三维参数化造型及设计(精)
- 格式:ppt
- 大小:458.50 KB
- 文档页数:20
《机械产品三维造型设计(UG)》课程标准(一)课程性质与任务机械产品三维造型设计是三年制高职机械设计与制造专业的一门核心专业课。
本学习领域是以工作任务为导向。
此学习领域所对应的工作任务主要是:掌握绘制二维图形的方法和技巧、实体建模、三维建模技巧、曲面设计的方法和技巧、参数化模型、组件装配设计的基本方法、工程图的创建方法、机构仿真设计、典型零件的模具设计技巧。
它的前修学习领域有,机械制图及计算机绘图、机械零件测绘,后续学习领域有机床夹具设计、顶岗实习。
(二)课程教学目标1.知识目标(1)专业能力①能理解UG的设计思想;②能够绘制二维图形;③能够掌握实体建模、三维建模技巧、参数化模型、曲面设计的方法和技巧;④能够进行组件装配设计;⑤能够进行工程图的创建方法、机构仿真设计、典型零件的模具设计。
(2)方法能力①具有自主学习的能力;②具有合理制定工作计划的能力的能力;③具有查阅资料,文献获取信息的能力;④扩展相应的信息收集能力;⑤具有较好的分析和解决问题的方法能力;(3)社会能力①具有较强的口头与书面表达能力、人际沟通能力;②对工作的整体组织和寻求解决方法的能力;③具有良好的行为规范和职业道德;④具有团队协作的精神;⑤具有良好的心理素质和克服困难的能力;⑥能够具备较强的责任感和严谨认真的工作作风。
2.能力目标(1)绘制二维图形的方法和技巧的能力;(2)实体建模、三维建模技巧的能力;(3)曲面设计的方法和技巧;(4)参数化模型、组件装配设计的基本方法;(5)工程图的创建方法、机构仿真设计、典型零件的模具设计技巧。
3.素质目标(1)解决实际问题、独立学习新软件、实际动手能力和创新能力;(2)培养认真、严谨的治学态度;(3)培养职业道德观念、增强责任感、沟通协调、团队协作的能力。
(三)参考学时:78学时(四)课程学分:3学分(五)课程内容和要求1.理论教学2.实践教学(六)教学建议1.教学方法本课程采用讲授法、演示法、练习法、讨论法、教学做完全一体化、项目式或范例式教学法等。
76现代制造技术与装备2017第2期总第243期基于Autodesk Inventor的三维参数化设计方法邢洁林(江苏省宜兴丁蜀中等专业学校,宜兴214221)摘要:参数化设计可以直接依据设计人员的设计意图,通过参数驱动,实现自动改变图形的大小、关联尺寸、形状等。
在进行设计的过程中,只要在基本特征的基础上添加或去除,就可以获得较复杂的三维模型,在提升设 计效率、设计的精准度等方面具有积极的作用。
在此背景下,本文以某款板簧组件为例,对以A u t o d e s k Inventor 为基础的三维参数化设计方法展开研究,以期为三维参数化设计提供借鉴。
关键词:A u t o d e s k I n v e n t o r三维参数化设计方法引言A u t o d e s k I n v e n t o r是美国推出的一款三维可视化实体模拟软件,在处理大型组装模型的过程中,交互性能非 常突出。
应用过程中,它不仅具有应用草绘二维界面以及 旋转、拉伸草图建设实体模型等功能,而且可以将单个零 件进行组合,且可以将实体模型向平面投影,形成对应的 工程图。
在A u t o d e s k I n v e n t o r的基础上进行三维参数化 设计,不仅具有可行性,而且整个过程较容易操作。
1基于A u t o d e s k I n v e n t o r的三维参数化设计方法1.1零件造型建模过程对于振动装置来说,其零件多达10余个。
实际建模 中,可以借助A u t o d e s k I n v e n t o r来完成。
在A u t o d e s k I n v e n t o r的作用下,可以有效增强参数驱动。
在机械振动装置中,板簧组件是不可缺少的一部分。
随着A u t o d e s k I n v e n t o r的应用,可以顺利完成振动装置设计。
在零件造型建模中,可以按照以下步骤来完成。
在弹 簧板组件上压块设计中,首先应利用I n v e n t o r模板做好草 图设计,并确定好零件外形,明确零件设计尺寸,做好约 束条件设计,且根据设计需求改变设计尺寸[1]。
圆柱凸轮的三维参数化设计及数控加工编程摘要:作为拥有良好运动性能的圆柱凸轮,会受到动件运动规律因素影响,生成复杂空间曲面,导致在设计、加工等方面面临较大困难。
本文对于圆柱凸轮的三维参数化设计及数控加工编程进行详细分析,通过Pro/E系统进行三维参数化设计,使用Master CAM软件进行数控加工编程。
旨在为我国众多制造企业提供技术帮助,推动国民经济有序发展。
关键词:圆柱凸轮;三维参数化设计;数控加工编程相较于平面凸轮机构,圆柱凸轮这种空间凸轮机构具有良好刚性,控制从动件运动稳定,可以满足机械高速运行的需求。
空间凸轮拥有这些特性,主要是因为其具有凸轮轮廓曲面。
考虑到圆柱凸轮设计、加工较为困难,过去常使用矩形平面取代圆柱面,并以平面凸轮计算轮廓坐标。
仍存在加工精度偏低的问题,无法满足制造业生产需求,需要寻找更加便利方法进行凸轮设计、加工。
1三维参数化设计对于圆柱凸轮三维参数化设计作业,需要将轮廓曲面设计作为重点内容严格对待。
以自变参数原始数据作为设计基础,建设三维模型,从而分析和三维模型相对应的参数化模型。
对于尖顶推杆圆柱凸轮,可以从正弦加速度、余弦减速度两个方面入手,利用这种运动规律,优化圆柱凸轮三维参数化设计工作。
1.1设计自变设计参数在设计圆柱凸轮的轮廓曲面时,其结构参数与从动件运动规律已经提前获得。
所以,在设计圆柱凸轮数据模型时,选择Pro/E系统的应用工具,设置圆柱凸轮自变参数后,赋予参数初值即可。
这里需要注意一点,对于推程角、远休角、回程角、近休角几个参数,需要保证初值之和为360°,即各段曲线是以封闭状态构成凸轮曲线[1]。
1.2利用方程曲线分段模式,描述轮廓曲面扫描轨迹控制线根据圆柱凸轮轮廓曲线数学模型和从动件运动规律,使用方程曲线对轮廓曲面扫描轨迹控制线进行描述。
主要选择推程角、远休角、回程角、近休角,利用这几个角度相对的轮廓曲面,描述圆柱凸轮的平面坐标。
1.3通过扫描变截面,获得凸轮实体选择Pro/E系统中的Fron模块,利用圆周描述凸轮轮廓扫描轨迹原始控制线。
三维服装参数化设计技术目前许多服装设计师都开始将三维服装参数化设计技术应用到设计过程中。
这项技术可以帮助设计师更快更精确地完成设计和样板制作,从而提高了制作效率和设计质量。
本论文将介绍三维服装参数化设计技术的相关内容,提出了可行的解决方案和实现方法,以及各种应用场景和优势。
以下为本论文的提纲:第一章:前言介绍三维服装参数化设计技术的背景和意义,探讨其研究目的、意义和难点。
第二章:三维服装参数化设计技术的基础介绍几何模型、材料模型、动画模型等基本知识,以及参数化技术的原理和实现方式。
第三章:三维服装参数化设计技术的实现方法介绍三维服装参数化设计技术的实现方法,包括数据结构、算法设计等方面。
第四章:三维服装参数化设计技术的应用场景介绍三维服装参数化设计技术在服装设计和生产中的应用场景,包括服装样板制作、流程优化、可视化设计等方面。
第五章:三维服装参数化设计技术的优势和局限总结三维服装参数化设计技术的优势和局限,探讨其可持续发展的方向和挑战。
第六章:结论总结本论文的主要观点和结论,展望未来三维服装参数化设计技术的发展前景。
第一章:前言服装是个体化的艺术品,需要经过复杂的过程才能完成。
在过去,服装的设计需要多次修改、试验和制作才能达到最终的效果。
这不仅耗费了大量的时间和资金,而且也无法满足当今市场对快速、高质量、个性化服装的需求。
然而,随着三维服装参数化设计技术的出现,这些问题正在被逐渐解决。
三维服装参数化设计技术是将计算机技术应用于服装设计和制造过程中的一种新兴技术。
它通过数字化模拟人体、服装和材料的外观和内部属性,可以在计算机上进行快速的效果预览、修改和制作。
不仅可以大大缩短设计和制作周期,而且还可以实现更精确、多样化的服装设计和制作。
本章将介绍三维服装参数化设计技术的背景和意义。
首先,本文将介绍三维服装参数化设计技术的发展历程和研究现状,深入分析该技术的研究目的、意义、特点以及难点。
然后,本文将介绍几个重要的三维服装参数化设计技术的实际应用场景,包括服装样板制作、流程优化和可视化设计等方面。
基于Pro/E ngineer 的圆锥齿轮的三维参数化造型设计戴护民(武汉船舶职业技术学院机械工程系,湖北武汉 430050)摘 要 深入研究了圆锥齿轮参数化造型设计的基本方法,采用7个独立参数作为圆锥齿轮齿形特征参数,给出了圆锥齿轮造型设计的详细步骤。
利用Pro/Engineer 的Program 模块实现了参数修改程序,扩展了模型构造方式。
关键词 圆锥齿轮;参数化;Program 模块中图分类号 TP391.72 文献标志码 A 1671-8100(2006)01-0033-03收稿日期:2005-08-20作者简介:戴护民,男,讲师,博士研究生,主要从事模具设计教学与研究工作。
Pro/E 中的Program 二次开发工具,很好地体现了参数化设计的特性,能方便地实现对已有的各种实体库通过实体的基本参数的改变而生成所需的新的实体,从而缩短产品开发的时间并简化开发的流程,大大地提高设计效率。
本文针对圆锥齿轮的实体建模,记录在Program 模块中生成的参数,根据需要进行修改,然后运行这个程序再输入变更的参数生成新的齿轮。
1 圆锥齿轮实体造型分析由于圆锥齿轮的外形比较复杂,完全由参数和代码形成所有特征并确定它们的关系非常困难,造型难点在于如何确定圆锥齿轮的齿廓线位置,正确作出圆锥齿轮的齿形。
本文所采用的方法是以方程式创建三维球面渐开线,基圆,齿根圆,齿顶圆,节圆,利用以上曲线完成圆锥齿形构建,以阵列方式完成齿形的复制,最后剪切生成圆锥齿轮。
这种方法的特点是可以快速,精确地设计圆锥齿轮,充分发挥三维参数化设计的优势。
球面渐开线的关系式用如下参数式来描述:x =r cos (βsin δb )sin δb sin β+r sin (βsin δb )cos βy =r cos (βsin δb )sin δb sin β+r sin (βsin δb )sin βz =r cos (βsin δb )cos δb(1)其中:r 为节锥距;β=360×t ,t 是一个0~1的渐变量(下同);δb 为基圆锥半角。
学士学位毕业论文Pro/e内齿轮三维参数化造型设计学生姓名:指导教师:所在学院:学号:专业:中国·大庆2009年 6 月摘要以Pro/E Wildfire2.0为开发平台,以直齿圆柱内齿轮为研究对象,利用关系式约束的空间曲线,以拉伸、镜像及阵列等方法创建直齿圆柱内齿轮实体。
并以Pro/program模块为开发工具,进行圆柱内齿轮三维参数化程序设计,用户可根据人机交互界面的提示,输入相关参数,即可自动生成圆柱齿轮的三维实体,从而缩短产品开发周期,提高设计效率。
在设计的过程中举例介绍了在开发一种新型钻杆动力钳过程中利Pro/E 的三维参数化造型功能进行内齿套的参数化设计过程。
采用这种方法可以通过改变齿轮的驱动参数直接得到不同型号零件,简化了设计过程,节约了时间。
关键词:Pro/E;内齿轮参数化设计;Pro/programAbstractTaking Pro/E Wildfire2.0 as a development environment, taking spur internal gear as research object, the author made use of stretch and mirror method, the entity of gear is attained. Then taking Pro/program as development tool, the 3D-solid parameterized design for the spur in-ternal gear is attained. Inputting some basic parameters of the gear, the strict 3D-solid of the spur gear is automatically generated. So it can shorten the period of development and improve the efficiency.So ,for example,Based on the software Pro/E,a process of parametric design of the internal gear used in drill pipe tone is introduced. By this method, different types of the parts can be gained by inputting different power pa-rameters easily. It has simplified the design procedure and save the timeKey words:Pro/E;internal gear;parametric design;Pro/ program目录摘要 (I)Abstract (II)1绪论 (1)1.1 PRO/E参数化造型设计的意义 (1)1.2 PRO/E 软件的介绍 (1)1.2.1参数化设计和特征功能 (2)1.3 PRO/E 的二次开发 (2)1.3.1自动特征建模实例 (4)1.3.2 PRO/E与MFC的接口开发 (4)1.3.3 关于PRO/E二次开发小结 (4)1.4 PRO/E软件研究动态 (5)2 内齿轮的设计方法 (7)2.1内齿轮设计的分析 (7)2.2.基于Pro/Program二次开发齿轮参数化设计的步骤 (7)2.2.1 齿轮齿槽形状的精确确定 (7)2.3 设计举例 (8)2.4现代工程设计理论方法 (9)3、参数化实际的研究动态 (10)3.1参数化设计方法 (10)3.2国内外发展趋势 (10)3.3参数化设计意义 (10)3.4参数化设计的方法和实现原理 (11)3.5参数化模型的建立 (13)3.5.1程序参数化 (13)3.5.2交互参数化法 (14)3.5.3构造过程法 (14)3.5.4离线参数化方法 (14)3.5.5图形的局部参数化 (15)3.5.6工程图样的参数化 (15)4、设计步骤 (16)4.1研究思路 (16)4.2渐开线的设计要点 (16)4.3设计内容 (16)4.3.1 参数分析及设置 (16)4.3.2 零件模型的建立 (17)4.3.3 建立参数间关系 (17)4.3.5 结语 (23)4.4 传统设计的缺陷 (24)4.4.1.不能支持设计过程的完整阶段 (24)4.4.2.不符合工程设计人员的习惯 (24)4.4.3.无法支持并行设计过程 (25)结论 (26)参考文献 (27)致谢 (29)1绪论1.1 PRO/E参数化造型设计的意义当今的工业领域,越来越多地把产品的设计、分析、制造、数据管理与信息技术融为一体,以此提高工业生产的自动化水平。
三维参数化设计探究——参数化方法论三维参数化设计是一种基于参数化方法的设计方法,通过对设计问题进行参数化建模、优化和分析,实现设计方案的快速生成和灵活调整。
在三维参数化设计中,设计问题被视为一个参数空间,设计师通过改变参数的取值来探索和优化设计方案。
参数化方法论是三维参数化设计的理论基础,它提供了一种系统的方法来解决设计问题。
参数化方法论主要包括以下几个方面的内容:1.参数化建模:参数化建模是将设计问题转化为一个参数空间的过程。
设计师需要将设计问题抽象成一系列可调整的参数,然后通过参数间的关系来构建参数化模型。
参数化模型是一种基于参数的几何模型,可以根据参数的取值实时地生成不同的几何形状。
2.参数化优化:参数化优化是通过优化算法来参数空间中的最优解。
在参数化优化中,设计师需要定义一个性能评价函数,用来评估不同参数组合的设计方案。
然后,优化算法根据评价函数的反馈信息来最优解。
常用的参数化优化方法包括遗传算法、蚁群算法、粒子群算法等。
3.参数化分析:参数化分析是利用参数化模型对设计方案进行灵活调整和分析。
通过改变参数的取值,设计师可以直观地观察到设计方案的变化。
而且,基于参数化模型,设计师还可以对设计方案进行一系列性能分析,例如强度分析、流场分析、光照分析等。
3.参数化模型与实体模型之间的转换:在实际应用中,设计师通常会先使用参数化建模工具构建参数化模型,然后通过参数化模型生成实体模型。
参数化模型是一种抽象的几何模型,而实体模型是一种具体的几何模型,可以直接输出制造或可视化。
参数化模型与实体模型之间的转换通常需要进行网格生成、拓扑处理和曲面生成等步骤。
三维参数化设计具有多个优点和应用价值。
首先,三维参数化设计可以提高设计效率与设计质量。
通过参数化建模,设计师可以轻松地生成大量设计方案,并通过参数化优化来最优解。
其次,三维参数化设计可以加强设计的灵活性与可调整性。
通过参数化分析,设计师可以直观地观察到设计方案的变化,并根据需要进行灵活调整。