AI 25发展趋势研究报告
- 格式:docx
- 大小:3.86 MB
- 文档页数:85
2025-2031年中国人工智能行业前景研究与市场前景预测报告人工智能(AI),是研究模拟人类智能、智能行为及其规律的一门学科,是用人工的方法来模仿人类所进行的智能活动。
所谓“智能”,可以认为是人类脑力劳动所表现出来的能力,例如感知、理解、抽象、分析、推理、判断、决策、学习和对变化环境的适应等。
在市场规模方面,2024年,中国人工智能产业规模达到约3451亿元。
在企业数量方面,企查查数据显示,截至2024年2月25日,我国在业/存续“人工智能”相关企业共69.3万家。
2024年,我国“人工智能”相关企业新增33.8万家。
在融资方面,2024年全国人工智能版块共发生了971起融资事件(不算拟收购、被收购、定增、挂牌上市),累计披露的融资金额1096.35亿元。
单笔融资金额超过亿元的案例326起,合计融资金额高达1023.57亿元,占2024年融资规模总额的93.36%。
随着算法的创新、算力的增强、数据资源的累积,智能化基础设施的建设和传统基础设施将实现智能化升级,人工智能技术有望推动经济发展全要素的智能化革新。
2024年3月12日,两会受权发布《中华人民共和国国民经济和社会发展第十四个五年规划和2024年远景目标纲要》,其中明确指出要聚焦人工智能等重大创新领域组建一批国家实验室,重组国家重点实验室,同时,要培育壮大人工智能产业。
2024年3月发布的《关于加强科技伦理治理的意见》指出,制定生命科学、医学、人工智能等重点领域的科技伦理规范、指南等。
“十四五”期间,重点加强生命科学、医学、人工智能等领域的科技伦理立法研究,及时推动将重要的科技伦理规范上升为国家法律法规。
为加快推动人工智能应用,助力稳经济,培育新的经济增长点,2024年8月12日,《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》发布(下称《意见》)。
《意见》提出,大力支持专精特新“小巨人”、独角兽、人工智能初创企业等积极开展场景创新,参与城市、产业场景建设,通过场景创新实现业务成长。
2023年人工智能行业市场发展现状人工智能(AI)作为数字时代的核心技术之一,正在快速发展。
AI已经在各种行业中得到了广泛应用,包括医疗保健、零售、金融服务和制造业等。
根据市场研究公司Tractica的数据,人工智能市场的规模预计在2025年将超过1180亿美元。
以下是2023年人工智能行业市场发展现状的调研报告:一、行业应用领域广泛在各个领域中,AI技术都有不同的应用,推动着相关行业的发展。
在医疗保健领域,AI技术被应用于数据分析,帮助医生更好地诊断疾病。
在零售行业,AI技术可以通过数据分析协助业主了解消费者的行为模式,这样可以更好地针对各种消费者群体进行营销和促销。
在金融服务领域,AI技术可以通过对大量数据进行分析,协助投资人更好地投资和风险管理。
在制造业中,AI技术可以帮助管理生产线,避免了生产线出现故障时需要停机维修的问题。
二、市场规模增长迅速AI市场规模正在快速增长。
根据市场研究公司IDC的数据,全球人工智能硬件、软件和服务的支出额从2019年的35亿美元增长到2024年的2,06亿美元。
此外,这个领域的增长速度非常快,预计从2020年到2024年每年将增长33.2%。
三、技术创新的进展AI技术领域的快速发展离不开技术创新。
就目前而言,深度学习(deep learning)技术是一种获得广泛应用的AI技术。
不过,随着各种新技术的推出,在未来AI技术的发展将更具多样性。
例如,在医疗保健领域,AI技术可通过使用自然语言处理技术,对患者的状况进行更详细的评估,提供更好的诊断和治疗方案。
四、挑战与机遇并存AI的广泛应用在提高效率的同时,也存在着一些挑战。
例如,基于AI的自动化工具可能会带来新的就业岗位,但是它们也有可能取代一些传统的工作,也可能会对人类构成威胁。
在未来的几年内,AI技术的应用将带来挑战和机遇的并存,如何实现平衡和可持续发展是这个领域的重要问题。
总之,AI作为一项核心的数字技术,已经深入到各个行业中,并成为了促进各个领域发展的强力驱动力。
人工智能行业调研报告人工智能应用和发展趋势人工智能行业调研报告人工智能(Artificial Intelligence,AI)是当今科技领域最热门的话题之一。
它以模拟人类智能和学习能力为目标,通过计算机技术来实现智能化的人类行为。
近年来,随着大数据、云计算和硬件技术的飞速发展,人工智能行业得以迅猛发展,并在众多领域中得到广泛应用。
本报告旨在对人工智能应用和发展趋势进行调研分析。
一、人工智能应用领域1.1 语音识别技术语音识别技术是人工智能中的重要应用领域。
通过使用语音识别技术,计算机可以将人类的声音转化为文字,从而实现自动化的语音识别和处理。
这项技术在智能助理、语音搜索和自动驾驶等领域得到广泛应用。
1.2 图像识别技术图像识别技术是人工智能中的另一个重要应用领域。
通过使用图像识别技术,计算机可以识别和理解图像中的对象和场景。
这项技术在人脸识别、安防监控和智能交通等领域发挥了重要作用。
1.3 自然语言处理技术自然语言处理技术是人工智能中的核心应用领域之一。
通过使用自然语言处理技术,计算机可以理解和处理人类的自然语言,实现自动化的语言分析和处理。
这项技术在机器翻译、智能客服和舆情分析等领域具有广泛的应用前景。
1.4 聊天机器人技术聊天机器人技术是近年来人工智能领域中的新兴应用。
通过使用聊天机器人技术,计算机可以模拟人类的对话过程,与用户进行语言交互。
这项技术在智能客服、虚拟助手和智能教育等领域有着巨大的潜力。
二、人工智能发展趋势2.1 强化学习强化学习是人工智能发展的重要方向之一。
通过使用强化学习算法,计算机可以通过试错的方式不断优化自己的决策和行为,实现自主学习和智能化的决策能力。
强化学习在智能游戏和自动驾驶等领域具有广泛的应用前景。
2.2 深度学习深度学习是人工智能发展的另一个重要方向。
通过使用深度神经网络模型,计算机可以模拟人脑的神经网络结构,从而实现对大规模数据的学习和分析。
深度学习在图像识别、语音识别和自然语言处理等领域取得了重大突破。
中国人工智能行业市场现状及未来发展前景预测分析报告博研咨询&市场调研在线网中国人工智能行业市场现状及未来发展前景预测分析报告正文目录第一章、人工智能行业定义 (3)第二章、中国人工智能行业综述 (4)第三章、中国人工智能行业产业链分析 (5)第四章、中国人工智能行业发展现状 (6)第五章、中国人工智能行业重点企业分析 (8)第六章、中国人工智能行业发展趋势分析 (9)第七章、中国人工智能行业发展规划建议 (11)第八章、中国人工智能行业发展前景预测分析 (12)第九章、中国人工智能行业分析结论 (13)第一章、人工智能行业定义人工智能(Artificial Intelligence, AI)是指由计算机系统所表现出的智能行为。
它不仅涵盖了机器学习、自然语言处理、图像识别等多个子领域,还广泛应用于从自动驾驶汽车到智能家居设备等各种场景中。
随着技术的进步和市场需求的增长,AI已成为推动全球经济增长的关键力量之一。
1.1 人工智能市场规模全球人工智能市场持续扩张。
2022全球AI市场规模达到约4,500亿美元,预计到2027这一数字将增长至16,000亿美元左右,复合年增长率超过25%。
北美地区占据了最大的市场份额,而亚太地区则显示出最快的增长速度。
1.2 主要应用领域AI技术主要应用于以下几个方面:医疗健康:通过AI算法辅助诊断疾病、个性化治疗方案设计等,有效提高了医疗服务效率与质量。
2021年全球医疗AI市场规模约为60亿美元,并有望在未来五年内实现年均35%以上的增长。
金融服务:AI在风险管理、信贷审批、智能投顾等领域发挥了重要作用。
2022全球金融科技领域中AI相关投资总额超过了100亿美元。
零售电商:AI技术帮助零售商优化库存管理、提升顾客购物体验。
根据博研咨询&市场调研在线网分析,2023年全球零售业AI解决方案市场规模将达到80亿美元左右。
智能制造:AI赋能工业自动化生产流程,显著提升了制造业的生产效率。
2024中国人工智能产业研究报告标题:2024中国产业研究报告一、引言随着科技的飞速发展,人工智能(AI)逐渐深入到各个行业和领域,改变着我们的生活方式,推动着社会进步。
特别是在中国,AI产业已经成为经济持续发展的重要驱动力。
本报告将对中国2024年人工智能产业的现状、发展和未来趋势进行深入研究和分析。
二、中国AI产业的现状中国AI产业在过去的几年中一直保持快速增长。
这主要得益于政府的支持,强大的科研实力,以及广阔的市场需求。
在基础技术领域,中国的AI芯片、深度学习框架等方面已经达到世界领先水平。
此外,中国在人脸识别、语音识别、自然语言处理等应用领域也取得了重大突破。
三、中国AI产业的发展趋势1、AI芯片市场:随着物联网、云计算、大数据等技术的快速发展,AI芯片市场将进一步扩大。
据预测,到2024年,中国AI芯片市场规模将达到300亿美元。
2、自动驾驶:自动驾驶技术正在快速发展,中国的自动驾驶市场规模也在不断扩大。
预计到2024年,中国自动驾驶市场规模将达到100亿美元。
3、智能制造:随着工业4.0的到来,智能制造正在成为制造业的核心。
中国政府对智能制造的大力支持将推动这一市场的快速发展。
预计到2024年,中国智能制造市场规模将达到200亿美元。
四、中国AI产业的挑战尽管中国AI产业正在快速发展,但也面临着一些挑战。
例如,数据安全和隐私保护问题,AI技术带来的就业问题,以及技术伦理问题等。
五、结论中国的人工智能产业在过去的几年中取得了显著的发展,预计到2024年,这个产业将继续保持快速增长。
然而,也面临着一些挑战。
这将需要政府、企业和社会共同应对和解决。
同时,中国AI产业的发展也将对全球人工智能产业产生重要影响。
六、建议和展望1、加强AI教育和培训:为了应对AI带来的就业问题,政府和企业应加强AI教育和培训,帮助劳动者适应新的工作环境。
2、强化数据安全和隐私保护:政府应制定更严格的法规,保护个人数据和隐私。
中国人工智能技术行业市场现状及未来发展前景预测分析报告博研咨询&市场调研在线网中国人工智能技术行业市场现状及未来发展前景预测分析报告正文目录第一章、人工智能技术行业定义 (3)第二章、中国人工智能技术行业综述 (4)第三章、中国人工智能技术行业产业链分析 (6)第四章、中国人工智能技术行业发展现状 (7)第五章、中国人工智能技术行业重点企业分析 (8)第六章、中国人工智能技术行业发展趋势分析 (9)第七章、中国人工智能技术行业发展规划建议 (11)第八章、中国人工智能技术行业发展前景预测分析 (13)第九章、中国人工智能技术行业分析结论 (14)第一章、人工智能技术行业定义人工智能(Artificial Intelligence, AI)是指由计算机系统或其他形式的信息处理设备所表现出来的智能行为。
它旨在通过模拟、扩展和增强人类智能的方式,使机器能够执行通常需要人类智能才能完成的任务。
自20世纪50年代以来,AI经历了多次发展高潮与低谷,如今已成为全球科技创新的重要驱动力之一,并广泛应用于各个领域。
1.1 行业概述2022年全球人工智能市场规模达到4,280亿美元,预计到2027年这一数字将增长至12,960亿美元,复合年增长率高达25%。
这表明随着技术进步和应用场景的不断拓展,AI产业正迎来前所未有的发展机遇。
1.2 核心技术构成人工智能主要由以下几项关键技术组成:机器学习:作为AI的核心组成部分,2021年全球机器学习市场规模约为110亿美元,预计未来五年内将以每年超过30%的速度增长。
自然语言处理(NLP):2022年NLP市场规模约为130亿美元,预计到2026年将达到340亿美元左右。
计算机视觉:该领域2021年的市场规模为117亿美元,预计2028年将突破2,000亿美元大关。
机器人技术:包括工业机器人和服务机器人两大类。
2022年全球机器人销售额为510亿美元,其中服务机器人增速尤为显著,预计2025年将实现翻倍增长。
一、2024年中国人工智能行业现状
2024年是中国人工智能行业发展的一个里程碑年。
从行业现状来看,人工智能技术的应用日益广泛,行业总量和总体增速都较快,且市场竞争
逐渐加剧。
首先,人工智能的应用越来越广泛,涉及范围从智能家居,到自动驾驶、机器人和虚拟学习辅助,到社交媒体,语音识别和图像识别,到金融,生物医学诊断等等均有运用,在实际应用中得到了迅速扩张。
其次,中国人工智能行业总量增长迅速,据国家统计局数据显示,2024年中国人工智能行业总规模达到了1.4万亿元,同比增长22.4%,
跌势较2024年的24.8%有所放缓。
此外,中国人工智能行业增速也较快,重庆大学2024年发布的中国
人工智能市场发展研究报告显示,今年中国人工智能行业的市场占有率仍
将维持在15%到20%之间,市场增长率高达26.3%,略低于2024年的27.3%,但与去年相比仍有显著提升。
最后,市场竞争也越来越激烈,人工智能技术应用的范围越来越宽泛,各方均在积极抢占先机,以抢占市场份额,其中中国企业逐步取得了不断
的成果,成为国内市场的中流砥柱。
二、2024年中国人工智能行业发展趋势
2024年中国人工智能行业随着技术突破和市场竞争的不断加。
人工智能行业研究报告
一、简介
人工智能(AI)是一种以计算机科学为基础,将大量数据进行有效组织并产生结果的技术。
它主要利用计算机编程技术来模拟人类智力,以实现对复杂问题的自动分析和推理,从而开展解决问题的过程。
当前,人工智能技术已经开始从研究阶段进入应用阶段,在汽车、智能家居、医疗、金融服务等方面都取得了显著的成果。
二、行业发展现状
1、技术发展趋势
当前,人工智能技术发展的主要方向是深度学习、机器视觉、自然语言处理等。
同时,属于深度学习领域的技术,如卷积神经网络(CNN)、循环神经网络(RNN)和深度强化学习(DRL)等,也取得了巨大的发展。
2、行业应用现状
从当前应用来看,人工智能技术在汽车、智能家居、医疗、金融服务等领域得到了越来越广泛的应用,以及更新的产品,如自动驾驶领域的AutoX、机器人领域的Ubot等。
比如,有部分城市已经在自动驾驶领域开始了商用。
三、发展前景
1、技术前景
由于AI技术领域不断发展,因此,今后技术发展的方向可能会有所变化。
2023年人工智能行业研究报告人工智能(Artificial Intelligence,简称AI)是当前全球科技领域重要的前沿技术之一,也是未来科技与经济发展的重要推动力量。
随着技术的不断进步和应用场景的不断拓展,人工智能行业在2023年有望迎来新的发展机遇和挑战。
一、行业概述2023年,人工智能行业将进入技术和应用双轮驱动的快速发展阶段。
在技术方面,人工智能算法的不断深化、硬件设备的不断升级以及数据基础的逐渐完备将推动人工智能技术创新,并广泛应用于各行各业。
在应用方面,人工智能将进一步渗透到智能制造、医疗健康、金融服务、智慧城市等领域,提高生产效率和服务质量,推动经济社会发展。
二、产业发展态势2023年,人工智能产业将呈现出以下几个发展态势:1. 技术创新驱动产业升级。
人工智能技术的不断创新将推动人工智能产业从基础研究向应用转化,从单一应用向复合应用扩展。
例如,深度学习、自然语言处理、机器视觉等技术将得到更广泛的应用,推动人工智能在自动驾驶、智能医疗、智慧金融等领域的快速发展。
2. 产业生态进一步完善。
2023年,人工智能产业生态将更加健全。
各类企业将形成以大型科技公司为核心,涵盖了硬件设备、云计算平台、算法研发、智能应用等多个环节的完整产业链。
与此同时,人工智能产业将与传统产业深度融合,形成新的商业模式和协同创新机制。
3. 国际竞争格局加剧。
随着全球各国在人工智能领域的重视程度不断提升,2023年人工智能产业的国际竞争将更加激烈。
美国、中国、欧洲等地的人工智能产业将成为全球竞争的主要力量。
同时,中国的人工智能产业将通过人才培养、政策支持和国际合作等手段提升自身竞争力。
三、发展面临的挑战2023年人工智能行业的发展离不开以下几个挑战的应对:1. 数据安全和隐私保护。
随着人工智能应用的广泛拓展,数据安全和隐私保护问题日益引起关注。
人工智能企业需要加强对数据的安全管理,建立起健全的数据隐私保护体系,提高用户信任度和数据使用的合规性。
AI技术的发展趋势与前景展望引言:随着科技的不断进步和创新,人工智能(Artificial Intelligence,简称AI)已经成为许多行业和领域中必不可少的一部分。
AI技术正在以惊人的速度迅猛发展,并且在诸多应用领域都取得了有目共睹的成果。
本文将探讨人工智能技术当前的发展趋势,并对其未来的前景进行展望。
一、AI技术当前的发展趋势:1. 大数据和机器学习的融合:大数据是AI技术中至关重要的组成部分。
通过收集和分析海量数据,AI系统可以学习并提取出有价值的信息。
而机器学习则是实现这一目标的核心算法。
当前,大数据和机器学习正在密切融合,相互促进彼此发展。
通过结合大数据和机器学习,企业可以更好地理解消费者需求、优化产品设计以及改善市场营销策略等方面。
2. 深度学习算法的广泛应用:深度学习是一种模拟人类神经网络处理信息过程的方法,已在图像识别、语音识别和自然语言处理等领域取得了重大突破。
深度学习算法通过多层次的神经网络将数据进行抽象和分解,从而实现自动特征提取和模式识别。
当前,深度学习算法正被广泛应用于许多行业,如医疗、金融、交通等,对数据分析和信息处理能力的提升起到了至关重要的作用。
3. 人工智能与物联网的结合:物联网是指将传感器等设备连接到互联网上,实现设备间的信息交流和互操作。
AI技术与物联网的结合为人们带来了前所未有的便利。
通过AI技术对传感器数据进行分析,可以实现自动化控制、智能家居、智慧城市等一系列创新应用,并进一步提高生产效率和生活品质。
二、AI技术未来的前景展望:1. 自动驾驶技术:自动驾驶技术是当前AI领域最具发展潜力之一。
随着车载传感器和计算机视觉技术的不断创新,汽车制造商正致力于开发更加先进且安全可靠的自动驾驶系统。
预计在未来几年内,自动驾驶汽车将逐步实现商业化,并对交通运输、公共安全等领域产生重大影响。
2. 医疗健康领域的应用:在医疗健康领域,AI技术的应用前景广阔。
例如,通过分析大量患者数据,AI系统可以提供个性化的诊断和治疗方案;智能医疗设备和机器人也能够为医生进行手术辅助以及提供精确的诊断结果。
AI 25发展趋势研究报告WHAT’S NEXT IN AI?Artificial IntelligenceTable of ContentsCONTENTSNExTT framework 3NECESSARYOpen-source frameworks 6 Edge AI 9 Facial recognition 12 Medical imaging & diagnostics 16 Predictive maintenance 18 E-commerce search 20EXPERIMENTALCapsule Networks 23 Next-gen prosthetics 26 Clinical trial enrollment 28 Generative Adversarial Networks (GANs) 31 Federated learning 37 Advanced healthcare biometrics 40 Auto claims processing 43 Anti-counterfeiting 45 Checkout-free retail 50 Back office automation 53 Language translation 55 Synthetic training data 58THREATENINGReinforcement learning 62 Network optimization 66 Autonomous vehicles 70 Crop monitoring 73TRANSITORYCyber threat hunting 75 Conversational AI 78 Drug discovery 81NExTT FRAMEWORKArtificial Intelligence Trends in 2019TRANSITORYConversationalagentsCyber threat huntingSynthetic training dataE- NECESSARYOpen source frameworksFacial recognitionPredictive Edge maintenancecomputingMedical imaging & diagnosticscommerce searchDrug discoveryBack office automationLanguage translation Anti-counterfeitCheck-out freeretailAdvanced healthcareAuto claims biometricsClinical trial processingenrollmentNext-gen GANsprostheticsFederatedlearningCapsule NetworksEXPERIMENTALCrop monitoringReinforcementAutonomouslearningnavigationNetwork optimizationTHREATENINGLowMARKET S TRENGTH HighApplication: Computer visionApplication: Natural languageprocessing/synthesisApplication: Predictive intelligenceArchitectureL o wH i g hI N D U S T R Y A D O P T I O NInfrastructureNExTT TrendsTRANSITORY NECESSARYAdvanced driver assistanceTelematicsVehicleconnectivity On-demand Next gen HDLithium-ionaccess infotainmentmappingbatteries AI p rocessor chips & software On-boarddiagnostics AV sensors & sensor fusion Mobile Digitalmarketing dealershipAdditiveIndustrial internet ofUsage-based manufacturingthings (IIoT)insuranceIndustrialcomputerWearables andAlternativevisionexoskeletons powertrainDrivertechnology monitoring FlexibleVehicleOnline Decentralizedassemblylightweighting aftermarket productionlines partsPredictivemaintenance Vehicle-to-everythingtechgCar vendin AutomobilemachinessecurityVirtual showroomsFlying robotaxis BlockchainEXPERIMENTALverificationTHREATENINGTRANSITORYTrends seeing adoption butwhere there is uncertainty about market opportunity. As Transitory trends become more broadly understood, they may reveal additional opportunities and markets.NECESSARY Trends which are seeing wide-spread industry and customer implementation / adoption and where market and applications are understood.For these trends, incumbentsshould have a clear, articulatedstrategy and initiatives .EXPERIMENTALTHREATENING Conceptual or early-stage trends with few functional products and which have notseen widespread adoption. Experimental trends are already spurring early media interest and proof-of-concepts. Large addressable market forecasts and notable investment activity.The trend has been embraced by early adopters and may be on the precipice of gaining widespread industry or customer adoption.LowMARKET STRENGTHHighWe evaluate each of these trends using the CB Insights NExTT framework.The NExTT framework educates businesses about emerging trends and guides their decisions in accordance with their comfort with risk.NExTT uses data-driven signals to evaluate technology, product, and business model trends from conception to maturity to broad adoption.The NExTT framework’s 2 dimensions: INDUSTRY ADOPTION (y-axis): Signals include momentum of startups in the space, media attention, customer adoption (partnerships, customer, licensing deals).MARKET STRENGTH (x-axis): Signalsinclude market sizing forecasts, quality and number of investors and capital, investments in R&D, earnings transcript commentary, competitive intensity, incumbent deal making (M&A, strategic investments).I N D U S T R Y A D O P T I O NL o wH i g hNExTT framework’s 2 d imensionsIndustry Adoption (y axis)Signals include:momentum ofstartups in the spacemedia attentioncustomer adoption(partnerships, customer,licensing deals)Market Strength (x axis)Signals include:market sizing forecasts earningstranscriptcommentaryquality and numbercompetitive intensity of investors andcapitalinvestments in R&D incumbent deal making(M&A, strategic investments)NecessaryOPEN-SOURCE FRAMEWORKSThe b arrier t o e ntry i n A I i s l ower t han e ver b efore, t hanks t o open-source software.Google open-sourced its TensorFlow machine learning library in 2015.Open-source frameworks for AI are a two-way street: It makes AI accessible to everyone, and companies like Google, in turn, benefit from a community of contributors helping accelerate its AI research.Hundreds o f u sers c ontribute t o T ensorFlow e very m onth o n G itHub (a software development platform where users can collaborate).Below are a few companies using TensorFlow, from Coca-Cola to eBay to Airbnb.Facebook released Caffe2 in 2017, after working with researchers from Nvidia, Qualcomm, Intel, Microsoft, and others to create a “a lightweight and modular deep learning framework” that can extend beyond the cloud to mobile applications.Facebook also operated PyTorch at the time, an open-source machine learning platform for Python. In May’18, Facebook merged the two under one umbrella to “combine the beneficial traits of Caffe2 and PyTorch into a single package and enable a smooth transition fromfast prototyping to fast execution.”The number of GitHub contributors to PyTorch have increased inrecent months.Theano is another open-source library from the Montreal Institute for Learning Algorithms (MILA). In Sep’17, leading AI researcher Yoshua Bengio announced an end to development on Theano from MILA as these tools have become so much more widespread.“The s oftware e cosystem s upporting d eep learning r esearch h as b een e volving q uickly, and has now reached a healthy state: open- source software i s t he n orm; a v arietyof f rameworks a re a vailable, s atisfying needs spanning from exploring novel ideas t o d eploying t hem i nto p roduction; and strong i ndustrial p layers a re b acking different s oftware s tacks i n a s timulating competition.”- YOSHUA BENGIO, IN A MILA ANNOUNCEMENTA number of open-source tools are available today for developers to choose from, including Keras, Microsoft Cognitive Toolkit, and Apache MXNet.EDGE AIThe n eed f or r eal-time d ecision m aking i s p ushing A I c loser t o the edge.Running AI algorithms on edge devices —like a smartphone or a car or even a wearable device —instead of communicating with a central cloud or server gives devices the ability to process information locally and respond more quickly to situations.Nvidia, Q ualcomm, a nd A pple, a long w ith a n umber o f e merging s tartups, are f ocused o n building chips exclusively for A I workloads a t the “edge.”From consumer electronics to telecommunications to medical imaging, edge AI has implications for every major industry.For example, an autonomous vehicle has to respond in real-time to what’s happening on the road, and function in areas with no internet connectivity. Decisions are time-sensitive and latency could prove fatal.Big tech companies made huge leaps in edge AI between 2017-2018.Apple released its A11 chip with a “neural engine” for iPhone 8, iPhone 8 Plus, and X in 2017, claiming it could perform machine learning tasksat up to 600 billion operations per second. It powers new iPhone features like Face ID, running facial recognition on the device itself to unlock the phone.Qualcomm launched a $100M AI fund in Q4’18 to invest in startups “that share the vision of on-device AI becoming more powerful and widespread,” a move that it says goes hand-in-hand with its 5G vision.As the dominant processor in many data centers, Intel has had to play catch-up with massive acquisitions. Intel released an on-device vision processing chip called Myriad X (initially developed by Movidius,which Intel acquired in 2016).In Q4’18Intel introduced the Intel NCS2 (Neural Compute Stick 2), which is powered by the Myriad X vision processing chip to run computer vision applications on edge devices, such as smart home devices and industrial robots.The CB Insights earnings transcript analysis tool shows mentions of edge AI trending up for part of 2018.Microsoft said it introduced 100 new Azure capabilities in Q3’18 alone, “focused on both existing workloads like security and new workloads like IoT and edge A I.”Nvidia recently released the Jetson AGX Xavier computing chip for edge computing applications across robotics and industrial IoT.While AI on the edge reduces latency, it also has limitations. Unlike the cloud, e dge has s torage a nd p rocessing c onstraints. M ore hybrid m odels will emerge that allow intelligent edge devices to communicate with each other and a central server.FACIAL RECOGNITIONFrom unlocking phones to boarding flights, facerecognition is going mainstream.When it comes to facial recognition, China’s unapologetic push towards surveillance coupled with its AI ambitions have hogged the media limelight.As the government adds a layer of artificial intelligence to its surveillance, startups are playing a key role in providing the government with the underlying technology. A quick search on the CB Insights platform for face recognition startup deals in China reflect the demand for the technology.Unicorns like SenseTime, Face++, and more recently, CloudWalk,have emerged from the country. (Here’s our detailed report on China’s surveillance efforts.)But e ven i n t he United S tates, i nterest i n t he t ech i s s urging, a ccording t o the CB Insights patent analysis tool.Apple popularized the tech for everyday consumers with the introduction of facial recognition-based login in iOS 10.Amazon is selling its tech to law enforcement agencies.Academic institutions like Carnegie Mellon University are also workingon technology to help enhance video surveillance.The university was granted a patent around “hallucinating facial features”—a method to help law enforcement agencies identify masked suspects by reconstructing a full face when only the periocular region of the face is captured. Facial recognition may then be used to compare the “hallucinated face” to images of actual faces to find ones with a strong correlation.But the tech i s not without g litches. A mazon was in t he news for reportedly misidentifying some Congressmen as criminals.Smart cameras outside a Seattle school were easily tricked by a WSJ reporter who used a picture of the headmaster to enter the premises, when the “smile to unlock feature” was temporarily disabled.“Smile to unlock” and other such “liveness detection” methods offer an added layer of a uthentication.For instance, Amazon was granted a patent that explores additional layers of security, including asking users to perform certain actions like “smile, blink, or tilt his or her head.”These actions can then be combined with “infrared image information, thermal imaging data, or other such information”for more robust authentication.Early commercial applications are taking off in security, retail, and consumer electronics, and facial recognition is fast becoming a dominant form of biometric authentication.MEDICAL IMAGING & DIAGNOSTICSThe FDA is greenlighting AI-as-a-medical-device.In April 2018, the FDA approved AI software that screens patientsfor diabetic retinopathy without the need for a second opinion froman expert.It was given a “breakthrough device designation” to expedite the process of bringing the product to market.The software, IDx-DR, correctly identified patients with “more than mild diabetic retinopathy” 87.4% of the time, and identified those who did not have it 89.5% of the time.IDx is one of the many AI software products approved by the FDA for clinical commercial applications in recent months.The FDA cleared Viz LVO, a product from startup Viz.ai, to analyze CT scans and notify healthcare providers of potential strokes in patients. Post FDA clearance, Viz.ai closed a $21M Series A round from Google Ventures and Kleiner Perkins Caufield & Byers.The FDA also cleared GE Ventures-backed startup Arterys for its Oncology AI suite initially focused on spotting lung and liver lesions.Fast-track r egulatory a pproval o pens u p n ew c ommercial p athways f or over 80 AI imaging & diagnostics companies that have raised equity financing since 2014, accounting for a total of 149 deals.On the consumer side, smartphone penetration and advances in image recognition are turning phones into powerful at-home diagnostic tools.Startup Healthy.io’s first product, Dip.io, uses the traditional urinalysis dipstick to monitor a range of urinary infections. Users take a pictureof the stick with their smartphones, and computer vision algorithms calibrate the results to account for different lighting conditions and camera quality. The test detects infections and pregnancy-related complications.Dip.io, which is already commercially available in Europe and Israel, was cleared by the FDA.Apart from this, a number of ML-as-a-service platforms are integrating with FDA-approved home monitoring devices, alerting physicians when there is an a bnormality.PREDICTIVE MAINTENANCEFrom manufacturers to equipment insurers, AI-IIoT can save incumbents millions of dollars in unexpected failures.Field a nd f actory e quipment g enerate a wealth o f data, yet unanticipated equipment failure is one of the leading causes of downtime in manufacturing.A r ecent G E s urvey o f 450 f ield s ervice a nd I T d ecision m akers f oundthat 70% of companies are not aware of when equipment is due foran upgrade or maintenance, and that unplanned downtime cancost companies $250K/hour.Predicting w hen e quipment o r i ndividual c omponents w ill f ailbenefits asset insurers, as well as manufacturers.In predictive maintenance, sensors and smart cameras gather a continuous stream of data from machines, like temperature and pressure. T he quantity and varied formats of real-time data generated make m achine l earning a n i nseparable c omponent o f I IoT. O ver t ime, t he algorithms can predict a failure before it occurs.Dropping costs of industrial sensors, advances in machine learning algorithms, and a push towards edge computing have made predictive maintenance more widely a vailable.A leading indicator of interest in the space is the sheer number of big tech companies and startups h ere.Deals to AI companies focused on industrials and energy, which includes ML-as-a-service platforms for IIoT, are rising. Newer startups are competing with unicorns like C3 IoT and Uptake Technologies.GE Ventures was an active investor here in 2016, backing companies including Foghorn Systems, Sight Machine, Maana, and Bit Stew Systems (which it later acquired). GE is a major player in IIoT, with its Predix analytics platform.Competitors include Siemens and SAP, which have rolled out their own products (Mindsphere and Hana) for IIoT.India’s Tata Consultancy announced that it’s launch ing predictive maintenance and AI-based solutions for energy utility companies.Tata claimed that an early version of its “digital twin” technology —replicating on-ground operations or physical assets in a digitalformatfor monitoring them —helped a power plant save ~$1.5M per gigawatt per year.Even b ig t ech c ompanies l ike M icrosoft a re e xtending t heir c loud a nd edge analytics solutions to include predictive maintenance.E-COMMERCE SEARCHContextual u nderstanding o f s earch t erms i s m oving o ut o f t he “experimental phase,”b ut w idespread a doption i s s till a l ong w ays o ff.Amazon has applied for over 35 US patents related to “search results” since 2002.It has an exclusive subsidiary, A9, focused on product and visual search for Amazon. A9 has nearly 400 patent applications in the United States (not all of them related to search optimization).Some of the search-related patents include using convolutional neural networks t o “determine a s et o f i tems w hose i mages d emonstrate v isual similarity to the query image…”and using machine learning to analyze visual characteristics of an image and build a search query based on those.Amazon is hiring for over 150 roles exclusively in its search division —for natural language understanding, chaos engineering, and machine learning, among other r oles.But Amazon’s scale of operations and R&D in e-commerce search is the exception among retailers.Few retailers have discussed AI-related strategies on earnings calls, and many haven’t scaled or optimized their e-commerce operations.But one of the earliest brands to do so was eBay.The company first mentioned “machine learning” in its Q3’15 earnings calls. At the time, eBay had just begun to make it compulsory for sellers to write product descriptions, and was using machine learning to process that data to find similar products in the catalog.Using proper m etadata to describe products o n a site i s a s tarting point when using e-commerce search to surface relevant search results.But describing and indexing alone is not enough. Many users search for products in natural language (like “a magenta shirt without buttons”) or may not know how to describe what they’re looking for.This makes natural language for e-commerce search a challenge.Early-stage SaaS startups are emerging, selling search technologies to third-party retailers.Image search startup ViSenze works with clients like Uniqlo, Myntra, and Japanese e-commerce giant Rakuten. ViSenze allows in-store customers to take a picture of something they like at a store, then upload the picture to find the exact product online.。