子相加得到: ,即, ∴(). 当时,符合上式 故. 6. 解析:由题设 ∴. 所以数列是首项为,公比为的等比数列, ∴, 即的通项公式为,. 7. 解析:由,解得或, 由假设,因此, 又由, 得,即或, 因,故不成立,舍去. 因此,从而是公差为,首项为的等差数列, 故的通项为. 8. 解析: (Ⅰ), ① ∴当时, ② ①-②得,. 在①中,令,得符合上式 ∴. (Ⅱ),∴. , ③ . ④ ④-③得. 即,.能力提升: 9. 解析: (Ⅰ),, 又, 数列是首项为,公比为的等比数列, ∴. 当时,, (Ⅱ), 当时,; 当时, ,…………① ,…………② 得: . . 又也满足上式, . 10. 解析:∵为各项为正数的等比数列,设其首项为,公比为, 则有,,(), ∴,即 (1)当时,,, 而, ∴ ∴时,. (2)当时,,, ∴ ①当时,,∴ ②当时,, ∴ ③当时,,∴ 综上,(1)在时恒有 (2)在时,①若则; ②若则; ③若则. 11. 解析: (Ⅰ). (Ⅱ), 对反复使用上述关系式,得 , ① 在①式两端同乘,得② ②①,得 . 即. 如果记,,则. 其中是以为首项,以为公比的等比数列; 是以为首项,为公差的等差数列. 12. 解析: (1)设2007年底非绿化面积为b1,经过n年后非绿化面积为.+b1=1, 于是a 依题意,是由两部分组成: 一部分是原有的绿化面积减去被非绿化部分后剩余面积, 另一部分是新绿化的面积, ∴. (2),. 数列是公比为,首项的等比数列. ∴. (3)由,得,, , ∴至少需要7年的努力,才能使绿化率超过60%.综合探究: 13. 解析: (Ⅰ)由题可得. 所以曲线在点处的切线方程是:. 即. 令,得,即. 显然,∴. (Ⅱ)由,知, 同理. 故. 从而,即. 所以,数列成等比数列. 故,即. 从而,所以 (Ⅲ)由(Ⅱ)知,∴ ∴ 当时,显然. 当时, ∴. 综上,.。
2021年新高考数学总复习:集合(附答案解析)2021年新高考数学总复习:集合1.(2019·全国卷Ⅰ)已知集合M ={x |-4<="" 2-x=""A .{x |-4<3}<="" p="">B .{x |-4<-2}<="" p="">C .{x |-2<2}<="" p="">D .{x |2<3}<="" p="">解析:因为M ={x |-4<3},<="" p="" |-2所以M ∩N ={x |-2<2}.<="" p="">答案:C2.(2020·广东湛江测试)已知集合A ={1,2,3,4},B ={y |y =2x -3,x ∈A },则集合A ∩B 的子集个数为( )A .1B .2C .4D .8解析:因为A ={1,2,3,4},B ={y |y =2x -3,x ∈A },所以B ={-1,1,3,5},所以A ∩B ={1,3},所以A ∩B 的子集个数为22=4.答案:C3.(2019·浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(?U A )∩B =( )A .{-1}B .{0,1}C .{-1,2,3}D .{-1,0,1,3}解析:因为?U A ={-1,3},所以(?U A )∩B ={-1}.答案:A4.(多选题)设集合M ={x |x 2-x >0},N =x |1x <1,则下列关系正确的是( )A .M NB .N ?MC .M =ND .M ∪N =M解析:集合M ={x |x 2-x >0}={x |x >1或x <0},N =x |1x <1={x |x >1或x <0},所以M =N ,则B 、C 、D 正确.答案:BCD5.(2019·全国卷Ⅱ改编)已知集合A ={x |x 2-5x +6>0},B ={x |x -1≥0},全集U =R ,则A ∩(?U B )=( )A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)解析:由x 2-5x +6>0,得A ={x |x <2或x >3},又B ={x |x ≥1},知?U B ={x |x <1},所以A ∩(?U B )={x |x <1}.答案:A6.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为( )A .{-1,0,1}B .{-1,0}C .{-1,1}D .{0}解析:B ={x |x 2-1=0}={-1,1},阴影部分所表示的集合为?U (A ∪B ).A ∪B ={-2,-1,1,2},全集U ={-2,-1,0,1,2},所以?U (A ∪B )={0}.答案:D7.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ?(A ∩B )的集合M 的个数是( )A .0B .1C .2D .3解析:由x +y =1,x -y =3,得?x =2,y =-1,所以A ∩B ={(2,-1)}.由M ?(A ∩B ),知M =?或M ={(2,-1)}.答案:C8.(2020·佛山一中检测)已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ?B ,则实数a 的取值范围为( )A .(1,3)B .[1,3]C .[1,+∞)D .(-∞,3]解析:由log 2(x -1)<1,得A =(1,3),又|x -a |<2,得B =(a -2,a +2).由A ?B ,所以?a -2≤1,a +2≥3,解之得1≤a ≤3. 故实数a 的取值范围为[1,3].答案:B9.(2019·江苏卷)已知集合A ={-1,0,1,6},B ={x |x >0,x ∈R},则A ∩B =________.解析:因为A ={-1,0,1,6},B ={x |x >0,x ∈R},所以A ∩B ={1,6}.答案:{1,6}10.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ?B ,则实数c 的取值范围是________.解析:由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ?B ,画出数轴,如图所示,得c ≥1.答案:[1,+∞)11.已知集合A =(x ,y )x 24+y 22=1,B ={(x ,y )|y =kx +m ,k ∈R ,m ∈R},若对任意实数k ,A ∩B ≠?,则实数m 的取值范围是________.解析:由已知,无论k 取何值,椭圆x 24+y 22=1和直线y =kx +m 均有交点,故点(0,m )在椭圆x 24+y 22 =1上或在其内部,所以m 2≤2,所以-2≤m ≤ 2.答案:[-2,2]12.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(?U B )=________.解析:集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2},因为log 3(2-x )≤1=log 33,所以0<2-x ≤3,所以-1≤x <2,所以B ={x |-1≤x <2},所以?U B ={x |x <-1或x ≥2},所以A ∩(?U B )={x |x <-1或x ≥2}.答案:{x |x <-1或x ≥2}[B 级能力提升]13.(多选题)(2020·东莞中学质检)已知集合A ={x |x 2-16<0},B ={x |3x 2+6x =1},则( )A .A ∪B =(-4,4)∪{-6}B .B ?AC .A ∩B ={0}D .A ?B解析:因为A ={x |x 2-16<0},所以A ={x |-4<="" 错误,a="" =1},则b="" ={0},故c="" ={0,-6},a="" ={x="" =-6或-4答案:AC14.如图,集合A ={x |log 12(x -1)>0},B =x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:图中阴影部分表示集合B ∩?R A .因为A ={x |log 12(x -1)>0}={x |1<="">x |2x -3x <0=?x |0<="" ={x="">15.已知集合A ={x ∈R||x +2|<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R||x +2|<3}={x ∈R|-5<1},<="" p="">由A ∩B =(-1,n ),可知m <1,则B ={x |m <="" =-1,n="">答案:-11[C级素养升华]16.对于任意两集合A,B,定义A-B={x|x∈A且x?B},A*B =(A-B)∪(B-A),记A={y|y≥0},B={x|y=lg(9-x2)},则B-A =________,A*B=________.解析:因为A={y|y≥0}=[0,+∞),B=(-3,3),所以A-B={x|x≥3},B-A={x|-3<x<0}.< p="">因此A*B=[3,+∞)∪(-3,0)=(-3,0)∪[3,+∞).答案:(-3,0)(-3,0)∪[3,+∞)</x<0}.<>。
2021年高考数学解答题专项复习-《数列》1.设{a}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.n(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.2.设{a}是等差数列,且a1=ln2,a2+a3=5ln2.n(1)求{a n}的通项公式;(2)求错误!未找到引用源。
.3.设数列{a}的前n项和为S n.已知2S n=3n+3.n(1)求{a n}的通项公式;(2)若数列{b n}满足a n·b n=log3a n,求{b n}的前n项和T n.4.已知{a}是公差为1的等差数列,且a1,a2,a4成等比数列.n(1)求{a n}的通项公式;(2)求数列的前n项和.5.已知数列{a}前n项和为S n,且S n=2n2+n,n∈N+,数列{b n}满足a n=4log2b n+3,n∈N+.n(1)求a n和b n的通项公式;(2)求数列{a n·b n}的前n项和T n.6.已知数列{a}和{b n}满足a1=1,b1=0,,.n(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.7.S为数列{a n}的前n项和.已知a n>0,=.n(1)求{a n}的通项公式;(2)设 ,求数列{b n}的前n项和.8.已知等差数列{a}满足a3=6,前7项和为S7=49.n(1)求{a n}的通项公式(2)设数列{b n}满足b n=(a n-3)·3n,求{b n}的前n项和T n.9.设数列{a}满足a1+3a2+...+(2n-1)a n=2n.n(1)求{a n}通项公式;(2)求数列的前n项和.10.已知等比数列{a}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,n数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.11.已知数列{a}是递增的等比数列,且a1+a4=9,a2a3=8.n(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,,求数列{b n}的前n项和T n.12.已知数列{a}为递增的等差数列,其中a3=5,且a1,a2,a5成等比数列.n(1)求{a n}的通项公式;(2)设记数列{b n}的前n项和为T n,求使得成立的m的最小正整数.13.等比数列{a}的各项均为正数,且.n(1)求数列{a n}的通项公式;(2)设,求数列的前n项和T n.14.已知数列{a}是首项为正数的等差数列,数列的前n项和为.n(1)求数列{a n}的通项公式;(2)设错误!未找到引用源。
2021年高考数学一轮复习 第七章 数列 第40课 数列的概念及其表示文(含解析)1.数列的定义按照一定顺序排列的一列数就称为数列.数列中的每一个数叫做这个数列的项.2. 数列的分类3. 数列的通项公式如果数列的第项与之间的函数关系可以用一个公式 来表示,这个公式就叫做这个数列的通项公式.4.数列的前项和与通项的关系 . 典例剖析考点1 由数列前几项探索数列的通项公式【例1】已知数列的前4项,写出它的通项公式:(1),,,,…; (2),,,,…; (3)…; (4),,,,…. 【解析】(1); (2);(3) (4).【变式】数列,,,,…,的一个通项公式是 【解析】考点2 数列的周期性问题 【例2】(2)已知数列满足 ,,则 ( ) A .0 B . C. D. 解析:选A 由题意知,,,…, 故该数列的周期为3. 又 ,∴.故选A.练习:(xx·宝鸡检测)已知数列 满足 , , ,则 的值等于( ) A .3 B .1 C. D . 解析:选A 由已知得a n +1=a n a n -1,a n +3=a n +2a n +1=a n +1a n ÷a n +1=1a n ,故a n +6=1a n +3=a n ,所以,该数列是周期为6的数列,所以a 2 013=a 3=3.故选A.考点3 利用与的关系求通项公式 【例3】数列的前项和,若,.(1)求数列的前项和;(2)求数列的通项公式; (3)设,数列的前项和为,求证: . 【解析】(1)由,得;由,得.∴,解得,∴. (2)当时,2212[(1)2(1)]21n n n a S S n n n n n -=-=+--+-=+.由于. ∴. (3). ∴数列的前项和111111111111111111()()()()()()2352462572221122n n n n n n =-+-+-++-+-+---++ . ,即【变式】数列的前项和为,且满足,求数列的通项公式. 【解析】由,得, 当时,. 当时,,∵,∴.第40课 数列的概念及其表示的课后作业1.数列…的通项公式等于( ) A . B .C .D .【答案】B2.设数列的前项和,则的值为( )A .B .C .D . 【答案】A 【解析】.3.数列的通项公式为,则数列各项中最小项是( )A .第4项B .第5项C .第6项D .第7项 【答案】B4.已知数列中,,,对于任意的都成立,那么的值为( ) A . B . C . D .解:由已知,得对于任意的都成立,所以,,,,,……,从而数列的周期为 ,,所以选C5.数列的通项公式,其前项和为,则( ) A . B . C . D . 【答案】A【解析】∵函数的周期是,∴数列的每相邻四项之和是一个常数2, ∴20142012201320142012201322013cos 2014cos100742S S a a ππ=++=⨯++ .故选A .6. 在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第______项.解析:10 令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).∴a 10=0.08.即0.08是该数列的第10项. 7. 已知数列的前项和,则其通项;若它的第项满足,则.【答案】,8. (xx·海口质检)如图是同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖________块.解析:用a n 表示第n 个图的黑色瓷砖块数,则a 1=12,a 2=16,a 3=20,…,由此可得{a n }是以12为首项,以4为公差的等差数列.∴a 23=a 1+(23-1)×4=12+22×4=100. 答案:1009. (xx 届年惠州二模)如图,在三棱锥中,底面,为的中点,.(1)求证:平面; (2)求点到平面的距离。
高考数学一轮复习《数列新定义》练习题(含答案)一、单选题1.定义:在数列{}n a 中,若满足(*211,n n n na a d n d a a +++-=∈N 为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20192017a a 等于( ) A .2420171⨯-B .2420181⨯-C .2420191⨯-D .2420201⨯-2.若数列{an }满足21321111222n n a a a a a a --<-<<-<……,则称数列{an }为“半差递增”数列.已知“半差递增”数列{cn }的前n 项和Sn 满足*221()n n S c t n N +=-∈,则实数t 的取值范围是( ) A .1(,)2-∞B .(-∞,1)C .1(,)2+∞D .(1, +∞)3.对任意正整数n 定义运算*,其运算规则如下:①1*22=;②()()1*2*22n n +=⨯.则*2n =( ) A .()21n -B .2nC .12n -D .2n4.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为( ) A .99B .131C .139D .1415.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第8项为( ) A .95B .101C .141D .2016.若数列{}n a 满足121n n a a +=-,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =( ) A .123n -⨯B .12n -C .12n +D .2n7.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”.在数列{}n a 中,若98n a n n=+-,则数列{}n a 的“谷值点”为( ) A .2B .7C .2,7D .2,5,78.在数列{}n a 中,如果对任意*n ∈N 都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比,则下列选项中错误的是( ) A .等差比数列的公差比一定不为0 B .等差数列一定是等差比数列C .若等比数列是等差比数列,则其公比等于公差比D .若32nn a =-+,则数列{}n a 是等差比数列9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有二阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第15项为( ) A .94B .108C .123D .13910.已知n a的正整数,其中*n ∈N .若12370m a a a a +++⋅⋅⋅+≥,则正整数m 的最小值为( ) A .23B .24C .25D .2611.若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,则63b =( ) A .5B .6C .7D .812.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球()11a =,第二层有3个球()23a =,第三层有6个球()36a =,第四层有10个球()410a =,第五层有15个球()515a =,…,各层球数之差{}1n n a a +-:21a a -,32a a -,43a a -,54a a -,…即2,3, 4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为( ). A .51B .68C .106D .157二、填空题13.任取一个正整数,若为奇数,就将该数乘3再加上1;若为偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称为“角谷猜想”等).如取正整数6m =,根据上述运算法则得到6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递进关系如下:已知数列{n a }满足1a m =(m 为正整数),,231,nn n n n a a a a a ⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,当9m =时,试确定使得1n a =需要雹程步数为_____________.14.对一切实数x ,令[]x 为不大于x 的最大整数,若,N 10n n a n *⎡⎤=∈⎢⎥⎣⎦,n S 为数列{}n a 的前n 项和,则20092010S =_______ 15.斐波那契数列,又称黄金分割数列,被誉为最美的数列,若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,*n ∈N ),则称数列{}n a 为斐波那契数列,则222123303012a a a a a +++=___________.16.已知有穷数列{}n a 各项均不相等,将{}n a 的项从大到小重新排序后相应的项数构成新数列{}n b ,称数列{}n b 为数列{}n a 的“序数列”.例如数列1a ,2a ,3a 满足132a a a >>,则其序数列{}n b 为1,3,2.若有穷数列{}n d 满足11d =,()114nn n d d +-=(n 为正整数),且数列{}21n d -的序数列单调递减,数列{}2n d 的序数列单调递增,则123420212022d d d d d d -+-+⋅⋅⋅+-=___________.三、解答题17.记n S 为正项数列{}n a 的前n 项和,且333212n n a a a S +++=.(1)求{}n a 的通项公式; (2)记数列2{}nna S 的前n 项积为n T ,证明:数列{}n T 是递增数列.18.已知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+. (1)求{}n a 和{}n b 的通项公式;(2)对于集合A 、B ,定义集合{A B x x A -=∈且}x B ∉,设数列{}n a 和{}n b 中的所有项分别构成集合A 、B ,将集合A B -的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前30项和30S .19.已知等差数列{}n a 和等比数列{}n b 满足14a =,12b =,2221a b =-,332a b =+. (1)求{}n a 和{}n b 的通项公式;(2)数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将A B ⋃的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前60项和60S .20.已知a 为实数,数列{}n a 满足:①1a a =;②()*13,34,3n n n n n a a a n a a +->⎧=∈⎨-≤⎩N . (1)当3a =时,求1234a a a a +++的值;(2)求证:存在正整数0n ,使得003n a ≤≤;(3)设n S 是数列{}n a 的前n 项和,求a 的取值范围,使数列{}n a 为周期数列且方程*2(N )n S n n =∈有解(若数列{}n a 满足:存在N T ∈且0T >,对任意N n ∈且0n >,成立n T n a a +=,则称数列{}n a 为以T 为周期的周期数列).21.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.22.对于项数为m 的有穷数列{}n a ,设n b 为()12,,,1,2,,n a a a n m ⋅⋅⋅=⋅⋅⋅中的最大值,称数列{}n b 是{}n a 的控制数列.例如数列3,5,4,7的控制数列是3,5,5,7.(1)若各项均为正整数的数列{}n a 的控制数列是2,3,4,6,6,写出所有的{}n a ; (2)设{}n b 是{}n a 的控制数列,满足1n m n a b C -++=(C 为常数,1,2,,n m =⋅⋅⋅).证明:()1,2,,n n b a n m ==⋅⋅⋅.(3)考虑正整数1,2,,m ⋅⋅⋅的所有排列,将每种排列都视为一个有穷数列{}n c .是否存在数列{}n c ,使它的控制数列为等差数列?若存在,求出满足条件的数列{}n c 的个数;若不存在,请说明理由.23.若无穷数列{n a }满足如下两个条件,则称{n a }为无界数列: ①0n a >(n =1,2,3......)②对任意的正数δ,都存在正整数N ,使得n a δ>.(1)若21n a n =+,2cos()n b n =+(n =1,2,3......),判断数列{n a },{n b }是否是无界数列; (2)若21n a n =+,是否存在正整数k ,使得对于一切n k ≥,都有12231...1n n a a a n a a a ++++<-成立?若存在,求出k 的范围;若不存在说明理由;(3)若数列{n a }是单调递增的无界数列,求证:存在正整数m ,使得12231...1m m a a a m a a a ++++<-参考答案1.A2.A3.D4.D5.C6.D7.C8.B9.B10.B11.A12.C 13.19 14.100 15.12##0.5 16.2022411154⎛⎫-- ⎪⎝⎭17.(1)由333212n n a a a S +++=可得:当1n =时,有3211a S =,即()21110a a -=.因为0n a >,所以11a =.当2n ≥时,有33321211n n a a a S --+++=,所以3221n n n a S S -=-,即212n n n n n a S S S a -=+=-,即22n n n a a S +=所以有21112n n n a a S ---+=.所以()()2211112n n n n n n n a S S a a a a ---⎡⎤=-=+-+⎣⎦,即2211n n n n a a a a ---=+.因为0n a >,所以11n n a a --=.所以{}n a 为11a =,公差1d =的等差数列. 所以()11n a a n d n =+-=.(2)由(1)可得:()12n n n S +=,所以()222112n n a n nn n S n ==++.因为数列2{}n n a S 的前n 项积为n T ,所以()()21212223221121311111nn n n T n n n ⨯-⨯⨯⨯⨯=⋅⋅⋅=+++-+++.因为201nn T n =>+, 所以111221221111222221n n n nn n T n n nn T n n n n +++++++==⨯==+>++++,所以1n n T T +>, 即数列{}n T 是递增数列.18.(1)解:设等差数列{}n a 公差为d ,等比数列{}n b 的公比为()0q q >, 212n n n b b b ++=+,22q q ∴=+,解得2q或10q =-<(舍去).又12b =,所以1222n nn b -=⨯=.所以33210a b =+=,311043312a a d --===-, 所以,()()33103331n a a n d n n =+-=+-=+. (2)解:3091a =,33100a =,又6764121128b b =<<=, 所以30S 中要去掉数列{}n b 的项最多6项,数列{}n b 的前6项分别为2、4、8、16、32、64, 其中4、16、64三项是数列{}n a 和数列{}n b 的公共项,所以{}n c 前30项由{}n a 的前33项去掉{}n b 的24b =,416b =,664b =这3项构成.()()()()3012332463341004166416322S a a a b b b ⨯+=+++-++=-++=.19.(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由2242214542221d q d q d q d q +=⋅-=-⎧⎧⇒⎨⎨+=⋅+=-⎩⎩, ∴2q,3d =,∴31n a n =+,2nn b =.(2)当{}n c 的前60项中含有{}n b 的前6项时,令71273121283n n +<=⇒<, 此时至多有41748+=项(不符).当{}n c 的前60项中含有{}n b 的前7项时,令831225685n n +<=⇒<,且22,42,62是{}n a 和{}n b 的公共项,则{}n c 的前60项中含有{}n b 的前7项且含有{}n a 的前56项,再减去公共的三项.∴35760565556432222484417050142S ⨯⎛⎫=⨯+⨯++++=+= ⎪⎝⎭. 20.(1)当3a =时,即13a =,则2341,3,1a a a ===,故12348a a a a +++=.(2)先证:若存在正整数k ,使得3k a >,则存在正整数0n ,使得003n a ≤≤.证明:若3k a >时,则13k k a a +=-,即从第k 项起到最后一个大于3的项的下一项为止,数列{}n a 为递减数列,设数列{}n a 中满足3n a >的最小项为01n a -,则(]013,6n a -∈,∴(]00130,3n n a a -=-∈,故存在正整数0n ,使得003n a ≤≤.当3a >,即13a >,则存在正整数0n ,使得003n a ≤≤;当03a ≤≤,即103a ≤≤,则存在正整数0n ,使得003n a ≤≤;当0a <,即10a <,∴2144a a =->,则存在正整数0n ,使得003n a ≤≤;综上所述:故存在正整数0n ,使得003n a ≤≤.(3)由(2)可知:存在正整数0n ,使得003n a ≤≤,若00n a =,则0144n n a a +=-=,02131n n a a ++=-=,03243n n a a ++=-=,004341n n a a ++=-=,依次类推可得:当0n n ≥时,数列{}n a 不是周期数列,不合题意; 若001n a <<,则()0143,4n n a a +=-∈,()021310,1n n n a a a ++=-=-∈,()00032433,4n n n a a a ++=-=+∈,()0004330,1n n n a a a ++=-=∈,依次类推可得:当0n n ≥时,()0,1n a ∈或()3,4n a ∈,数列{}n a 是以4为周期的周期数列,且循环依次为0,4,1,3n n n n a a a a --+,∵数列{}n a 为周期数列,则()0,1n a ∈或()3,4n a ∈, 故()()0,13,4a ∈,此时()()()4443218Sa a a a ==-+-+=+⨯+,即*2(N )n S n n =∈有解,∴()()0,13,4a ∈符合题意;若013n a ≤≤,则[]0141,3n n a a +=-∈,[]02141,3n n n a a a ++=-=∈,依次类推可得:当0n n ≥时,[]1,3n a ∈,当0n n ≥时,数列{}n a 是以2为周期的周期数列,且循环依次为0,4n n a a -,∵数列{}n a 为周期数列,则[]1,3n a ∈,故[]1,3a ∈,此时()24422S a a =-=+=⨯,即*2(N )n S n n =∈有解,∴[]1,3a ∈符合题意; 综上所述:()0,4a ∈.21.解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7.(2)充分性:若0n a >,即12n n a -=.所以满足12n n a -=,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<,与已知()0n S A >矛盾. 所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n n a -=.因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前n 1-项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 22.(1)由题意12a =,23a =,34a =,46a =,56a ≤,所以数列{}n a 有六种可能:2,3,4,6,1;2,3,4,6,2;2,3,4,6,3;2,3,4,6,4;2,3,4,6,5;2,3,4,6,6. (2)因为12max{,,,}n n b a a a =,1121max{,,,,}n n n b a a a a ++=,所以1n n b b +≥,所以控制数列{}n b 是不减的数列,{}n b 是{}n a 的控制数列,满足1n m n a b C -++=,C 是常数,所以1n n a a +≥,即数列{}n a 也是不减的数列,123m a a a a ≤≤≤≤,那么若n k ≤时都有n n b a =,则1121max{,,,,}k k k b a a a a ++=, 若1k k a a +>,则11k k b a ++=,若11k k a b ++=,则11k k k k b b a a ++===, 又11b a =,由数学归纳法思想可得对1,2,,n m =,都有n n b a =; (3)设{}n c 的控制数列是{}n b ,由(2)知{}n b 是不减的数列,{}n b 必有一项等于m , 当m 是数列{}n b 中间某项时,{}n b 不可能是等差数列, 所以1b m =或m b m =,若1b m =,则n b m =(1,2,,n m =),{}n b 是等差数列, 此时只要1c m =,23,,,m c c c 是1,2,3,,1m -的任意排列均可.共(1)!m -个, m b m =,而1b m ≠时,数列{}n b 中必有n b n =,否则不可能是等差数列, 由此有n c n =,即{}n c 就是1,2,3,,m ,只有一种排列, 综上,{}n c 的个数是(1)!1m -+. 23.(1){n a }是无界数列,理由如下: 对任意的正整数δ,取N 为大于2δ的一个偶数,有21212N a N δδ=+>⋅+>,所以{n a }是无界数列.{n b }不是无界数列,理由如下: 取=3δ,显然2cos()3n b n =+≤,不存在正整数N ,满足3N b >,所以{n b }不是无界数列. (2)存在满足题意的正整数k ,且4k ≥. 当=1n 时,122=05a a <,不成立. 当=2n 时,231235+157a a a a =+<,不成立 当=3n 时,323124357+++2579a a a a a a =+<,不成立当4n ≥时,将12231...1n n a a a n a a a ++++<-变形为:3211221231231n n n n n a a a a a a a a a n a a a a a a +++⎛⎫----+++=+++ ⎪⎝⎭ 22222221572357911n =++≥+++>+. 即取4k =,对于一切n k ≥,有122311n n a a a n a a a ++++<-成立. (3)因为数列{n a }是单调递增的无界数列,所以0n a >,121n n a a a a +<<<<< 所以3211221231231n n n n n a a a a a a a a a n a a a a a a +++⎛⎫----+++=+++ ⎪⎝⎭ 32111211111111n n n n n n n n a a a a a a a a a a a a a a +++++++---->+++==-. 即12123111n n n a a a a n a a a a +++++<-+ 因为{n a }是无界数列,取12a δ=,由定义知存在正整数1N ,使1112N a a +>所以111212311N N a a a N a a a ++++<-.由定义可知{n a }是无穷数列,考察数列11N a +,12N a +,13N a +…,显然这仍是一个单调递增的无界数列,同上理由可知存在正整数2N ,使得 ()1111221221231+11N N N N N N a a a N N a a a ++++++++<--.故存在正整数2N ,使得 ()()1111221112121212312311+11+N N N N N N N N a a a a a a N N N a a a a a a ++++++++++++<-+--21N =-. 故存在正整数2m N =,使得122111m m a a a m a a a ++++<-成立。
2021年高考数学真题试卷(北京卷)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.(共10题;共40分)1.已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A. (−1,2)B. (−1,2]C. [0,1)D. [0,1]【答案】B【考点】并集及其运算【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.2.在复平面内,复数z满足(1−i)z=2,则z=()A. 2+iB. 2−iC. 1−iD. 1+i【答案】 D【考点】复数代数形式的混合运算【解析】【解答】解:z=21−i =2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.3.已知f(x)是定义在上[0,1]的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:①【充分性】若函数f(x)在[0, 1]上单调递增,根据函数的单调性可知:函数f(x)在[0, 1]的最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”为“函数f(x)在[0, 1]的最大值为f(1)“的充分条件;②【必要性】若函数f(x)在[0, 1]的最大值为f(1),函数f(x)在[0, 1]上可能先递减再递增,且最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”不是“函数f(x)在[0, 1]的最大值为f(1)“的必要条件,所以“函数f(x)在[0, 1]上单调递增”是“函数f(x)在[0, 1]的最大值为f(1)“的充分而不必要条件.故答案为:A【分析】根据充分条件与必要条件的判定直接求解即可.4.某四面体的三视图如图所示,该四面体的表面积为()A. 3+√32B. 4C. 3+√3D. 2【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的侧面积和表面积【解析】【解答】解:由三视图可知该四面体如下图所示:该四面体为直三棱锥,其中SA⊥平面ABC,SA=AB=AC=1,则SB=SC=BC=√2,则所求表面积为S=3×(12×1×1)+12×√2×√2×sin60°=3+√32故答案为:A【分析】根据三视图还原几何体,结合棱锥的表面积公式求解即可.5.双曲线C:x2a2−y2b2=1过点(√2,√3),且离心率为2,则该双曲线的标准方程为()A. x 2−y 23=1 B. x 23−y 2=1 C. x 2−√3y 23=1 D.√3x 23−y 2=1【答案】 A【考点】双曲线的标准方程,双曲线的简单性质 【解析】【解答】解:由e =ca =2得c=2a ,则b 2=c 2-a 2=3a 2 则可设双曲线方程为:x 2a 2−y 23a 2=1 ,将点(√2,√3) 代入上式,得(√2)2a 2−(√3)23a 2=1解得a 2=1,b 2=3 故所求方程为: x 2−y 23=1故答案为:A【分析】根据双曲线的离心率的定义,结合双曲线的几何性质和标准方程求解即可.6.{a n } 和 {b n } 是两个等差数列,其中 akb k(1≤k ≤5) 为常值, a 1=288 , a 5=96 , b 1=192 ,则b 3= ( )A. 64B. 128C. 256D. 512 【答案】 B【考点】等差数列的性质【解析】【解答】解:由题意得a k b k=a 1b 1=288192=32 , 则a 5b 5=32 , 则b 5=23a 5=64 , 所以b 3=b 1+b 52=192+642=128.故答案为:B【分析】根据题设条件,结合等差数列的性质求解即可.7.函数 f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A. 奇函数,最大值为2 B. 偶函数,最大值为2 C. 奇函数,最大值为 98 D. 偶函数,最大值为 98 【答案】 D【考点】偶函数,二次函数在闭区间上的最值【解析】【解答】解:∵f(-x)=cos(-x)-cos(-2x)=cosx-cos2x=f(x) ∴f(x)为偶函数又f(x)=cosx-cos2x=-2cos 2x+cosx+1 令t=cosx ,则y=-2t 2+t+1,t ∈[-1,1],则当t =−12×(−2)=14时,y 取得最大值y max =(−2)×(14)2+14+1=98.故答案为:D【分析】根据偶函数的定义,利用换元法,结合二次函数的最值求解即可.8.定义:24小时内降水在平地上积水厚度(mm)来判断降雨程度.其中小雨(<10mm),中雨(10mm−25mm),大雨(25mm−50mm),暴雨(50mm−100mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A. 小雨B. 中雨C. 大雨D. 暴雨【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:如图所示,由题意得r100=150300,则r=50则雨水的体积为V=13πr2h=13π×502×150,则降雨的厚度(高度)为H=Vπ×1002=13π×502×150π×1002=12.5(mm)故答案为:B【分析】根据圆锥的体积公式,及圆柱的体积公式求解即可.9.已知圆C:x2+y2=4,直线l:y=kx+m,当k变化时,l截得圆C弦长的最小值为2,则m=()A. ±2B. ±√2C. ±√3D. ±√5【答案】C【考点】点到直线的距离公式,直线与圆的位置关系【解析】【解答】解:由题意可设弦长为n,圆心到直线l的距离为d,则d2=r2−(n2)2=4−n24,则当n取最小值2时,d取得最大值为√3,则d=√1+k2≤√3当k=0时,d取得最大值为√3,则|m|=√3解得m=±√3故答案为:C【分析】根据直线与圆的位置,以及相交弦的性质,结合点到直线的距离公式求解即可.10.数列{a n}是递增的整数数列,且a1≥3,a1+a2+⋅⋅⋅+a n=100,则n的最大值为()A. 9B. 10C. 11D. 12【答案】C【考点】等差数列的通项公式,等差数列的前n项和【解析】【解答】解:∵数列{a n}是递增的整数数列,∴n要取最大,d尽可能为小的整数,故可假设d=1∵a1=3,d=1∴a n=n+2∴S n=(3+n+2)n2=n2+5n2则S11=88<100,S12=102>100,故n的最大值为11.故答案为:C【分析】根据等差数列的通项公式及前n项和公式求解即可.二、填空题5小题,每小题5分,共25分.(共5题;共25分)11.(x3−1x)4展开式中常数项为________.【答案】-4【考点】二项式定理,二项式系数的性质,二项式定理的应用【解析】【解答】解:由题意得二项展开式的通项公式为T k+1=C4k(x3)4−k(−1x )k=C4k(−1)k x12−4k令12-4k=0,得k=3故常数项为T4=T3+1=C43(−1)3=−4故答案为:-4【分析】根据二项展开式的通项公式直接求解即可.12.已知抛物线C:y2=4x,焦点为F,点M为抛物线C上的点,且|FM|=6,则M的横坐标是________;作MN⊥x轴于N,则S△FMN=________.【答案】5;4√5【考点】抛物线的简单性质,抛物线的应用【解析】【解答】解:由题意知焦点F为(1,0),准线为x=-1,设点M为(x0,y0),则有|FM|=x0+1=6,解得x0=5,则y0=2√5,不妨取点M为(5,2√5)则点N为(5,0)则|FN|=5-1=4则S△FMN=12×|FN|×|MN|=12×4×2√5=4√5故答案为:5,4√5【分析】根据抛物线的几何性质,结合三角形的面积公式求解即可.13.若点P(cosθ,sinθ)与点Q(cos(θ+π6),sin(θ+π6))关于y轴对称,写出一个符合题意的θ=________.【答案】5π12(满足θ=5π12+kπ,k∈Z即可)【考点】诱导公式【解析】【解答】解:由题意得{sinθ=sin(θ+π6)cosθ=−cos(θ+π6)),对比诱导公式sinα=sin(π-α),cosα=-cos(π-α)得θ+π6=π−θ+2kπ,解得θ=5π12+kπ,k∈Z当k=0时,θ=5π12故答案为:5π12【分析】根据点的对称性,结合诱导公式求解即可.14.已知函数f(x)=|lgx|−kx−2,给出下列四个结论:①若k=0,则f(x)有两个零点;② ∃k<0,使得f(x)有一个零点;③ ∃k<0,使得f(x)有三个零点;④ ∃k>0,使得f(x)有三个零点.以上正确结论得序号是________.【答案】①②④【考点】函数的零点【解析】【解答】解:令|lgx|- kx-2=0,即y= |lgx|与y= kx+ 2有几个交点,原函数就有几个零点, ①当k= 0时,如图1画出函数图像,f(x)=|lgx|-2,解得x=100或x =1100 , 所以有两个零点,故①项正确;②当k<0时,y= kx+2过点(0,2),如图2画出两个函数的图像,∃k <0 , 使得两函数存在两个交点,故②项正确;③当k<0时,y= kx+2过点(0,2),如图3画出两个函数的图像,不存在k<0时,使得两函数存在三个交点,故③项错误;④当k>0时,y= kx+2过点(0,2),如图4画出两个函数的图像,∃k >0 , 使得两函数存在三个交点,故④项正确. 故答案为:①②④【分析】根据函数的零点的几何性质,运用数形结合思想求解即可.15.a ⃗=(2,1) , b ⃗⃗=(2,−1) , c ⃗=(0,1) ,则 (a ⃗+b ⃗⃗)⋅c ⃗= ________; a ⃗⋅b ⃗⃗= ________. 【答案】 0;3【考点】平面向量的坐标运算,平面向量数量积的坐标表示、模、夹角【解析】【解答】解:由题意得a →+b →=(4,0) , 则(a →+b →)·c →=4×0+0×1=0 , a →·b →=2×2+1×(−1)=3 故答案为:0,3【分析】根据向量的坐标运算,及向量的数量积运算求解即可.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.(共6题;共85分)16.已知在 △ABC 中, c =2bcosB , C =2π3.(1)求 B 的大小;(2)在下列三个条件中选择一个作为已知,使 △ABC 存在且唯一确定,并求出 BC 边上的中线的长度. ① c =√2b ;②周长为 4+2√3 ;③面积为 S ΔABC =3√34;【答案】 (1)∵c =2bcosB ,则由正弦定理可得 sinC =2sinBcosB , ∴sin2B =sin2π3=√32, ∵C =2π3, ∴B ∈(0,π3) , 2B ∈(0,2π3) ,∴2B =π3 ,解得 B =π6 ;(2)若选择①:由正弦定理结合(1)可得 cb =sinCsinB =√3212=√3 ,与 c =√2b 矛盾,故这样的 △ABC 不存在; 若选择②:由(1)可得 A =π6 , 设 △ABC 的外接圆半径为 R ,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.【考点】正弦定理,余弦定理,正弦定理的应用,余弦定理的应用,三角形中的几何计算【解析】【分析】(1)根据正弦定理,结合三角形内角和的性质求解即可;(2)选择①:根据正弦定理,结合(1)进行判断即可;选择②:根据正弦定理,及余弦定理求解即可;选择③:根据三角形的面积公式,结合余弦定理求解即可.17.已知正方体ABCD−A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE于点F.(1)证明:点F为B1C1的中点;(2)若点M为棱A1B1上一点,且二面角M−CF−E的余弦值为√53,求A1MA1B1的值.【答案】(1)如图所示,取B1C1的中点F′,连结DE,EF′,F′C,由于 ABCD −A 1B 1C 1D 1 为正方体, E,F ′ 为中点,故 EF ′∥CD , 从而 E,F ′,C,D 四点共面,即平面CDE 即平面 CDEF ′ , 据此可得:直线 B 1C 1 交平面 CDE 于点 F ′ ,当直线与平面相交时只有唯一的交点,故点 F 与点 F ′ 重合, 即点 F 为 B 1C 1 中点.(2)以点 D 为坐标原点, DA,DC,DD 1 方向分别为 x 轴, y 轴, z 轴正方形,建立空间直角坐标系 D −xyz ,不妨设正方体的棱长为2,设 A 1MA1B 1=λ(0≤λ≤1) ,则: M(2,2λ,2),C(0,2,0),F(1,2,2),E(1,0,2) ,从而: MC ⃗⃗⃗⃗⃗⃗⃗=(−2,2−2λ,−2),CF ⃗⃗⃗⃗⃗⃗=(1,0,2),FE ⃗⃗⃗⃗⃗⃗=(0,−2,0) , 设平面 MCF 的法向量为: m⃗⃗⃗=(x 1,y 1,z 1) ,则: {m ⇀⋅MC⇀=−2x 1+(2−2λ)y 1−2z 1=0m ⇀⋅CF ⇀=x 1+2z 1=0 , 令 z 1=−1 可得: m ⃗⃗⃗=(2,11−λ,−1) , 设平面 CFE 的法向量为: n⃗⃗=(x 2,y 2,z 2) ,则: {n ⇀⋅FE⇀=−2y 2=0n ⇀⋅CF ⇀=x 2+2z 2=0, 令 z 1=−1 可得: n⃗⃗=(2,0,−1) , 从而: m ⃗⃗⃗⋅n ⃗⃗=5,|m ⃗⃗⃗|=√5+(11−λ)2,|n ⃗⃗|=√5 ,则:cos〈m⃗⃗⃗,n⃗⃗〉=m⃗⃗⃗⃗⋅n⃗⃗|m⃗⃗⃗⃗|×|n⃗⃗|=√5+(11−λ)2×√5=√53,整理可得:(λ−1)2=14,故λ=12(λ=32舍去).【考点】空间中直线与平面之间的位置关系,与二面角有关的立体几何综合题,用空间向量求平面间的夹角【解析】【分析】(1)根据正方体的性质,结合直线与平面相交的性质定理求证即可;(2)根据向量法求二面角,结合方程的思想求解即可.18.为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).【答案】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X可以取20,30,P(X=20)=111,P(X=30)=1−111=1011,则X的分布列:所以E(X)=20×111+30×1011=32011;(2)由题意,Y可以取25,30,设两名感染者在同一组的概率为p,P(Y=25)=p,P(Y=30)=1−p,则E(Y)=25p+30(1−p)=30−5p,若p=211时,E(X)=E(Y);若p>211时,E(X)>E(Y);若p<211时,E(X)<E(Y).【考点】简单随机抽样,互斥事件与对立事件,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)①根据“k合1检测法”,结合随机抽样的定义求解即可;②根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的分布列和期望求解即可;(2)根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的期望求解即可.19.已知函数f(x)=3−2xx2+a.(1)若a=0,求y=f(x)在(1,f(1))处切线方程;(2)若函数f(x)在x=−1处取得极值,求f(x)的单调区间,以及最大值和最小值.【答案】(1)当a=0时,f(x)=3−2xx2,则f′(x)=2(x−3)x3,∴f(1)=1,f′(1)=−4,此时,曲线y=f(x)在点(1,f(1))处的切线方程为y−1=−4(x−1),即4x+y−5=0;(2)因为f(x)=3−2xx2+a ,则f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2=2(x2−3x−a)(x2+a)2,由题意可得f′(−1)=2(4−a)(a+1)2=0,解得a=4,故f(x)=3−2xx2+4,f′(x)=2(x+1)(x−4)(x2+4)2,列表如下:所以,函数f(x)的增区间为(−∞,−1)、(4,+∞),单调递减区间为(−1,4).当x<32时,f(x)>0;当x>32时,f(x)<0.所以,f(x)max=f(−1)=1,f(x)min=f(4)=−14.【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)根据导数研究函数的极值求得a值,再利用导数研究函数的单调性以及最值即可.20.已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,−2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|≤15,求k的取值范围.【答案】(1)因为椭圆过A(0,−2),故b=2,因为四个顶点围成的四边形的面积为4√5,故12×2a×2b=4√5,即a=√5,故椭圆的标准方程为:x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,故x1x2≠0,故直线AB:y=y1+2x1x−2,令y=−3,则x M=−x1y1+2,同理x N=−x2y2+2.直线BC:y=kx−3,由{y=kx−34x2+5y2=20可得(4+5k2)x2−30kx+25=0,故Δ=900k2−100(4+5k2)>0,解得k<−1或k>1.又x1+x2=30k4+5k2,x1x2=254+5k2,故x1x2>0,所以x M x N>0又|PM|+|PN|=|x M+x N|=|x1y1+2+x2y2+2|=|x1kx1−1+x2kx2−1|=|2kx1x2−(x1+x2)k2x1x2−k(x1+x2)+1|=|50k4+5k2−30k4+5k225k24+5k2−30k24+5k2+1|=5|k|故5|k|≤15即|k|≤3,综上,−3≤k<−1或1<k≤3.【考点】椭圆的标准方程,椭圆的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(1)根据椭圆的几何性质求解即可;(2)根据直线与椭圆的位置关系,利用根与系数的关系,结合弦长公式求解即可.21.定义R p数列{a n}:对实数p,满足:① a1+p≥0,a2+p=0;② ∀n∈N∗,a4n−1<a4n;③ a m+n∈{a m+a n+p,a m+a n+p+1},m,n∈N∗.(1)对于前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{a n}是R0数列,求a5的值;(3)是否存在p,使得存在R p数列{a n},对∀n∈N∗,S n≥S10?若存在,求出所有这样的p;若不存在,说明理由.【答案】(1)由性质③结合题意可知0=a3∈{a1+a2+2,a1+a2+2+1}={2,3},矛盾,故前4项2,−2,0,1的数列,不可能是R2数列.(2)性质① a1≥0,a2=0,由性质③ a m+2∈{a m,a m+1},因此a3=a1或a3=a1+1,a4=0或a4=1,若a4=0,由性质②可知a3<a4,即a1<0或a1+1<0,矛盾;若a4=1,a3=a1+1,由a3<a4有a1+1<1,矛盾.因此只能是a4=1,a3=a1.或a1=0.又因为a4=a1+a3或a4=a1+a3+1,所以a1=12若a1=1,则a2=a1+1∈{a1+a1+0,a1+a1+0+1}={2a1,2a1+1}={1,2},2不满足a2=0,舍去.当a1=0,则{a n}前四项为:0,0,0,1,下面用纳法证明a4n+i=n(i=1,2,3),a4n+4=n+1(n∈N):当n=0时,经验证命题成立,假设当n≤k(k≥0)时命题成立,当n=k+1时:若i=1,则a4(k+1)+1=a4k+5=a j+(4k+5−j),利用性质③:{a j+a4k+5−j∣j∈N∗,1≤j≤4k+4}={k,k+1},此时可得:a4k+5=k+1;否则,若a4k+5=k,取k=0可得:a5=0,而由性质②可得:a5=a1+a4∈{1,2},与a5=0矛盾.同理可得:{a j+a4k+6−j∣j∈N∗,1≤j≤4k+5}={k,k+1},有a4k+6=k+1;{a j+a4k+8−j∣j∈N∗,2≤j≤4k+6}={k+1,k+2},有a4k+8=k+2;{a j+a4k+7−j∣j∈N∗,1≤j≤4k+6}={k+1},又因为a4k+7<a4k+8,有a4k+7=k+1.即当n=k+1时命题成立,证毕.综上可得:a1=0,a5=a4×1+1=1.(3)令b n=a n+p,由性质③可知:∀m,n∈N∗,b m+n=a m+n+p∈{a m+p+a n+p,a m+p+a n+p+1}={b m+b n,b m+b n+1},由于b1=a1+p≥0,b2=a2+p=0,b4n−1=a4n−1+p<a4n+p=b4n,因此数列{b n}为R0数列.由(2)可知:若∀n∈N,a4n+i=n−p(i=1,2,3),a4n+4=n+1−p;S11−S10=a11=a4×2+3=2−p≥0,S9−S10=−a10=−a4×2+2=−(2−p)≥0,因此p=2,此时a1,a2,…,a10≤0,a j≥0(j≥11),满足题意.【考点】数列的概念及简单表示法,数学归纳法,数学归纳法的证明步骤【解析】【分析】(1)根据新数列R p数列的定义进行判断即可;(2)根据新数列R p数列的定义,结合数学归纳法求解即可;(3)根据新数列R p数列的定义,结合a n与s n的关系进行判断即可.。
2021年高考数学集合专题卷(附答案)一、单选题1.已知集合,,则()A. B. C. D.2.已知集合M={﹣1,0,1},N={y|y=1﹣cos x,x∈M},则集合M∩N的真子集的个数是()A. 1B. 2C. 3D. 43.已知集合,则=()A. B. C. D.4.已知集合2,,,则A. B. C. D. 2,5.已知集合,,则()A. B. C. D.6.已知集合,,则()A. B. C. D.7.已知集合,集合,则有( )A. B. C. D.8.已知全集U=R,集合A=,集合B=,则为()。
A. B. R C. D.9.已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=()A. ﹣6或﹣2B. -6C. 2或﹣6D. -210.设t>0,函数f(x)= 的值域为M,若2∉M,则t的取值范围是()A. (,1)B. (,1]C. [ ,1)D. [ ,1]11.已知函数,若集合只含有个元素,则实数的取值范围是()A. B. C. D.12.在平面直角坐标系中,设为边长为1的正方形内部及其边界的点构成的集合.从中的任意点P作x轴、y轴的垂线,垂足分别为,.所有点构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为;所有点构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为.给出以下命题:① 的最大值为:② 的取值范围是;③ 恒等于0.其中所有正确结论的序号是()A. ①②B. ②③C. ①③D. ①②③二、填空题13.已知集合A={1,2,3,4},B={1,2},则满足条件B⊆C⊆A的集合C的个数为________.14.已知全集U={1,2,3,4,5},集合A={x|x2﹣3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)=________.15.已知集合U={1,2,3,4,5,6},S={1,2,5},T={2,3,6},则S∩(∁U T)=________,集合S共有________个子集.16.已知集合A={2,3,4},B={a+2,a},若A∩B=B,则∁A B=________17.已知M={x||x﹣1|≤2,x∈R},P={x| ≥0,x∈R},则M∩P等于________.18.设函数,若对于任意的,在区间上总存在唯一确定的,使得,则的最小值为________.19.已知集合,集合,若,则的最小值为________.20.在平面直角坐标系中,点集A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x﹣4y≥0},则点集Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为________.三、解答题21.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.22.设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.(1)若a=3,求A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.23.已知集合,,,全集为实数集求:(1);(2).(3)若,求实数的取值范围.24.给定无穷数列,若无穷数列{b n}满足:对任意,都有,则称“接近”。