2021年北京市高考数学总复习专题7:数列与集合新定义解答题(附答案解析)
- 格式:docx
- 大小:2.04 MB
- 文档页数:42
2021年北京市高考数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的的四个选项中,选出符合题目要求的一项。
1.(4分)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B =()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}2.(4分)在复平面内,复数z满足(1﹣i)•z=2,则z=()A.2+i B.2﹣i C.1﹣i D.1+i3.(4分)设函数f(x)的定义域为[0,1],则“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.25.(4分)双曲线C:﹣=1过点(,),离心率为2,则双曲线的解析式为()A.﹣y2=1B.x2﹣=1C.﹣=1D.﹣=16.(4分)已知{a n}和{b n}是两个等差数列,且(1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为()A.64B.100C.128D.1327.(4分)已知函数f(x)=cosx﹣cos2x,试判断该函数的奇偶性及最大值()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为D.偶函数,最大值为8.(4分)对24小时内降水在平地上的积水厚度(mm)进行如下定义:0~1010~2525~5050~100小雨中雨大雨暴雨小明用一个圆锥形容器接了24小时的雨水,则这一天的雨水属于哪个等级()A.小雨B.中雨C.大雨D.暴雨9.(4分)已知圆C:x2+y2=4,直线l:y=kx+m,若当k的值发生变化时,直线被圆C所截的弦长的最小值为2,则m的取值为()A.±2B.±C.±D.±3 10.(4分)数列{a n}是递增的整数数列,且a1≥3,a1+a2+a3+…+a n =100,则n的最大值为()A.9B.10C.11D.12二、填空题共5小题,每小题5分,共25分。
北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案北京四中数学高考总复习:数列的应用之知识讲解、经典例题及答案知识网络:目标认知考试大纲要求: 1.等差数列、等比数列公式、性质的综合及实际应用; 2.掌握常见的求数列通项的一般方法; 3.能综合应用等差、等比数列的公式和性质,并能解决简单的实际问题. 4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题.重点: 1.掌握常见的求数列通项的一般方法; 3.用数列知识解决带有实际意义的或生活、工作中遇到的数学问题难点: 用数列知识解决带有实际意义的或生活、工作中遇到的数学问题.知识要点梳理知识点一:通项与前n项和的关系 任意数列的前n项和; 注意:由前n项和求数列通项时,要分三步进行: (1)求, (2)求出当n≥2时的, (3)如果令n≥2时得出的中的n=1时有成立,则最后的通项公式可以统一写成一个形式,否则就只能写成分段的形式.知识点二:常见的由递推关系求数列通项的方法1.迭加累加法: , 则,,…,2.迭乘累乘法: , 则,,…,知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型. 2.建立数学模型的一般方法步骤. ①认真审题,准确理解题意,达到如下要求: ⑴明确问题属于哪类应用问题; ⑵弄清题目中的主要已知事项; ⑶明确所求的结论是什么. ②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达. ③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).规律方法指导 1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想; 2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意: (1)通过知识间的相互转化,更好地掌握数学中的转化思想; (2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.经典例题精析类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式,而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】 【变式2】数列中,,求通项公式. 【答案】.类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时,, 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,,,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴类型三:倒数法求通项公式 3.数列中,,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】 【变式2】数列中,,,求. 【答案】.类型四:待定系数法求通项公式 4.已知数列中,,,求. 法一:设,解得 即原式化为 设,则数列为等比数列,且 ∴ 法二:∵ ① ② 由①-②得: 设,则数列为等比数列 ∴ ∴ ∴ 法三:,,,……, , ∴ 总结升华: 1.一般地,对已知数列的项满足,(为常数,),则可设得,利用已知得即,从而将数列转化为求等比数列的通项.第二种方法利用了递推关系式作差,构造新的等比数列.这两种方法均是常用的方法. 2.若数列有形如(k、b为常数)的线性递推关系,则可用待定系数法求得. 举一反三: 【变式1】已知数列中,,求 【答案】令,则, ∴,即 ∴, ∴为等比数列,且首项为,公比, ∴, 故. 【变式2】已知数列满足,而且,求这个数列的通项公式. 【答案】∵,∴ 设,则,即, ∴数列是以为首项,3为公比的等比数列, ∴,∴. ∴.类型五:和的递推关系的应用 5.已知数列中,是它的前n项和,并且, . (1)设,求证:数列是等比数列; (2)设,求证:数列是等差数列; (3)求数列的通项公式及前n项和. 解析: (1)因为,所以 以上两式等号两边分别相减,得 即,变形得 因为,所以 由此可知,数列是公比为2的等比数列. 由,, 所以, 所以, 所以. (2),所以 将代入得 由此可知,数列是公差为的等差数列,它的首项, 故. (3),所以 当n≥2时, ∴ 由于也适合此公式, 故所求的前n项和公式是. 总结升华:该题是着眼于数列间的相互关系的问题,解题时,要注意利用题设的已知条件,通过合理转换,将非等差、等比数列转化为等差、等比数列,求得问题的解决利用等差(比)数列的概念,将已知关系式进行变形,变形成能做出判断的等差或等比数列,这是数列问题中的常见策略. 举一反三: 【变式1】设数列首项为1,前n项和满足. (1)求证:数列是等比数列; (2)设数列的公比为,作数列,使,,求的通项公式. 【答案】 (1), ∴ ∴, 又 ①-② ∴, ∴是一个首项为1公比为的等比数列; (2) ∴ ∴是一个首项为1公比为的等差比数列 ∴ 【变式2】若, (),求. 【答案】当n≥2时,将代入, ∴, 整理得 两边同除以得(常数) ∴是以为首项,公差d=2的等差数列, ∴, ∴. 【变式3】等差数列中,前n项和,若.求数列的前n项和. 【答案】∵为等差数列,公差设为, ∴, ∴, ∴, 若,则, ∴. ∵, ∴,∴, ∴, ∴ ① ② ①-②得 ∴类型六:数列的应用题 6.在一直线上共插13面小旗,相邻两面间距离为10m,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少? 思路点拨:本题求走的总路程最短,是一个数列求和问题,而如何求和是关键,应先画一草图,研究他从第一面旗到另一面旗处走的路程,然后求和. 解析:设将旗集中到第x面小旗处,则 从第一面旗到第面旗处,共走路程为了, 回到第二面处再到第面处是, 回到第三面处再到第面处是, , 从第面处到第面处取旗再回到第面处的路程为, 从第面处到第面处取旗再回到第面处,路程为20×2, 总的路程为: ∵,∴时,有最小值 答:将旗集中到第7面小旗处,所走路程最短. 总结升华:本题属等差数列应用问题,应用等差数列前项和公式,在求和后,利用二次函数求最短路程. 举一反三: 【变式1】某企业2007年12月份的产值是这年1月份产值的倍,则该企业2007年年度产值的月平均增长率为( ) A. B. C. D. 【答案】D; 解析:从2月份到12月份共有11个月份比基数(1月份)有产值增长,设为, 则 【变式2】某人2006年1月31日存入若干万元人民币,年利率为,到2007年1月31日取款时被银行扣除利息税(税率为)共计元,则该人存款的本金为( ) A.1.5万元 B.2万元 C.3万元 D.2.5万元 【答案】B; 解析:本金利息/利率,利息利息税/税率 利息(元), 本金(元) 【变式3】根据市场调查结果,预测某种家用商品从年初开始的个月内累积的需求量(万件)近似地满足.按比例预测,在本年度内,需求量超过万件的月份是( ) A.5月、6月 B.6月、7月 C.7月、8月 D.9月、10月 【答案】C; 解析:第个月份的需求量超过万件,则 解不等式,得,即. 【变式4】某种汽车购买时的费用为10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,依次成等差数列递增,问这种汽车使用多少年后报废最合算?(即年平均费用最少) 【答案】设汽车使用年限为年,为使用该汽车平均费用. 当且仅当,即(年)时等到号成立. 因此该汽车使用10年报废最合算. 【变式5】某市2006年底有住房面积1200万平方米,计划从2007年起,每年拆除20万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%. (1)分别求2007年底和2008年底的住房面积; (2)求2026年底的住房面积.(计算结果以万平方米为单位,且精确到0.01) 【答案】 (1)2007年底的住房面积为1200(1+5%)-20 =1240(万平方米), 2008年底的住房面积为1200(1+5%)2-2 0(1+5%)-20=1282(万平方米), ∴2007年底的住房面积为1240万平方米; 2008年底的住房面积为1282万平方米. (2)2007年底的住房面积为[1200(1+5%)-2 0]万平方米, 2008年底的住房面积为[1200(1+5%)2-2 0(1+5%)-20]万平方米, 2009年底的住房面积为[1200(1+5%)3-2 0(1+5%)2-20(1+5%)-20]万平方米, ………… 2026年底的住房面积为[1200(1+5%)20―20(1+5%)19―……―20(1+5%)―20]万平方米 即1200(1+5%)20―20(1+5%)19―20(1+5 %)18―……―20(1+5%)―20 ≈2522.64(万平方米), ∴2026年底的住房面积约为2522.64万平方米.高考题萃 1.(2008四川)设数列的前项和为. (Ⅰ)求; (Ⅱ)证明:是等比数列; (Ⅲ)求的通项公式. 解析: (Ⅰ)因为, ∴ 由知,得 ① 所以, , ∴ (Ⅱ)由题设和①式知 所以是首项为2,公比为2的等比数列. (Ⅲ) 2.(2008全国II)设数列的前项和为.已知,,. (Ⅰ)设,求数列的通项公式; (Ⅱ)若,,求的取值范围. 解析: (Ⅰ)依题意,,即, 由此得. 因此,所求通项公式为,.① (Ⅱ)由①知,, 于是,当时,, , 当时,. 又. 综上,所求的的取值范围是. 3.(2008天津)已知数列中,,,且. (Ⅰ)设,证明是等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项. 解析: (Ⅰ)由题设,得, 即. 又,, 所以是首项为1,公比为的等比数列. (Ⅱ)由(Ⅰ),,,……,. 将以上各式相加,得. 所以当时, 上式对显然成立. (Ⅲ)由(Ⅱ),当时,显然不是与的等差中项,故. 由可得, 由得 ① 整理得, 解得或(舍去),于是. 另一方面,, . 由①可得. 所以对任意的,是与的等差中项. 4.(2008陕西)已知数列的首项,,. (Ⅰ)求的通项公式; (Ⅱ)证明:对任意的,,; (Ⅲ)证明:.解析: (Ⅰ),,, 又,是以为首项,为公比的等比数列. ,. (Ⅱ)由(Ⅰ)知, , 原不等式成立. 另解:设, 则 ,当时,;当时,, 当时,取得最大值. 原不等式成立. (Ⅲ)由(Ⅱ)知,对任意的,有 . 令,则, . 原不等式成立.学习成果测评基础达标: 1.若数列中,且(n是正整数),则数列的通项=____. 2.对正整数n,设曲线在x=2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是____________. 3. 设是等比数列,是等差数列,且,数列的前三项依次是, 且,则数列的前10项和为____________. 4. 如果函数满足:对于任意的实数,都有,且,则 ____________ 5.已知数列中,,(),求通项公式. 6.已知数列中,,,,求的通项公式. 7.已知各项均为正数的数列的前项和满足,且,,求的通项公式. 8.设数列满足,. (Ⅰ)求数列的通项; (Ⅱ)设,求数列的前项和.能力提升: 9.数列的前项和为,,. (Ⅰ)求数列的通项; (Ⅱ)求数列的前项和. 10.数列的前n项和为, 已知是各项为正数的等比数列,试比较与的大小关系. 11.某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为,以后每年交纳的数目均比上一年增加,因此,历年所交纳的储备金数目是一个公差为的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为,那么,在第年末,第一年所交纳的储备金就变为,第二年所交纳的储备金就变为,…….以表示到第年末所累计的储备金总额. (Ⅰ)写出与的递推关系式; (Ⅱ)求证:,其中是一个等比数列,是一个等差数列. 12.2007年底某县的绿化面积占全县总面积的40%,从2008年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化. (1)设该县的总面积为1,2007年底绿化面积为,经过n年后绿化的面积为,试用表示; (2)求数列的第n+1项; (3)至少需要多少年的努力,才能使绿化率超过60%.(参考数据:lg2=0.3010,lg3=0.4771)综合探究: 13.已知函数,设曲线在点处的切线与x轴的交点为,其中为正实数. (Ⅰ)用表示; (Ⅱ)若,记,证明数列成等比数列,并求数列的通项公式; (Ⅲ)若,,是数列的前n项和,证明.参考答案:基础达标: 1. 答案: 解析:由题设的递推公式可得 ∴ 即, 2. 答案:2n+1-2 解析:, 曲线在x=2处的切线的斜率为,切点为(2,-2n), 所以切线方程为y+2n=k(x-2), 令x=0得,令. 数列的前n项和为2+22+23+…+2n=2n+1-2 3. 答案:978 4. 答案: 5. 解析:将递推关系整理为 两边同除以得 当时, ,,……, 将上面个式子相加得到: ,即, ∴(). 当时,符合上式 故. 6. 解析:由题设 ∴. 所以数列是首项为,公比为的等比数列, ∴, 即的通项公式为,. 7. 解析:由,解得或, 由假设,因此, 又由, 得,即或, 因,故不成立,舍去. 因此,从而是公差为,首项为的等差数列, 故的通项为. 8. 解析: (Ⅰ), ① ∴当时, ② ①-②得,. 在①中,令,得符合上式 ∴. (Ⅱ),∴. , ③ . ④ ④-③得. 即,.能力提升: 9. 解析: (Ⅰ),, 又, 数列是首项为,公比为的等比数列, ∴. 当时,, (Ⅱ), 当时,; 当时, ,…………① ,…………② 得: . . 又也满足上式, . 10. 解析:∵为各项为正数的等比数列,设其首项为,公比为, 则有,,(), ∴,即 (1)当时,,, 而, ∴ ∴时,. (2)当时,,, ∴ ①当时,,∴ ②当时,, ∴ ③当时,,∴ 综上,(1)在时恒有 (2)在时,①若则; ②若则; ③若则. 11. 解析: (Ⅰ). (Ⅱ), 对反复使用上述关系式,得 , ① 在①式两端同乘,得② ②①,得 . 即. 如果记,,则. 其中是以为首项,以为公比的等比数列; 是以为首项,为公差的等差数列. 12. 解析: (1)设2007年底非绿化面积为b1,经过n年后非绿化面积为.+b1=1, 于是a 依题意,是由两部分组成: 一部分是原有的绿化面积减去被非绿化部分后剩余面积, 另一部分是新绿化的面积, ∴. (2),. 数列是公比为,首项的等比数列. ∴. (3)由,得,, , ∴至少需要7年的努力,才能使绿化率超过60%.综合探究: 13. 解析: (Ⅰ)由题可得. 所以曲线在点处的切线方程是:. 即. 令,得,即. 显然,∴. (Ⅱ)由,知, 同理. 故. 从而,即. 所以,数列成等比数列. 故,即. 从而,所以 (Ⅲ)由(Ⅱ)知,∴ ∴ 当时,显然. 当时, ∴. 综上,.。
2021年新高考数学总复习:集合(附答案解析)2021年新高考数学总复习:集合1.(2019·全国卷Ⅰ)已知集合M ={x |-4<="" 2-x=""A .{x |-4<3}<="" p="">B .{x |-4<-2}<="" p="">C .{x |-2<2}<="" p="">D .{x |2<3}<="" p="">解析:因为M ={x |-4<3},<="" p="" |-2所以M ∩N ={x |-2<2}.<="" p="">答案:C2.(2020·广东湛江测试)已知集合A ={1,2,3,4},B ={y |y =2x -3,x ∈A },则集合A ∩B 的子集个数为( )A .1B .2C .4D .8解析:因为A ={1,2,3,4},B ={y |y =2x -3,x ∈A },所以B ={-1,1,3,5},所以A ∩B ={1,3},所以A ∩B 的子集个数为22=4.答案:C3.(2019·浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(?U A )∩B =( )A .{-1}B .{0,1}C .{-1,2,3}D .{-1,0,1,3}解析:因为?U A ={-1,3},所以(?U A )∩B ={-1}.答案:A4.(多选题)设集合M ={x |x 2-x >0},N =x |1x <1,则下列关系正确的是( )A .M NB .N ?MC .M =ND .M ∪N =M解析:集合M ={x |x 2-x >0}={x |x >1或x <0},N =x |1x <1={x |x >1或x <0},所以M =N ,则B 、C 、D 正确.答案:BCD5.(2019·全国卷Ⅱ改编)已知集合A ={x |x 2-5x +6>0},B ={x |x -1≥0},全集U =R ,则A ∩(?U B )=( )A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)解析:由x 2-5x +6>0,得A ={x |x <2或x >3},又B ={x |x ≥1},知?U B ={x |x <1},所以A ∩(?U B )={x |x <1}.答案:A6.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为( )A .{-1,0,1}B .{-1,0}C .{-1,1}D .{0}解析:B ={x |x 2-1=0}={-1,1},阴影部分所表示的集合为?U (A ∪B ).A ∪B ={-2,-1,1,2},全集U ={-2,-1,0,1,2},所以?U (A ∪B )={0}.答案:D7.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ?(A ∩B )的集合M 的个数是( )A .0B .1C .2D .3解析:由x +y =1,x -y =3,得?x =2,y =-1,所以A ∩B ={(2,-1)}.由M ?(A ∩B ),知M =?或M ={(2,-1)}.答案:C8.(2020·佛山一中检测)已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ?B ,则实数a 的取值范围为( )A .(1,3)B .[1,3]C .[1,+∞)D .(-∞,3]解析:由log 2(x -1)<1,得A =(1,3),又|x -a |<2,得B =(a -2,a +2).由A ?B ,所以?a -2≤1,a +2≥3,解之得1≤a ≤3. 故实数a 的取值范围为[1,3].答案:B9.(2019·江苏卷)已知集合A ={-1,0,1,6},B ={x |x >0,x ∈R},则A ∩B =________.解析:因为A ={-1,0,1,6},B ={x |x >0,x ∈R},所以A ∩B ={1,6}.答案:{1,6}10.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ?B ,则实数c 的取值范围是________.解析:由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ?B ,画出数轴,如图所示,得c ≥1.答案:[1,+∞)11.已知集合A =(x ,y )x 24+y 22=1,B ={(x ,y )|y =kx +m ,k ∈R ,m ∈R},若对任意实数k ,A ∩B ≠?,则实数m 的取值范围是________.解析:由已知,无论k 取何值,椭圆x 24+y 22=1和直线y =kx +m 均有交点,故点(0,m )在椭圆x 24+y 22 =1上或在其内部,所以m 2≤2,所以-2≤m ≤ 2.答案:[-2,2]12.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(?U B )=________.解析:集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2},因为log 3(2-x )≤1=log 33,所以0<2-x ≤3,所以-1≤x <2,所以B ={x |-1≤x <2},所以?U B ={x |x <-1或x ≥2},所以A ∩(?U B )={x |x <-1或x ≥2}.答案:{x |x <-1或x ≥2}[B 级能力提升]13.(多选题)(2020·东莞中学质检)已知集合A ={x |x 2-16<0},B ={x |3x 2+6x =1},则( )A .A ∪B =(-4,4)∪{-6}B .B ?AC .A ∩B ={0}D .A ?B解析:因为A ={x |x 2-16<0},所以A ={x |-4<="" 错误,a="" =1},则b="" ={0},故c="" ={0,-6},a="" ={x="" =-6或-4答案:AC14.如图,集合A ={x |log 12(x -1)>0},B =x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:图中阴影部分表示集合B ∩?R A .因为A ={x |log 12(x -1)>0}={x |1<="">x |2x -3x <0=?x |0<="" ={x="">15.已知集合A ={x ∈R||x +2|<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R||x +2|<3}={x ∈R|-5<1},<="" p="">由A ∩B =(-1,n ),可知m <1,则B ={x |m <="" =-1,n="">答案:-11[C级素养升华]16.对于任意两集合A,B,定义A-B={x|x∈A且x?B},A*B =(A-B)∪(B-A),记A={y|y≥0},B={x|y=lg(9-x2)},则B-A =________,A*B=________.解析:因为A={y|y≥0}=[0,+∞),B=(-3,3),所以A-B={x|x≥3},B-A={x|-3<x<0}.< p="">因此A*B=[3,+∞)∪(-3,0)=(-3,0)∪[3,+∞).答案:(-3,0)(-3,0)∪[3,+∞)</x<0}.<>。
2021年高考数学解答题专项复习-《数列》1.设{a}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.n(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.2.设{a}是等差数列,且a1=ln2,a2+a3=5ln2.n(1)求{a n}的通项公式;(2)求错误!未找到引用源。
.3.设数列{a}的前n项和为S n.已知2S n=3n+3.n(1)求{a n}的通项公式;(2)若数列{b n}满足a n·b n=log3a n,求{b n}的前n项和T n.4.已知{a}是公差为1的等差数列,且a1,a2,a4成等比数列.n(1)求{a n}的通项公式;(2)求数列的前n项和.5.已知数列{a}前n项和为S n,且S n=2n2+n,n∈N+,数列{b n}满足a n=4log2b n+3,n∈N+.n(1)求a n和b n的通项公式;(2)求数列{a n·b n}的前n项和T n.6.已知数列{a}和{b n}满足a1=1,b1=0,,.n(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.7.S为数列{a n}的前n项和.已知a n>0,=.n(1)求{a n}的通项公式;(2)设 ,求数列{b n}的前n项和.8.已知等差数列{a}满足a3=6,前7项和为S7=49.n(1)求{a n}的通项公式(2)设数列{b n}满足b n=(a n-3)·3n,求{b n}的前n项和T n.9.设数列{a}满足a1+3a2+...+(2n-1)a n=2n.n(1)求{a n}通项公式;(2)求数列的前n项和.10.已知等比数列{a}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,n数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.11.已知数列{a}是递增的等比数列,且a1+a4=9,a2a3=8.n(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,,求数列{b n}的前n项和T n.12.已知数列{a}为递增的等差数列,其中a3=5,且a1,a2,a5成等比数列.n(1)求{a n}的通项公式;(2)设记数列{b n}的前n项和为T n,求使得成立的m的最小正整数.13.等比数列{a}的各项均为正数,且.n(1)求数列{a n}的通项公式;(2)设,求数列的前n项和T n.14.已知数列{a}是首项为正数的等差数列,数列的前n项和为.n(1)求数列{a n}的通项公式;(2)设错误!未找到引用源。
2021年高考数学一轮复习 第七章 数列 第40课 数列的概念及其表示文(含解析)1.数列的定义按照一定顺序排列的一列数就称为数列.数列中的每一个数叫做这个数列的项.2. 数列的分类3. 数列的通项公式如果数列的第项与之间的函数关系可以用一个公式 来表示,这个公式就叫做这个数列的通项公式.4.数列的前项和与通项的关系 . 典例剖析考点1 由数列前几项探索数列的通项公式【例1】已知数列的前4项,写出它的通项公式:(1),,,,…; (2),,,,…; (3)…; (4),,,,…. 【解析】(1); (2);(3) (4).【变式】数列,,,,…,的一个通项公式是 【解析】考点2 数列的周期性问题 【例2】(2)已知数列满足 ,,则 ( ) A .0 B . C. D. 解析:选A 由题意知,,,…, 故该数列的周期为3. 又 ,∴.故选A.练习:(xx·宝鸡检测)已知数列 满足 , , ,则 的值等于( ) A .3 B .1 C. D . 解析:选A 由已知得a n +1=a n a n -1,a n +3=a n +2a n +1=a n +1a n ÷a n +1=1a n ,故a n +6=1a n +3=a n ,所以,该数列是周期为6的数列,所以a 2 013=a 3=3.故选A.考点3 利用与的关系求通项公式 【例3】数列的前项和,若,.(1)求数列的前项和;(2)求数列的通项公式; (3)设,数列的前项和为,求证: . 【解析】(1)由,得;由,得.∴,解得,∴. (2)当时,2212[(1)2(1)]21n n n a S S n n n n n -=-=+--+-=+.由于. ∴. (3). ∴数列的前项和111111111111111111()()()()()()2352462572221122n n n n n n =-+-+-++-+-+---++ . ,即【变式】数列的前项和为,且满足,求数列的通项公式. 【解析】由,得, 当时,. 当时,,∵,∴.第40课 数列的概念及其表示的课后作业1.数列…的通项公式等于( ) A . B .C .D .【答案】B2.设数列的前项和,则的值为( )A .B .C .D . 【答案】A 【解析】.3.数列的通项公式为,则数列各项中最小项是( )A .第4项B .第5项C .第6项D .第7项 【答案】B4.已知数列中,,,对于任意的都成立,那么的值为( ) A . B . C . D .解:由已知,得对于任意的都成立,所以,,,,,……,从而数列的周期为 ,,所以选C5.数列的通项公式,其前项和为,则( ) A . B . C . D . 【答案】A【解析】∵函数的周期是,∴数列的每相邻四项之和是一个常数2, ∴20142012201320142012201322013cos 2014cos100742S S a a ππ=++=⨯++ .故选A .6. 在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第______项.解析:10 令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).∴a 10=0.08.即0.08是该数列的第10项. 7. 已知数列的前项和,则其通项;若它的第项满足,则.【答案】,8. (xx·海口质检)如图是同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖________块.解析:用a n 表示第n 个图的黑色瓷砖块数,则a 1=12,a 2=16,a 3=20,…,由此可得{a n }是以12为首项,以4为公差的等差数列.∴a 23=a 1+(23-1)×4=12+22×4=100. 答案:1009. (xx 届年惠州二模)如图,在三棱锥中,底面,为的中点,.(1)求证:平面; (2)求点到平面的距离。
高考数学一轮复习《数列新定义》练习题(含答案)一、单选题1.定义:在数列{}n a 中,若满足(*211,n n n na a d n d a a +++-=∈N 为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20192017a a 等于( ) A .2420171⨯-B .2420181⨯-C .2420191⨯-D .2420201⨯-2.若数列{an }满足21321111222n n a a a a a a --<-<<-<……,则称数列{an }为“半差递增”数列.已知“半差递增”数列{cn }的前n 项和Sn 满足*221()n n S c t n N +=-∈,则实数t 的取值范围是( ) A .1(,)2-∞B .(-∞,1)C .1(,)2+∞D .(1, +∞)3.对任意正整数n 定义运算*,其运算规则如下:①1*22=;②()()1*2*22n n +=⨯.则*2n =( ) A .()21n -B .2nC .12n -D .2n4.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为( ) A .99B .131C .139D .1415.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第8项为( ) A .95B .101C .141D .2016.若数列{}n a 满足121n n a a +=-,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =( ) A .123n -⨯B .12n -C .12n +D .2n7.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”.在数列{}n a 中,若98n a n n=+-,则数列{}n a 的“谷值点”为( ) A .2B .7C .2,7D .2,5,78.在数列{}n a 中,如果对任意*n ∈N 都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比,则下列选项中错误的是( ) A .等差比数列的公差比一定不为0 B .等差数列一定是等差比数列C .若等比数列是等差比数列,则其公比等于公差比D .若32nn a =-+,则数列{}n a 是等差比数列9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有二阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第15项为( ) A .94B .108C .123D .13910.已知n a的正整数,其中*n ∈N .若12370m a a a a +++⋅⋅⋅+≥,则正整数m 的最小值为( ) A .23B .24C .25D .2611.若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,则63b =( ) A .5B .6C .7D .812.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球()11a =,第二层有3个球()23a =,第三层有6个球()36a =,第四层有10个球()410a =,第五层有15个球()515a =,…,各层球数之差{}1n n a a +-:21a a -,32a a -,43a a -,54a a -,…即2,3, 4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为( ). A .51B .68C .106D .157二、填空题13.任取一个正整数,若为奇数,就将该数乘3再加上1;若为偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称为“角谷猜想”等).如取正整数6m =,根据上述运算法则得到6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递进关系如下:已知数列{n a }满足1a m =(m 为正整数),,231,nn n n n a a a a a ⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,当9m =时,试确定使得1n a =需要雹程步数为_____________.14.对一切实数x ,令[]x 为不大于x 的最大整数,若,N 10n n a n *⎡⎤=∈⎢⎥⎣⎦,n S 为数列{}n a 的前n 项和,则20092010S =_______ 15.斐波那契数列,又称黄金分割数列,被誉为最美的数列,若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,*n ∈N ),则称数列{}n a 为斐波那契数列,则222123303012a a a a a +++=___________.16.已知有穷数列{}n a 各项均不相等,将{}n a 的项从大到小重新排序后相应的项数构成新数列{}n b ,称数列{}n b 为数列{}n a 的“序数列”.例如数列1a ,2a ,3a 满足132a a a >>,则其序数列{}n b 为1,3,2.若有穷数列{}n d 满足11d =,()114nn n d d +-=(n 为正整数),且数列{}21n d -的序数列单调递减,数列{}2n d 的序数列单调递增,则123420212022d d d d d d -+-+⋅⋅⋅+-=___________.三、解答题17.记n S 为正项数列{}n a 的前n 项和,且333212n n a a a S +++=.(1)求{}n a 的通项公式; (2)记数列2{}nna S 的前n 项积为n T ,证明:数列{}n T 是递增数列.18.已知等差数列{}n a 和正项等比数列{}n b 满足14a =,12b =,212n n n b b b ++=+,332a b =+. (1)求{}n a 和{}n b 的通项公式;(2)对于集合A 、B ,定义集合{A B x x A -=∈且}x B ∉,设数列{}n a 和{}n b 中的所有项分别构成集合A 、B ,将集合A B -的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前30项和30S .19.已知等差数列{}n a 和等比数列{}n b 满足14a =,12b =,2221a b =-,332a b =+. (1)求{}n a 和{}n b 的通项公式;(2)数列{}n a 和{}n b 中的所有项分别构成集合A ,B ,将A B ⋃的所有元素按从小到大依次排列构成一个新数列{}n c ,求数列{}n c 的前60项和60S .20.已知a 为实数,数列{}n a 满足:①1a a =;②()*13,34,3n n n n n a a a n a a +->⎧=∈⎨-≤⎩N . (1)当3a =时,求1234a a a a +++的值;(2)求证:存在正整数0n ,使得003n a ≤≤;(3)设n S 是数列{}n a 的前n 项和,求a 的取值范围,使数列{}n a 为周期数列且方程*2(N )n S n n =∈有解(若数列{}n a 满足:存在N T ∈且0T >,对任意N n ∈且0n >,成立n T n a a +=,则称数列{}n a 为以T 为周期的周期数列).21.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.22.对于项数为m 的有穷数列{}n a ,设n b 为()12,,,1,2,,n a a a n m ⋅⋅⋅=⋅⋅⋅中的最大值,称数列{}n b 是{}n a 的控制数列.例如数列3,5,4,7的控制数列是3,5,5,7.(1)若各项均为正整数的数列{}n a 的控制数列是2,3,4,6,6,写出所有的{}n a ; (2)设{}n b 是{}n a 的控制数列,满足1n m n a b C -++=(C 为常数,1,2,,n m =⋅⋅⋅).证明:()1,2,,n n b a n m ==⋅⋅⋅.(3)考虑正整数1,2,,m ⋅⋅⋅的所有排列,将每种排列都视为一个有穷数列{}n c .是否存在数列{}n c ,使它的控制数列为等差数列?若存在,求出满足条件的数列{}n c 的个数;若不存在,请说明理由.23.若无穷数列{n a }满足如下两个条件,则称{n a }为无界数列: ①0n a >(n =1,2,3......)②对任意的正数δ,都存在正整数N ,使得n a δ>.(1)若21n a n =+,2cos()n b n =+(n =1,2,3......),判断数列{n a },{n b }是否是无界数列; (2)若21n a n =+,是否存在正整数k ,使得对于一切n k ≥,都有12231...1n n a a a n a a a ++++<-成立?若存在,求出k 的范围;若不存在说明理由;(3)若数列{n a }是单调递增的无界数列,求证:存在正整数m ,使得12231...1m m a a a m a a a ++++<-参考答案1.A2.A3.D4.D5.C6.D7.C8.B9.B10.B11.A12.C 13.19 14.100 15.12##0.5 16.2022411154⎛⎫-- ⎪⎝⎭17.(1)由333212n n a a a S +++=可得:当1n =时,有3211a S =,即()21110a a -=.因为0n a >,所以11a =.当2n ≥时,有33321211n n a a a S --+++=,所以3221n n n a S S -=-,即212n n n n n a S S S a -=+=-,即22n n n a a S +=所以有21112n n n a a S ---+=.所以()()2211112n n n n n n n a S S a a a a ---⎡⎤=-=+-+⎣⎦,即2211n n n n a a a a ---=+.因为0n a >,所以11n n a a --=.所以{}n a 为11a =,公差1d =的等差数列. 所以()11n a a n d n =+-=.(2)由(1)可得:()12n n n S +=,所以()222112n n a n nn n S n ==++.因为数列2{}n n a S 的前n 项积为n T ,所以()()21212223221121311111nn n n T n n n ⨯-⨯⨯⨯⨯=⋅⋅⋅=+++-+++.因为201nn T n =>+, 所以111221221111222221n n n nn n T n n nn T n n n n +++++++==⨯==+>++++,所以1n n T T +>, 即数列{}n T 是递增数列.18.(1)解:设等差数列{}n a 公差为d ,等比数列{}n b 的公比为()0q q >, 212n n n b b b ++=+,22q q ∴=+,解得2q或10q =-<(舍去).又12b =,所以1222n nn b -=⨯=.所以33210a b =+=,311043312a a d --===-, 所以,()()33103331n a a n d n n =+-=+-=+. (2)解:3091a =,33100a =,又6764121128b b =<<=, 所以30S 中要去掉数列{}n b 的项最多6项,数列{}n b 的前6项分别为2、4、8、16、32、64, 其中4、16、64三项是数列{}n a 和数列{}n b 的公共项,所以{}n c 前30项由{}n a 的前33项去掉{}n b 的24b =,416b =,664b =这3项构成.()()()()3012332463341004166416322S a a a b b b ⨯+=+++-++=-++=.19.(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由2242214542221d q d q d q d q +=⋅-=-⎧⎧⇒⎨⎨+=⋅+=-⎩⎩, ∴2q,3d =,∴31n a n =+,2nn b =.(2)当{}n c 的前60项中含有{}n b 的前6项时,令71273121283n n +<=⇒<, 此时至多有41748+=项(不符).当{}n c 的前60项中含有{}n b 的前7项时,令831225685n n +<=⇒<,且22,42,62是{}n a 和{}n b 的公共项,则{}n c 的前60项中含有{}n b 的前7项且含有{}n a 的前56项,再减去公共的三项.∴35760565556432222484417050142S ⨯⎛⎫=⨯+⨯++++=+= ⎪⎝⎭. 20.(1)当3a =时,即13a =,则2341,3,1a a a ===,故12348a a a a +++=.(2)先证:若存在正整数k ,使得3k a >,则存在正整数0n ,使得003n a ≤≤.证明:若3k a >时,则13k k a a +=-,即从第k 项起到最后一个大于3的项的下一项为止,数列{}n a 为递减数列,设数列{}n a 中满足3n a >的最小项为01n a -,则(]013,6n a -∈,∴(]00130,3n n a a -=-∈,故存在正整数0n ,使得003n a ≤≤.当3a >,即13a >,则存在正整数0n ,使得003n a ≤≤;当03a ≤≤,即103a ≤≤,则存在正整数0n ,使得003n a ≤≤;当0a <,即10a <,∴2144a a =->,则存在正整数0n ,使得003n a ≤≤;综上所述:故存在正整数0n ,使得003n a ≤≤.(3)由(2)可知:存在正整数0n ,使得003n a ≤≤,若00n a =,则0144n n a a +=-=,02131n n a a ++=-=,03243n n a a ++=-=,004341n n a a ++=-=,依次类推可得:当0n n ≥时,数列{}n a 不是周期数列,不合题意; 若001n a <<,则()0143,4n n a a +=-∈,()021310,1n n n a a a ++=-=-∈,()00032433,4n n n a a a ++=-=+∈,()0004330,1n n n a a a ++=-=∈,依次类推可得:当0n n ≥时,()0,1n a ∈或()3,4n a ∈,数列{}n a 是以4为周期的周期数列,且循环依次为0,4,1,3n n n n a a a a --+,∵数列{}n a 为周期数列,则()0,1n a ∈或()3,4n a ∈, 故()()0,13,4a ∈,此时()()()4443218Sa a a a ==-+-+=+⨯+,即*2(N )n S n n =∈有解,∴()()0,13,4a ∈符合题意;若013n a ≤≤,则[]0141,3n n a a +=-∈,[]02141,3n n n a a a ++=-=∈,依次类推可得:当0n n ≥时,[]1,3n a ∈,当0n n ≥时,数列{}n a 是以2为周期的周期数列,且循环依次为0,4n n a a -,∵数列{}n a 为周期数列,则[]1,3n a ∈,故[]1,3a ∈,此时()24422S a a =-=+=⨯,即*2(N )n S n n =∈有解,∴[]1,3a ∈符合题意; 综上所述:()0,4a ∈.21.解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7.(2)充分性:若0n a >,即12n n a -=.所以满足12n n a -=,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<,与已知()0n S A >矛盾. 所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n n a -=.因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前n 1-项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 22.(1)由题意12a =,23a =,34a =,46a =,56a ≤,所以数列{}n a 有六种可能:2,3,4,6,1;2,3,4,6,2;2,3,4,6,3;2,3,4,6,4;2,3,4,6,5;2,3,4,6,6. (2)因为12max{,,,}n n b a a a =,1121max{,,,,}n n n b a a a a ++=,所以1n n b b +≥,所以控制数列{}n b 是不减的数列,{}n b 是{}n a 的控制数列,满足1n m n a b C -++=,C 是常数,所以1n n a a +≥,即数列{}n a 也是不减的数列,123m a a a a ≤≤≤≤,那么若n k ≤时都有n n b a =,则1121max{,,,,}k k k b a a a a ++=, 若1k k a a +>,则11k k b a ++=,若11k k a b ++=,则11k k k k b b a a ++===, 又11b a =,由数学归纳法思想可得对1,2,,n m =,都有n n b a =; (3)设{}n c 的控制数列是{}n b ,由(2)知{}n b 是不减的数列,{}n b 必有一项等于m , 当m 是数列{}n b 中间某项时,{}n b 不可能是等差数列, 所以1b m =或m b m =,若1b m =,则n b m =(1,2,,n m =),{}n b 是等差数列, 此时只要1c m =,23,,,m c c c 是1,2,3,,1m -的任意排列均可.共(1)!m -个, m b m =,而1b m ≠时,数列{}n b 中必有n b n =,否则不可能是等差数列, 由此有n c n =,即{}n c 就是1,2,3,,m ,只有一种排列, 综上,{}n c 的个数是(1)!1m -+. 23.(1){n a }是无界数列,理由如下: 对任意的正整数δ,取N 为大于2δ的一个偶数,有21212N a N δδ=+>⋅+>,所以{n a }是无界数列.{n b }不是无界数列,理由如下: 取=3δ,显然2cos()3n b n =+≤,不存在正整数N ,满足3N b >,所以{n b }不是无界数列. (2)存在满足题意的正整数k ,且4k ≥. 当=1n 时,122=05a a <,不成立. 当=2n 时,231235+157a a a a =+<,不成立 当=3n 时,323124357+++2579a a a a a a =+<,不成立当4n ≥时,将12231...1n n a a a n a a a ++++<-变形为:3211221231231n n n n n a a a a a a a a a n a a a a a a +++⎛⎫----+++=+++ ⎪⎝⎭ 22222221572357911n =++≥+++>+. 即取4k =,对于一切n k ≥,有122311n n a a a n a a a ++++<-成立. (3)因为数列{n a }是单调递增的无界数列,所以0n a >,121n n a a a a +<<<<< 所以3211221231231n n n n n a a a a a a a a a n a a a a a a +++⎛⎫----+++=+++ ⎪⎝⎭ 32111211111111n n n n n n n n a a a a a a a a a a a a a a +++++++---->+++==-. 即12123111n n n a a a a n a a a a +++++<-+ 因为{n a }是无界数列,取12a δ=,由定义知存在正整数1N ,使1112N a a +>所以111212311N N a a a N a a a ++++<-.由定义可知{n a }是无穷数列,考察数列11N a +,12N a +,13N a +…,显然这仍是一个单调递增的无界数列,同上理由可知存在正整数2N ,使得 ()1111221221231+11N N N N N N a a a N N a a a ++++++++<--.故存在正整数2N ,使得 ()()1111221112121212312311+11+N N N N N N N N a a a a a a N N N a a a a a a ++++++++++++<-+--21N =-. 故存在正整数2m N =,使得122111m m a a a m a a a ++++<-成立。
2021年高考数学真题试卷(北京卷)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.(共10题;共40分)1.已知集合A={x|−1<x<1},B={x|0≤x≤2},则A∪B=()A. (−1,2)B. (−1,2]C. [0,1)D. [0,1]【答案】B【考点】并集及其运算【解析】【解答】解:根据并集的定义易得A∪B={x|−1<x≤2},故答案为:B【分析】根据并集的定义直接求解即可.2.在复平面内,复数z满足(1−i)z=2,则z=()A. 2+iB. 2−iC. 1−iD. 1+i【答案】 D【考点】复数代数形式的混合运算【解析】【解答】解:z=21−i =2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.3.已知f(x)是定义在上[0,1]的函数,那么“函数f(x)在[0,1]上单调递增”是“函数f(x)在[0,1]上的最大值为f(1)”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:①【充分性】若函数f(x)在[0, 1]上单调递增,根据函数的单调性可知:函数f(x)在[0, 1]的最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”为“函数f(x)在[0, 1]的最大值为f(1)“的充分条件;②【必要性】若函数f(x)在[0, 1]的最大值为f(1),函数f(x)在[0, 1]上可能先递减再递增,且最大值为f(1),所以“函数f(x)在[0, 1].上单调递增”不是“函数f(x)在[0, 1]的最大值为f(1)“的必要条件,所以“函数f(x)在[0, 1]上单调递增”是“函数f(x)在[0, 1]的最大值为f(1)“的充分而不必要条件.故答案为:A【分析】根据充分条件与必要条件的判定直接求解即可.4.某四面体的三视图如图所示,该四面体的表面积为()A. 3+√32B. 4C. 3+√3D. 2【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的侧面积和表面积【解析】【解答】解:由三视图可知该四面体如下图所示:该四面体为直三棱锥,其中SA⊥平面ABC,SA=AB=AC=1,则SB=SC=BC=√2,则所求表面积为S=3×(12×1×1)+12×√2×√2×sin60°=3+√32故答案为:A【分析】根据三视图还原几何体,结合棱锥的表面积公式求解即可.5.双曲线C:x2a2−y2b2=1过点(√2,√3),且离心率为2,则该双曲线的标准方程为()A. x 2−y 23=1 B. x 23−y 2=1 C. x 2−√3y 23=1 D.√3x 23−y 2=1【答案】 A【考点】双曲线的标准方程,双曲线的简单性质 【解析】【解答】解:由e =ca =2得c=2a ,则b 2=c 2-a 2=3a 2 则可设双曲线方程为:x 2a 2−y 23a 2=1 ,将点(√2,√3) 代入上式,得(√2)2a 2−(√3)23a 2=1解得a 2=1,b 2=3 故所求方程为: x 2−y 23=1故答案为:A【分析】根据双曲线的离心率的定义,结合双曲线的几何性质和标准方程求解即可.6.{a n } 和 {b n } 是两个等差数列,其中 akb k(1≤k ≤5) 为常值, a 1=288 , a 5=96 , b 1=192 ,则b 3= ( )A. 64B. 128C. 256D. 512 【答案】 B【考点】等差数列的性质【解析】【解答】解:由题意得a k b k=a 1b 1=288192=32 , 则a 5b 5=32 , 则b 5=23a 5=64 , 所以b 3=b 1+b 52=192+642=128.故答案为:B【分析】根据题设条件,结合等差数列的性质求解即可.7.函数 f(x)=cosx −cos2x ,试判断函数的奇偶性及最大值( ) A. 奇函数,最大值为2 B. 偶函数,最大值为2 C. 奇函数,最大值为 98 D. 偶函数,最大值为 98 【答案】 D【考点】偶函数,二次函数在闭区间上的最值【解析】【解答】解:∵f(-x)=cos(-x)-cos(-2x)=cosx-cos2x=f(x) ∴f(x)为偶函数又f(x)=cosx-cos2x=-2cos 2x+cosx+1 令t=cosx ,则y=-2t 2+t+1,t ∈[-1,1],则当t =−12×(−2)=14时,y 取得最大值y max =(−2)×(14)2+14+1=98.故答案为:D【分析】根据偶函数的定义,利用换元法,结合二次函数的最值求解即可.8.定义:24小时内降水在平地上积水厚度(mm)来判断降雨程度.其中小雨(<10mm),中雨(10mm−25mm),大雨(25mm−50mm),暴雨(50mm−100mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A. 小雨B. 中雨C. 大雨D. 暴雨【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:如图所示,由题意得r100=150300,则r=50则雨水的体积为V=13πr2h=13π×502×150,则降雨的厚度(高度)为H=Vπ×1002=13π×502×150π×1002=12.5(mm)故答案为:B【分析】根据圆锥的体积公式,及圆柱的体积公式求解即可.9.已知圆C:x2+y2=4,直线l:y=kx+m,当k变化时,l截得圆C弦长的最小值为2,则m=()A. ±2B. ±√2C. ±√3D. ±√5【答案】C【考点】点到直线的距离公式,直线与圆的位置关系【解析】【解答】解:由题意可设弦长为n,圆心到直线l的距离为d,则d2=r2−(n2)2=4−n24,则当n取最小值2时,d取得最大值为√3,则d=√1+k2≤√3当k=0时,d取得最大值为√3,则|m|=√3解得m=±√3故答案为:C【分析】根据直线与圆的位置,以及相交弦的性质,结合点到直线的距离公式求解即可.10.数列{a n}是递增的整数数列,且a1≥3,a1+a2+⋅⋅⋅+a n=100,则n的最大值为()A. 9B. 10C. 11D. 12【答案】C【考点】等差数列的通项公式,等差数列的前n项和【解析】【解答】解:∵数列{a n}是递增的整数数列,∴n要取最大,d尽可能为小的整数,故可假设d=1∵a1=3,d=1∴a n=n+2∴S n=(3+n+2)n2=n2+5n2则S11=88<100,S12=102>100,故n的最大值为11.故答案为:C【分析】根据等差数列的通项公式及前n项和公式求解即可.二、填空题5小题,每小题5分,共25分.(共5题;共25分)11.(x3−1x)4展开式中常数项为________.【答案】-4【考点】二项式定理,二项式系数的性质,二项式定理的应用【解析】【解答】解:由题意得二项展开式的通项公式为T k+1=C4k(x3)4−k(−1x )k=C4k(−1)k x12−4k令12-4k=0,得k=3故常数项为T4=T3+1=C43(−1)3=−4故答案为:-4【分析】根据二项展开式的通项公式直接求解即可.12.已知抛物线C:y2=4x,焦点为F,点M为抛物线C上的点,且|FM|=6,则M的横坐标是________;作MN⊥x轴于N,则S△FMN=________.【答案】5;4√5【考点】抛物线的简单性质,抛物线的应用【解析】【解答】解:由题意知焦点F为(1,0),准线为x=-1,设点M为(x0,y0),则有|FM|=x0+1=6,解得x0=5,则y0=2√5,不妨取点M为(5,2√5)则点N为(5,0)则|FN|=5-1=4则S△FMN=12×|FN|×|MN|=12×4×2√5=4√5故答案为:5,4√5【分析】根据抛物线的几何性质,结合三角形的面积公式求解即可.13.若点P(cosθ,sinθ)与点Q(cos(θ+π6),sin(θ+π6))关于y轴对称,写出一个符合题意的θ=________.【答案】5π12(满足θ=5π12+kπ,k∈Z即可)【考点】诱导公式【解析】【解答】解:由题意得{sinθ=sin(θ+π6)cosθ=−cos(θ+π6)),对比诱导公式sinα=sin(π-α),cosα=-cos(π-α)得θ+π6=π−θ+2kπ,解得θ=5π12+kπ,k∈Z当k=0时,θ=5π12故答案为:5π12【分析】根据点的对称性,结合诱导公式求解即可.14.已知函数f(x)=|lgx|−kx−2,给出下列四个结论:①若k=0,则f(x)有两个零点;② ∃k<0,使得f(x)有一个零点;③ ∃k<0,使得f(x)有三个零点;④ ∃k>0,使得f(x)有三个零点.以上正确结论得序号是________.【答案】①②④【考点】函数的零点【解析】【解答】解:令|lgx|- kx-2=0,即y= |lgx|与y= kx+ 2有几个交点,原函数就有几个零点, ①当k= 0时,如图1画出函数图像,f(x)=|lgx|-2,解得x=100或x =1100 , 所以有两个零点,故①项正确;②当k<0时,y= kx+2过点(0,2),如图2画出两个函数的图像,∃k <0 , 使得两函数存在两个交点,故②项正确;③当k<0时,y= kx+2过点(0,2),如图3画出两个函数的图像,不存在k<0时,使得两函数存在三个交点,故③项错误;④当k>0时,y= kx+2过点(0,2),如图4画出两个函数的图像,∃k >0 , 使得两函数存在三个交点,故④项正确. 故答案为:①②④【分析】根据函数的零点的几何性质,运用数形结合思想求解即可.15.a ⃗=(2,1) , b ⃗⃗=(2,−1) , c ⃗=(0,1) ,则 (a ⃗+b ⃗⃗)⋅c ⃗= ________; a ⃗⋅b ⃗⃗= ________. 【答案】 0;3【考点】平面向量的坐标运算,平面向量数量积的坐标表示、模、夹角【解析】【解答】解:由题意得a →+b →=(4,0) , 则(a →+b →)·c →=4×0+0×1=0 , a →·b →=2×2+1×(−1)=3 故答案为:0,3【分析】根据向量的坐标运算,及向量的数量积运算求解即可.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.(共6题;共85分)16.已知在 △ABC 中, c =2bcosB , C =2π3.(1)求 B 的大小;(2)在下列三个条件中选择一个作为已知,使 △ABC 存在且唯一确定,并求出 BC 边上的中线的长度. ① c =√2b ;②周长为 4+2√3 ;③面积为 S ΔABC =3√34;【答案】 (1)∵c =2bcosB ,则由正弦定理可得 sinC =2sinBcosB , ∴sin2B =sin2π3=√32, ∵C =2π3, ∴B ∈(0,π3) , 2B ∈(0,2π3) ,∴2B =π3 ,解得 B =π6 ;(2)若选择①:由正弦定理结合(1)可得 cb =sinCsinB =√3212=√3 ,与 c =√2b 矛盾,故这样的 △ABC 不存在; 若选择②:由(1)可得 A =π6 , 设 △ABC 的外接圆半径为 R ,则由正弦定理可得a=b=2Rsinπ6=R,c=2Rsin2π3=√3R,则周长a+b+c=2R+√3R=4+2√3,解得R=2,则a=2,c=2√3,由余弦定理可得BC边上的中线的长度为:√(2√3)2+12−2×2√3×1×cosπ6=√7;若选择③:由(1)可得A=π6,即a=b,则S△ABC=12absinC=12a2×√32=3√34,解得a=√3,则由余弦定理可得BC边上的中线的长度为:√b2+(a2)2−2×b×a2×cos2π3=√3+34+√3×√32=√212.【考点】正弦定理,余弦定理,正弦定理的应用,余弦定理的应用,三角形中的几何计算【解析】【分析】(1)根据正弦定理,结合三角形内角和的性质求解即可;(2)选择①:根据正弦定理,结合(1)进行判断即可;选择②:根据正弦定理,及余弦定理求解即可;选择③:根据三角形的面积公式,结合余弦定理求解即可.17.已知正方体ABCD−A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE于点F.(1)证明:点F为B1C1的中点;(2)若点M为棱A1B1上一点,且二面角M−CF−E的余弦值为√53,求A1MA1B1的值.【答案】(1)如图所示,取B1C1的中点F′,连结DE,EF′,F′C,由于 ABCD −A 1B 1C 1D 1 为正方体, E,F ′ 为中点,故 EF ′∥CD , 从而 E,F ′,C,D 四点共面,即平面CDE 即平面 CDEF ′ , 据此可得:直线 B 1C 1 交平面 CDE 于点 F ′ ,当直线与平面相交时只有唯一的交点,故点 F 与点 F ′ 重合, 即点 F 为 B 1C 1 中点.(2)以点 D 为坐标原点, DA,DC,DD 1 方向分别为 x 轴, y 轴, z 轴正方形,建立空间直角坐标系 D −xyz ,不妨设正方体的棱长为2,设 A 1MA1B 1=λ(0≤λ≤1) ,则: M(2,2λ,2),C(0,2,0),F(1,2,2),E(1,0,2) ,从而: MC ⃗⃗⃗⃗⃗⃗⃗=(−2,2−2λ,−2),CF ⃗⃗⃗⃗⃗⃗=(1,0,2),FE ⃗⃗⃗⃗⃗⃗=(0,−2,0) , 设平面 MCF 的法向量为: m⃗⃗⃗=(x 1,y 1,z 1) ,则: {m ⇀⋅MC⇀=−2x 1+(2−2λ)y 1−2z 1=0m ⇀⋅CF ⇀=x 1+2z 1=0 , 令 z 1=−1 可得: m ⃗⃗⃗=(2,11−λ,−1) , 设平面 CFE 的法向量为: n⃗⃗=(x 2,y 2,z 2) ,则: {n ⇀⋅FE⇀=−2y 2=0n ⇀⋅CF ⇀=x 2+2z 2=0, 令 z 1=−1 可得: n⃗⃗=(2,0,−1) , 从而: m ⃗⃗⃗⋅n ⃗⃗=5,|m ⃗⃗⃗|=√5+(11−λ)2,|n ⃗⃗|=√5 ,则:cos〈m⃗⃗⃗,n⃗⃗〉=m⃗⃗⃗⃗⋅n⃗⃗|m⃗⃗⃗⃗|×|n⃗⃗|=√5+(11−λ)2×√5=√53,整理可得:(λ−1)2=14,故λ=12(λ=32舍去).【考点】空间中直线与平面之间的位置关系,与二面角有关的立体几何综合题,用空间向量求平面间的夹角【解析】【分析】(1)根据正方体的性质,结合直线与平面相交的性质定理求证即可;(2)根据向量法求二面角,结合方程的思想求解即可.18.为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果).【答案】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X可以取20,30,P(X=20)=111,P(X=30)=1−111=1011,则X的分布列:所以E(X)=20×111+30×1011=32011;(2)由题意,Y可以取25,30,设两名感染者在同一组的概率为p,P(Y=25)=p,P(Y=30)=1−p,则E(Y)=25p+30(1−p)=30−5p,若p=211时,E(X)=E(Y);若p>211时,E(X)>E(Y);若p<211时,E(X)<E(Y).【考点】简单随机抽样,互斥事件与对立事件,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)①根据“k合1检测法”,结合随机抽样的定义求解即可;②根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的分布列和期望求解即可;(2)根据“k合1检测法”,以及对立事件的概率,结合离散型随机变量的期望求解即可.19.已知函数f(x)=3−2xx2+a.(1)若a=0,求y=f(x)在(1,f(1))处切线方程;(2)若函数f(x)在x=−1处取得极值,求f(x)的单调区间,以及最大值和最小值.【答案】(1)当a=0时,f(x)=3−2xx2,则f′(x)=2(x−3)x3,∴f(1)=1,f′(1)=−4,此时,曲线y=f(x)在点(1,f(1))处的切线方程为y−1=−4(x−1),即4x+y−5=0;(2)因为f(x)=3−2xx2+a ,则f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2=2(x2−3x−a)(x2+a)2,由题意可得f′(−1)=2(4−a)(a+1)2=0,解得a=4,故f(x)=3−2xx2+4,f′(x)=2(x+1)(x−4)(x2+4)2,列表如下:所以,函数f(x)的增区间为(−∞,−1)、(4,+∞),单调递减区间为(−1,4).当x<32时,f(x)>0;当x>32时,f(x)<0.所以,f(x)max=f(−1)=1,f(x)min=f(4)=−14.【考点】导数的几何意义,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数求闭区间上函数的最值【解析】【分析】(1)根据导数的几何意义求解即可;(2)根据导数研究函数的极值求得a值,再利用导数研究函数的单调性以及最值即可.20.已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,−2),以四个顶点围成的四边形面积为4√5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|≤15,求k的取值范围.【答案】(1)因为椭圆过A(0,−2),故b=2,因为四个顶点围成的四边形的面积为4√5,故12×2a×2b=4√5,即a=√5,故椭圆的标准方程为:x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,故x1x2≠0,故直线AB:y=y1+2x1x−2,令y=−3,则x M=−x1y1+2,同理x N=−x2y2+2.直线BC:y=kx−3,由{y=kx−34x2+5y2=20可得(4+5k2)x2−30kx+25=0,故Δ=900k2−100(4+5k2)>0,解得k<−1或k>1.又x1+x2=30k4+5k2,x1x2=254+5k2,故x1x2>0,所以x M x N>0又|PM|+|PN|=|x M+x N|=|x1y1+2+x2y2+2|=|x1kx1−1+x2kx2−1|=|2kx1x2−(x1+x2)k2x1x2−k(x1+x2)+1|=|50k4+5k2−30k4+5k225k24+5k2−30k24+5k2+1|=5|k|故5|k|≤15即|k|≤3,综上,−3≤k<−1或1<k≤3.【考点】椭圆的标准方程,椭圆的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(1)根据椭圆的几何性质求解即可;(2)根据直线与椭圆的位置关系,利用根与系数的关系,结合弦长公式求解即可.21.定义R p数列{a n}:对实数p,满足:① a1+p≥0,a2+p=0;② ∀n∈N∗,a4n−1<a4n;③ a m+n∈{a m+a n+p,a m+a n+p+1},m,n∈N∗.(1)对于前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{a n}是R0数列,求a5的值;(3)是否存在p,使得存在R p数列{a n},对∀n∈N∗,S n≥S10?若存在,求出所有这样的p;若不存在,说明理由.【答案】(1)由性质③结合题意可知0=a3∈{a1+a2+2,a1+a2+2+1}={2,3},矛盾,故前4项2,−2,0,1的数列,不可能是R2数列.(2)性质① a1≥0,a2=0,由性质③ a m+2∈{a m,a m+1},因此a3=a1或a3=a1+1,a4=0或a4=1,若a4=0,由性质②可知a3<a4,即a1<0或a1+1<0,矛盾;若a4=1,a3=a1+1,由a3<a4有a1+1<1,矛盾.因此只能是a4=1,a3=a1.或a1=0.又因为a4=a1+a3或a4=a1+a3+1,所以a1=12若a1=1,则a2=a1+1∈{a1+a1+0,a1+a1+0+1}={2a1,2a1+1}={1,2},2不满足a2=0,舍去.当a1=0,则{a n}前四项为:0,0,0,1,下面用纳法证明a4n+i=n(i=1,2,3),a4n+4=n+1(n∈N):当n=0时,经验证命题成立,假设当n≤k(k≥0)时命题成立,当n=k+1时:若i=1,则a4(k+1)+1=a4k+5=a j+(4k+5−j),利用性质③:{a j+a4k+5−j∣j∈N∗,1≤j≤4k+4}={k,k+1},此时可得:a4k+5=k+1;否则,若a4k+5=k,取k=0可得:a5=0,而由性质②可得:a5=a1+a4∈{1,2},与a5=0矛盾.同理可得:{a j+a4k+6−j∣j∈N∗,1≤j≤4k+5}={k,k+1},有a4k+6=k+1;{a j+a4k+8−j∣j∈N∗,2≤j≤4k+6}={k+1,k+2},有a4k+8=k+2;{a j+a4k+7−j∣j∈N∗,1≤j≤4k+6}={k+1},又因为a4k+7<a4k+8,有a4k+7=k+1.即当n=k+1时命题成立,证毕.综上可得:a1=0,a5=a4×1+1=1.(3)令b n=a n+p,由性质③可知:∀m,n∈N∗,b m+n=a m+n+p∈{a m+p+a n+p,a m+p+a n+p+1}={b m+b n,b m+b n+1},由于b1=a1+p≥0,b2=a2+p=0,b4n−1=a4n−1+p<a4n+p=b4n,因此数列{b n}为R0数列.由(2)可知:若∀n∈N,a4n+i=n−p(i=1,2,3),a4n+4=n+1−p;S11−S10=a11=a4×2+3=2−p≥0,S9−S10=−a10=−a4×2+2=−(2−p)≥0,因此p=2,此时a1,a2,…,a10≤0,a j≥0(j≥11),满足题意.【考点】数列的概念及简单表示法,数学归纳法,数学归纳法的证明步骤【解析】【分析】(1)根据新数列R p数列的定义进行判断即可;(2)根据新数列R p数列的定义,结合数学归纳法求解即可;(3)根据新数列R p数列的定义,结合a n与s n的关系进行判断即可.。
2021年高考数学集合专题卷(附答案)一、单选题1.已知集合,,则()A. B. C. D.2.已知集合M={﹣1,0,1},N={y|y=1﹣cos x,x∈M},则集合M∩N的真子集的个数是()A. 1B. 2C. 3D. 43.已知集合,则=()A. B. C. D.4.已知集合2,,,则A. B. C. D. 2,5.已知集合,,则()A. B. C. D.6.已知集合,,则()A. B. C. D.7.已知集合,集合,则有( )A. B. C. D.8.已知全集U=R,集合A=,集合B=,则为()。
A. B. R C. D.9.已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=()A. ﹣6或﹣2B. -6C. 2或﹣6D. -210.设t>0,函数f(x)= 的值域为M,若2∉M,则t的取值范围是()A. (,1)B. (,1]C. [ ,1)D. [ ,1]11.已知函数,若集合只含有个元素,则实数的取值范围是()A. B. C. D.12.在平面直角坐标系中,设为边长为1的正方形内部及其边界的点构成的集合.从中的任意点P作x轴、y轴的垂线,垂足分别为,.所有点构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为;所有点构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为.给出以下命题:① 的最大值为:② 的取值范围是;③ 恒等于0.其中所有正确结论的序号是()A. ①②B. ②③C. ①③D. ①②③二、填空题13.已知集合A={1,2,3,4},B={1,2},则满足条件B⊆C⊆A的集合C的个数为________.14.已知全集U={1,2,3,4,5},集合A={x|x2﹣3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)=________.15.已知集合U={1,2,3,4,5,6},S={1,2,5},T={2,3,6},则S∩(∁U T)=________,集合S共有________个子集.16.已知集合A={2,3,4},B={a+2,a},若A∩B=B,则∁A B=________17.已知M={x||x﹣1|≤2,x∈R},P={x| ≥0,x∈R},则M∩P等于________.18.设函数,若对于任意的,在区间上总存在唯一确定的,使得,则的最小值为________.19.已知集合,集合,若,则的最小值为________.20.在平面直角坐标系中,点集A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x﹣4y≥0},则点集Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为________.三、解答题21.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.22.设集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.(1)若a=3,求A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.23.已知集合,,,全集为实数集求:(1);(2).(3)若,求实数的取值范围.24.给定无穷数列,若无穷数列{b n}满足:对任意,都有,则称“接近”。
专题07 数列目录一览考向一等差数列}为等差数列,1.(2023•新高考Ⅰ•第7题)记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{S nn 则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件考向二等比数列2.(2023•新高考Ⅱ•第8题)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120考向三数列综合3.(2023•新高考Ⅰ•第20题)设等差数列{a n}的公差为d,且d>1.令b n=S n,T n分别为数列n{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99﹣T99=99,求d.4.(2023•新高考Ⅱ•第18题)已知{a n}为等差数列,b n=a n−6,n为奇数2a n,n为偶数,记S n,T n为{a n},{b n}的前n 项和,S4=32,T3=16.(1)求{a n}的通项公式;(2)证明:当n>5时,T n>S n.【命题意图】考查等差、等比数列的通项公式和前n 项和公式,考查等差、等比数列的性质;考查数列的求和方法,考查根据数列的递推公式求通项公式,考查数列和其他知识结合等综合知识.【考查要点】数列是高考考查热点之一,其中等差、等比数列的通项公式、求和公式,以及与等差、等比数列有关的错位相消求和及裂项相消求和,是考查的重点.作为数列综合题,常和充要条件、方程、不等式、函数等结合,涉及到恒成立,存在,最值,解不等式或者证明不等式等,对于基础能力和基础运算要求较高.【得分要点】1.解决等差、等比数列有关问题的几点注意(1)等差数列、等比数列公式和性质的灵活应用;(2)对于计算解答题注意基本量及方程思想的运用;(3)注重问题的转化,由非等差数列、非等比数列构造出新的等差数列或等比数列,以便利用相关公式和性质解题;(4)当题目中出现多个数列时,既要纵向考察单一数列的项与项之间的关系,又要横向考察各数列之间的内在联系.2.数列求和问题一般转化为等差数列或等比数列的前n 项和问题或已知公式的数列求和,不能转化的再根据数列通项公式的特点选择恰当的方法求解.,一般常见的求和方法有:(一)公式法②等比数列的前n 项和公式:③数列前项和重要公式:(2)(5)等差数列中,;n 1(21)n k k =-=∑()13521n ++++-= 2nm n m n S S S mnd +=++(6)等比数列中,.(二)分组求和法:把一个数列分成几个可以直接求和的数列.(三)裂项(相消)法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(四)错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(1)适用条件:若{a n }是公差为d (d ≠0)的等差数列,{b n }是公比为q (q ≠1)的等比数列,求数列{a n b n }的前n 项和S n ;(2)基本步骤(3)注意事项:①在写出S n 与qS n 的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出S n-qS n ;②作差后,等式右边有第一项、中间n -1项的和式、最后一项三部分组成;③运算时,经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误. (五)倒序相加法相加,就得到一个常数列的和,这一求和方法称为倒序相加法,等差数列前n 项和公式的推导便使用了此法. 用倒序相加法解题的关键,就是要能够找出首项和末项之间的关系,因为有时这种关系比较隐蔽.考向一 等差数列5.(2022•新高考Ⅱ)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为=0.5,=k 1,=k 2,=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )n m m n n m m n S S q S S q S +=+=+A.0.75B.0.8C.0.85D.0.9考向二数列递推公式6.(多选)(2021•新高考Ⅱ)设正整数n=a0•20+a1•21+…+a k﹣1•2k﹣1+a k•2k,其中a i∈{0,1},记ω(n)=a0+a1+…+a k,则( )A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n﹣1)=n考向三数列的求和7.(2021•新高考Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么S k= dm2.考向四数列综合8.(2021•新高考Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.9.(2021•新高考Ⅰ)已知数列{a n}满足a1=1,a n+1=(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.10.(2022•新高考Ⅰ)记S n为数列{a n}的前n项和,已知a1=1,{}是公差为的等差数列.(1)求{a n}的通项公式;(2)证明:++…+<2.11.(2022•新高考Ⅱ)已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2﹣b2=a3﹣b3=b4﹣a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.重点考查等差、等比数列的概念、性质、通项公式和前n项和,考查错位相减、裂项相消等求和方法。
历年(2019-2024)全国高考数学真题分类(数列、函数与集合新定义)汇编考点01 数列新定义一、小题1.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=2.(2020∙全国新Ⅱ卷∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011C .10001D .11001二、大题1.(2024∙全国新Ⅰ卷∙高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >. 2.(2024∙北京∙高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.3.(2023∙北京∙高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+.4.(2022∙北京∙高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列. (1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2021∙北京∙高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,‐2,‐2,‐1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.6.(2020∙北京∙高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n …,在{}n a 中都存在两项,()k l a a k l >.使得2k n l a a a =. ()Ⅰ若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;()Ⅱ若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;()Ⅲ若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.7.(2020∙江苏∙高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a 是2”数列,且an >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且an ≥0?若存在,求λ的取值范围;若不存在,说明理由,8.(2019∙江苏∙高考真题)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值.考点02 函数新定义一、大题1.(2024∙上海∙高考真题)对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”; (2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2.(2020∙江苏∙高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()2222()f x x x g x x x D =+=-+=-∞+∞,,,,求h (x )的表达式; (2)若2()1()ln (),(0)f x x x g x k x h x kx k D =-+==-=+∞,,,,求k 的取值范围; (3)若()()()()422342248432(0f x x x g x x h x t t x t t t =-=-=--+<≤,,,[],D m n ⎡=⊆⎣,求证:n m -≤.考点03 集合新定义一、小题1.(2020∙浙江∙高考真题)设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足: ①对于任意x,y∈S,若x≠y,都有xy∈T②对于任意x,y∈T,若x<y,则yx∈S;下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素考点04 其他新定义1.(2020∙北京∙高考真题)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔∙卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔∙卡西的方法,π的近似值的表达式是().A.30303sin tannn n︒︒⎛⎫+⎪⎝⎭B.30306sin tannn n︒︒⎛⎫+⎪⎝⎭C.60603sin tannn n︒︒⎛⎫+⎪⎝⎭D.60606sin tannn n︒︒⎛⎫+⎪⎝⎭参考答案 考点01 数列新定义一、小题1.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=【答案】ACD【详细分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【答案详解】对于A 选项,()01k n a a a ω=+++ ,12101122222k k k k n a a a a +-=⋅+⋅++⋅+⋅ ,所以,()()012k n a a a n ωω=+++= ,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=, 而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01852k n a a a ω+=++++ ,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ , 所以,()01432k n a a a ω+=++++ ,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++ ,故()21nn ω-=,D 选项正确.故选:ACD.2.(2020∙全国新Ⅱ卷∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011C .10001D .11001【答案】C【详细分析】根据新定义,逐一检验即可【答案详解】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、大题1.(2024∙全国新Ⅰ卷∙高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >. 【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【详细分析】(1)直接根据(),i j -可分数列的定义即可; (2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【答案详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+', 得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可. 换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列. 那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6. 所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组. (如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立, 则数列1,2,...,42m +一定是(),i j -可分数列: 命题1:,i A j B ∈∈或,i B j A ∈∈; 命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠. 此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后, 剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列: ①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组; ③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组. (如果某一部分的组数为0,则忽略之) 故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠. 此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈. 则由i j <可知124241k k +<+,即2114k k ->,故21k k >. 由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组; ③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组. (如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数. 这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=. 但这导致2112k k -=,矛盾,所以,i B j A ∈∈. 设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个. 所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++. 这就证明了结论.【点评】关键点点评:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.2.(2024∙北京∙高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”. 【答案】(1)():3,4,4,5,8,4,3,10A Ω (2)不存在符合条件的Ω,理由见解析 (3)证明见解析【详细分析】(1)直接按照()ΩA 的定义写出()ΩA 即可;(2)解法一:利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列Ω共有8项,可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验即可;(3)解法一:分充分性和必要性两方面论证;解法二:若12345678a a a a a a a a +=+=+=+,分类讨论1357,,,a a a a 相等得个数,结合题意证明即可;若存在序列Ω,使得()ΩA 为常数列,结合定义详细分析证明即可.【答案详解】(1)因为数列:1,3,2,4,6,3,1,9A , 由序列()11,3,5,7T 可得()1:2,3,3,4,7,3,2,9T A ; 由序列()22,4,6,8T 可得()21:2,4,3,5,7,4,2,10T T A ; 由序列()31,3,5,7T 可得()321:3,4,4,5,8,4,3,10T T T A ; 所以()Ω:3,4,4,5,8,4,3,10A .(2)解法一:假设存在符合条件的Ω,可知()ΩA 的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++, 则()()()()121234342642a a a a sa a a a s⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立, 故不存在符合条件的Ω;解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4, 假设存在符合条件的Ω,且()128Ω:,,,A b b b ⋅⋅⋅, 因为2642824484+++++++=,即序列Ω共有8项,由题意可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==, 检验可知:当2,3n =时,上式不成立, 即假设不成立,所以不存在符合条件的Ω.(3)解法一:我们设序列()21...s T T T A 为{}(),18s n a n ≤≤,特别规定()0,18n n a a n =≤≤. 必要性:若存在序列12:,,s T T T Ω ,使得()ΩA 的各项都相等.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+. 根据()21...s T T T A 的定义,显然有,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =. 所以不断使用该式就得到12345678,1,2s s a a a a a a a a a a s +=+=+=+=+-,必要性得证. 充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()ΩA 中,使得,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-最小的一个.上面已经说明,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,812s s s s s s s s a a a a a a a a a a s +=+=+=+=++. 同时,由于t t t t i j k w +++总是偶数,所以,1,3,5,7t t t t a a a a +++和,2,4,6,8t t t t a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数. 下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a -≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+->,不妨设,3,40s s a a ->.情况2‐1:如果,3,41s s a a -≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2‐2:如果,4,31s s a a -≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a --≤. 假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a --≤可知必有{}{},21,2,,1s j s j a a N N -=+.而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j k w 之和为偶数,对该数列进行一次变换(),,,i j k w ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j --==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),Ωs n a A =是常数列,充分性得证.解法二:由题意可知:Ω中序列的顺序不影响()ΩA 的结果, 且()()()()12345678,,,,,,,a a a a a a a a 相对于序列也是无序的, (ⅰ)若12345678a a a a a a a a +=+=+=+, 不妨设1357a a a a ≤≤≤,则2468a a a a ≥≥≥, ①当1357a a a a ===,则8642a a a a ===, 分别执行1a 个序列()2,4,6,8、2a 个序列()1,3,5,7,可得1212121212121212,,,,,,,a a a a a a a a a a a a a a a a ++++++++,为常数列,符合题意; ②当1357,,,a a a a 中有且仅有三个数相等,不妨设135a a a ==,则246a a a ==, 即12121278,,,,,,,a a a a a a a a ,分别执行2a 个序列()1,3,5,7、7a 个序列()2,4,6,8可得1227122712272778,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即1227122712272712,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 因为1357a a a a +++为偶数,即173a a +为偶数, 可知17,a a 的奇偶性相同,则*712a a -∈N , 分别执行712a a -个序列()1,3,5,7,()1,3,6,8,()2,3,5,8,()1,4,5,8, 可得7217217217217217217217213232323232323232,,,,,,,22222222a a a a a a a a a a a a a a a a a a a a a a a a +-+-+-+-+-+-+-+-,为常数列,符合题意;③若1357a a a a =<=,则2468a a a a =>=,即12125656,,,,,,,a a a a a a a a , 分别执行5a 个()1,3,6,8、1a 个()2,4,5,7,可得1512151215561556,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 因为1256a a a a +=+,可得1512151215121512,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为①,可知符合题意;④当1357,,,a a a a 中有且仅有两个数相等,不妨设13a a =,则24a a =,即12125678,,,,,,,a a a a a a a a ,分别执行1a 个()2,4,5,7、5a 个()1,3,6,8,可得1512151215561758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1256a a a a +=+,可得1512151215121758,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为②,可知符合题意;⑤若1357a a a a <<<,则2468a a a a >>>,即12345678,,,,,,,a a a a a a a a , 分别执行1a 个()2,3,5,8、3a 个()1,4,6,7,可得1312133415363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1234a a a a +=+,可得1312131215363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为③,可知符合题意;综上所述:若12345678a a a a a a a a +=+=+=+,则存在序列Ω,使得()ΩA 为常数列; (ⅱ)若存在序列Ω,使得()ΩA 为常数列, 因为对任意()128Ω:,,,A b b b ⋅⋅⋅,均有()()()()12123434b b a a b b a a +-+=+-+()()()()56567878b b a a b b a a =+-+=+-+成立, 若()ΩA 为常数列,则12345678b b b b b b b b +=+=+=+, 所以12345678a a a a a a a a +=+=+=+;综上所述:“存在序列Ω,使得()ΩA 为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”. 【点评】关键点点评:本题第三问的关键在于对新定义的理解,以及对其本质的详细分析.3.(2023∙北京∙高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+. 【答案】(1)00r =,11r =,21r =,32r = (2),n r n n =∈N (3)证明见答案详解【详细分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意详细分析求解; (2)根据题意题意详细分析可得11i ir r +-≥,利用反证可得11i i r r +-=,在结合等差数列运算求解;(3)讨论,m m A B 的大小,根据题意结合反证法详细分析证明.【答案详解】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========, 当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =; 当1k =时,则01111,,,2,3i B A B A B A i <<>=,故11r =;当2k =时,则22232,0,1,,,i B A i B A B A ≤=>>故21r =; 当3k =时,则333,0,1,2,i B A i B A ≤=>,故32r =; 综上所述:00r =,11r =,21r =,32r =. (2)由题意可知:nr m≤,且nr ∈N,因为1,1n n a b ≥≥,且11a b ≥,则10n A B B ≥>对任意*n ∈N 恒成立, 所以010,1r r =≥, 又因为112ii i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-≥,可得11i ir r +-≥,反证:假设满足11n n r r +->的最小正整数为01j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i ir r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-, 又因为01j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>, 假设不成立,故11n n r r +-=,即数列{}n r 是以首项为1,公差为1的等差数列,所以01,n r n n n =+⨯=∈N . (3)因为,n n a b 均为正整数,则{}{},n n A B 均为递增数列,(ⅰ)若m m A B =,则可取0t q ==,满足,,p q s t >> 使得t p s q A B A B +=+; (ⅱ)若m m A B <,则k r m <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->, 这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B =, 可取0,,N t q p N s r ====,满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈--⋅⋅⋅--,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =,即X Y r X r Y B A B A -=-,可得X Y Y r X r A B A B +=+, 可取,,,Y X p Y s r q X t r ====,满足,p q s t >>,使得t p s q A B A B +=+; (ⅲ)若m m A B >,定义{}max ,{0,1,2,,}k i k R i A B i m =≤∈L ∣,则k R m <,构建,1n n R n S A B n m =-≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数,1K K m ≤≤,使得K S m ≤-,则1,0K K R K R K A B m A B +-≤-->,可得()()111K K K K K R R R R K R K a A A A B A B m +++=-=--->, 这与{}11,2,,K R a m +∈⋅⋅⋅相矛盾,故对任意11,n m n ≤≤-∈N ,均有1n S m≥-.①若存在正整数N ,使得0N N R N S A B =-=,即N R N A B =, 可取0,,N q t s N p R ====,即满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈--⋅⋅⋅--,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =, 即X Y R X R Y A B A B -=-,可得Y X R X R Y A B A B +=+, 可取,,,Y X p R t X q R s Y ====, 满足,p q s t >>,使得t p s q A B A B +=+.综上所述:存在0,0q p m t s m ≤<≤≤<≤使得t p s q A B A B +=+.4.(2022∙北京∙高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列. (1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥. 【答案】(1)是5-连续可表数列;不是6-连续可表数列. (2)证明见解析. (3)证明见解析.【详细分析】(1)直接利用定义验证即可;(2)先考虑3k ≤不符合,再列举一个4k =合题即可;(3)5k ≤时,根据和的个数易得显然不行,再讨论6k =时,由12620a a a +++< 可知里面必然有负数,再确定负数只能是1-,然后分类讨论验证不行即可.【答案详解】(1)21a =,12a =,123a a +=,34a =,235a a +=,所以Q 是5-连续可表数列;易知,不存在,i j 使得16i i i j a a a +++++= ,所以Q 不是6-连续可表数列.(2)若3k ≤,设为:Q ,,a b c ,则至多,,,,,a b b c a b c a b c ++++,6个数字,没有8个,矛盾;当4k =时,数列:1,4,1,2Q ,满足11a =,42a =,343a a +=,24a =,125a a +=,1236a a a ++=,2347a a a ++=,12348a a a a +++=, min 4k ∴=.(3)12:,,,k Q a a a ,若i j =最多有k 种,若i j ≠,最多有2C k 种,所以最多有()21C 2k k k k ++=种, 若5k ≤,则12,,,k a a a …至多可表()551152+=个数,矛盾, 从而若7k <,则6k =,,,,,,a b c d e f 至多可表6(61)212+=个数, 而20a b c d e f +++++<,所以其中有负的,从而,,,,,a b c d e f 可表1~20及那个负数(恰 21个),这表明~a f 中仅一个负的,没有0,且这个负的在~a f 中绝对值最小,同时~a f 中没有两数相同,设那个负数为(1)m m -≥ ,则所有数之和125415m m m m m ≥++++++-=+ ,415191m m +≤⇒=,{,,,,,}{1,2,3,4,5,6}a b c d e f ∴=-,再考虑排序,排序中不能有和相同,否则不足20个,112=-+ (仅一种方式),1∴-与2相邻,若1-不在两端,则",1,2,__,__,__"x -形式,若6x =,则56(1)=+-(有2种结果相同,方式矛盾),6x ∴≠, 同理5,4,3x ≠ ,故1-在一端,不妨为"1,2,,,"A B C D -形式,若3A =,则523=+ (有2种结果相同,矛盾),4A =同理不行,5A =,则6125=-++ (有2种结果相同,矛盾),从而6A =,由于7126=-++,由表法唯一知3,4不相邻,、 故只能1,2,6,3,5,4-,①或1,2,6,4,5,3-,② 这2种情形,对①:96354=+=+,矛盾,对②:82653=+=+,也矛盾,综上6k ≠, 当7k =时,数列1,2,4,5,8,2,1--满足题意,7k ∴≥.【点评】关键点评,先理解题意,是否为m -可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m 中间的任意一个值.本题第二问3k ≤时,通过和值可能个数否定3k ≤;第三问先通过和值的可能个数否定5k ≤,再验证6k =时,数列中的几项如果符合必然是{1,2,3,4,5,6}-的一个排序,可验证这组数不合题.5.(2021∙北京∙高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,‐2,‐2,‐1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.【答案】(1)不可以是2R 数列;理由见解析;(2)51a =;(3)存在;2p =. 【详细分析】(1)由题意考查3a 的值即可说明数列不是2ℜ数列; (2)由题意首先确定数列的前4项,然后讨论计算即可确定5a 的值;(3)构造数列n n b a p =+,易知数列{}n b 是0ℜ的,结合(2)中的结论求解不等式即可确定满足题意的实数p 的值.【答案详解】(1)因 为 122,2,2,p a a ===- 所以12122,13a a p a a p ++=+++=, 因 为32,a =-所 以{}312122,21a a a a a ∈+++++ 所以数列{}n a ,不可能是2ℜ数列. (2)性质①120,0a a ≥=,由性质③{}2,1m m m a a a +∈+,因此31a a =或311a a =+,40a =或41a =, 若40a =,由性质②可知34a a <,即10a <或110a +<,矛盾; 若4311,1a a a ==+,由34a a <有111a +<,矛盾. 因此只能是4311,a a a ==.又因为413a a a =+或4131a a a =++,所以112a =或10a =. 若112a =,则{}{}{}2111111110,012,211,2a a a a a a a a +=∈+++++=+=, 不满足20a =,舍去.当10a =,则{}n a 前四项为:0,0,0,1,下面用数学归纳法证明()444(1,2,3),1n i n a n i a n n N ++===+∈: 当0n =时,经验证命题成立,假设当(0)n k k ≤≥时命题成立, 当1n k =+时:若1i =,则()()4541145k k j k j a a a +++++-==,利用性质③:{}*45,144{,1}jk j aa j N j k k k +-+∈≤≤+=+∣,此时可得:451k a k +=+; 否则,若45k a k +=,取0k =可得:50a =,而由性质②可得:{}5141,2a a a =+∈,与50a =矛盾. 同理可得:{}*46,145{,1}jk j a a j N j k k k +-+∈≤≤+=+∣,有461k a k +=+; {}*48,246{1,2}jk j a a j N j k k k +-+∈≤≤+=++∣,有482k a k +=+;{}*47,146{1}jk j aa j N j k k +-+∈≤≤+=+∣,又因为4748k k a a ++<,有47 1.k a k +=+ 即当1n k =+时命题成立,证毕. 综上可得:10a =,54111a a ⨯+==. (3)令n nb a p =+,由性质③可知:*,,m n m n m n N b a p ++∀∈=+∈{},1m n m n a p a p a p a p +++++++{},1m n m n b b b b =+++,由于11224141440,0,n n n n b a p b a p b a p a p b --=+≥=+==+<+=, 因此数列{}n b 为0ℜ数列. 由(2)可知:若444,(1,2,3),1n i n n N a n p i a n p ++∀∈=-==+-;11111402320a S S a p ⨯+-==-≥=,91010422(2)0S S a a p ⨯+-=-=-=--≥,因此2p =,此时1210,,,0a a a ⋯≤,()011j a j ≥≥,满足题意.【点评】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.6.(2020∙北京∙高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n …,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =. ()Ⅰ若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;()Ⅱ若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;()Ⅲ若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.【答案】()Ⅰ详见解析;()Ⅱ答案详解解析;()Ⅲ证明详见解析. 【详细分析】()Ⅰ根据定义验证,即可判断;()Ⅱ根据定义逐一验证,即可判断;()Ⅲ解法一:首先,证明数列中的项数同号,然后证明2231a a a =,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得123,,a a a 成等比数列,之后证得1234,,,a a a a 成等比数列,同理即可证得数列为等比数列,从而命题得证.【答案详解】()Ⅰ{}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①; ()Ⅱ{}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴Q 具有性质①; {}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴Q 具有性质②;()Ⅲ解法一首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<, 第一种情况:若01N =,即01230a a a a <<<<< ,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<, 由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立. 同理可证得数列中的项数恒为负数. 综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥ (*) 由②得:存在s t >,满足:21s s k s s t t a aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+, 由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>= (**)由(**)和(*)式可得:211111k s t k a q a qa q ---≥>, 结合数列的单调性有:211k s t k ≥-->-, 注意到,,s t k 均为整数,故21k s t =--, 代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为:11n n a a q -=.即数列{}n a 为等比数列. 解法二:假设数列中的项数均为正数:首先利用性质②:取3n =,此时23()kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设22131,(1)a a q a a q q ==>,然后利用性质①:取3,2i j ==,则224331121m a a q a a q a a q===, 即数列中必然存在一项的值为31a q ,下面我们来证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l la aa a a a a ==>,从而4k <,与前面类似的可知则存在{,}{1,2,3}()k l k l ⊆>,满足24kl a a a =,若3,2k l ==,则:2341kla a a q a ==,与假设矛盾; 若3,1k l ==,则:243411k la a a q a q a ==>,与假设矛盾; 若2,1k l ==,则:22413k la a a q a a ===,与数列的单调性矛盾; 即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =, 然后利用性质①:取4,3i j ==,则数列中存在一项2264411231m a a q a a q a a q===, 下面我们用反证法来证明451a a q =, 否则,由数列的单调性可知34151a q a a q <<,在性质②中,取5n =,则25k k k k l la aa a a a a ==>,从而5k <, 与前面类似的可知则存在{}{}(),1,2,3,4k l k l ⊆>,满足25k la a a =,即由②可知:22222115111k k l k l l a a q a a q a a q----===, 若214k l --=,则451a a q =,与假设矛盾; 若214k l -->,则451a a q >,与假设矛盾;若214k l --<,由于,k l 为正整数,故213k l --≤,则351a a q ≤,与315a q a <矛盾;综上可知,假设不成立,则451a a q =.同理可得:566171,,a a q a a q == ,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数. 从而题中的结论得证,数列{}n a 为等比数列.【点评】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.7.(2020∙江苏∙高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值;。
2021-2023北京高考真题数学汇编压轴解答题-新定义(第21题)一、解答题1.(2023·北京·统考高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r i B A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数. (1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r jm +−≤+=− ,求n r ; (3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+.2.(2022·北京·统考高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++=,则称Q 为m −连续可表数列.(1)判断:2,1,4Q 是否为5−连续可表数列?是否为6−连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8−连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20−连续可表数列,且1220k a a a +++< ,求证:7k ≥.3.(2021·北京·统考高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n −<=⋅⋅⋅(); ③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅. (1)如果数列{}n a 的前4项为2,-2,-2,-1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.参考答案1.(1)00r =,11r =,21r =,32r =(2),n r n n =∈N(3)证明见详解【分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意分析求解; (2)根据题意题意分析可得11i ir r +−≥,利用反证可得11i i r r +−=,在结合等差数列运算求解; (3)讨论,m m A B 的大小,根据题意结合反证法分析证明.【详解】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========, 当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =; 当1k =时,则01111,,,2,3i B A B A B A i <<>=,故11r =;当2k =时,则22232,0,1,,,i B A i B A B A ≤=>>故21r =;当3k =时,则333,0,1,2,i B A i B A ≤=>,故32r =; 综上所述:00r =,11r =,21r =,32r =. (2)由题意可知:nr m ≤,且n r ∈N ,因为1,1n n a b ≥≥,且11a b ≥,则10n A B B ≥>对任意*n ∈N 恒成立,所以010,1r r =≥, 又因为112ii i r r r −+≤+,则11i i i i r r r r +−−≥−,即112101m m m m r r r r r r −−−−≥−≥⋅⋅⋅≥−≥,可得11i ir r +−≥,反证:假设满足11n nr r +−>的最小正整数为01j m ≤≤−,当i j ≥时,则12i i r r +−≥;当1i j ≤−时,则11i ir r +−=,则()()()112100m m m m m r r r r r r r r −−−=−+−+⋅⋅⋅+−+()22m j j m j ≥−+=−,又因为01j m ≤≤−,则()2211m r m j m m m m ≥−≥−−=+>, 假设不成立,故11n nr r +−=,即数列{}n r 是以首项为1,公差为1的等差数列,所以01,nr n n n =+×=∈N .(3)因为,n n a b 均为正整数,则{}{},n n A B 均为递增数列,(ⅰ)若m m A B =,则可取0t q ==,满足,,p q s t >> 使得t p s q A B A B +=+; (ⅱ)若m m A B <,则k r m <,构建,1n n r n S B A n m =−≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数K ,使得K S m ≤−, 则1,0K K r K r K B A m B A +−≤−−>,可得()()111K K K K K r r r r K r K b B B BA B A m +++−−−−>,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥−.①若存在正整数N ,使得0N N r N S B A =−=,即N N r A B =,可取0,,N t q p N s r ====,满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈−−⋅⋅⋅−−,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =, 即X Y r X r Y B A B A −=−,可得X Y Y r X r A B A B +=+,可取,,,Y X p Y s r q X t r ====, 满足,p q s t >>,使得t p s q A B A B +=+; (ⅲ)若m m A B >,定义{}max ,{0,1,2,,}k i k R i A B i m =≤∈L ∣,则k R m <, 构建,1n n R n S A B n m =−≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数,1K K m ≤≤,使得K S m ≤−, 则1,0K K R K R K A B m A B +−≤−−>,可得()()111K K K K K R R R R K R K a A A AB A B m +++−−−−>,这与{}11,2,,K R a m +∈⋅⋅⋅相矛盾,故对任意11,n m n ≤≤−∈N ,均有1n S m ≥−.①若存在正整数N ,使得0N N R N S A B =−=,即N R N A B =, 可取0,,N q t s N p R ====,即满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈−−⋅⋅⋅−−,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =, 即X Y R X R Y A B A B −=−,可得Y X R X R Y A B A B +=+,可取,,,Y X p R t X q R s Y ====, 满足,p q s t >>,使得t p s q A B A B +=+.综上所述:存在0,0q p m t s m ≤<≤≤<≤使得t p s q A B A B +=+.2.(1)是5−连续可表数列;不是6−连续可表数列. (2)证明见解析. (3)证明见解析.【分析】(1)直接利用定义验证即可;(2)先考虑3k ≤不符合,再列举一个4k =合题即可;(3)5k ≤时,根据和的个数易得显然不行,再讨论6k =时,由12620a a a +++< 可知里面必然有负数,再确定负数只能是1−,然后分类讨论验证不行即可.*,,m n m n m n N b a p ++∀∈=+∈{},1m n m n a p a p a p a p +++++++{},1m n m n b b b b +++,由于11224141440,0,n n n n b a p b a p b a p a p b −−=+≥=+==+<+=, 因此数列{}n b 为0ℜ数列. 由(2)可知:若444,(1,2,3),1n i n n N a n p i a n p ++∀∈=−==+−;11111402320a S S a p ×+−==−≥=,91010422(2)0S S a a p ×+−=−=−=−−≥, 因此2p =,此时1210,,,0a a a …≤,()011j a j ≥≥,满足题意.【点睛】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.。