CPU主要参数
- 格式:doc
- 大小:713.50 KB
- 文档页数:15
要弄明白这些参数的意思,首先要明白MHz(兆赫)是什么东西,MHz(兆赫)是Hz(赫兹)的一个衍生当量级,Hz相应的衍生单位有:kHz(千赫)、MHz(兆赫)、GHz(吉赫)、THz(太赫)、PHz(拍赫) 、EHz(艾赫)。
Hz在电子技术中,是指一个按一定电压幅度,一定时间间隔连续发出的脉冲信号(脉冲信号之间的时间间隔称为周期,时间是s(秒)),一秒钟一个周期就是1Hz ,一秒钟1000个周期就是1000Hz。
(赫兹频率计算单位为:1 千赫kHz 10^3 Hz =1 000 Hz .1 兆赫MHz 10^6 =Hz 1 000 000 Hz .1 吉赫GHz 10^9 Hz =1 000 000 000 Hz。
衍生单位以千进位1000kHz(千赫)=1MHz(兆赫)、1000MHz=1GHz(吉赫))。
CPU一般运行在MHz(兆赫)、GHz(吉赫)段,人们偏好用MHz(兆赫)表示。
一个cpu 主频如果是1800MHz,也可以叫1.8GHz(吉赫),则表示脉冲信号一秒钟内在这个cpu运行了18亿个周期(一个周期cpu可以完成1次二进制运算)。
以酷睿2双核E8400为例:主频:3000MHz.总线频率:1333MHz.二级缓存容量:6144KB.cpu主频:即CPU内核工作的时钟频率,代表一秒钟内脉冲信号运行了X个周期,主频对于提高CPU运算速度却至关重要,如:CPU在同一个时钟周期内执行同一条运算指令,运行在1000MHz主频时,比运行在2000MHz主频时速度慢一倍,因为2000MHz的时钟周期比1000MHz的时钟周期占用时间减少了一半。
同等条件下主频越高运行的速度越快。
但不能精确代表实际的计算速度,因为一颗cpu需要许多技术支持才能有优秀的表现。
如:酷睿i3处理器比同频酷睿E快10%以上,AMD闪龙2800+主频1600MHz速度性能却与Intel 的2800MHzCPU相当。
CPU的主频代表速度不等同CPU实际的运算能力。
电脑CPU主要性能指标 CPU是电脑的⼼脏,保护好它就是保护好电脑。
下⾯是店铺整理的关于电脑CPU主要性能指标的介绍,希望对⼤家有⽤,更多信息请浏览应届毕业⽣考试⽹! 1.主频 主频也叫时钟频率,单位是MHz,⽤来表⽰CPU的运算速度。
CPU的主频=外频×倍频系数。
很多⼈以为认为CPU的主频指的是CPU运⾏的速度,实际上这个认识是很⽚⾯的。
CPU的主频表⽰在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能⼒是没有直接关系的。
当然,主频和实际的运算速度是有关的,但是⽬前还没有⼀个确定的公式能够实现两者之间的数值关系,⽽且CPU的运算速度还要看CPU的流⽔线的各⽅⾯的性能指标。
由于主频并不直接代表运算速度,所以在⼀定情况下,很可能会出现主频较⾼的CPU实际运算速度较低的现象。
因此主频仅仅是CPU性能表现的⼀个⽅⾯,⽽不代表CPU的整体性能。
2.外频 外频是CPU的基准频率,单位也是MHz。
外频是CPU与主板之间同步运⾏的速度,⽽且⽬前的绝⼤部分电脑系统中外频也是内存与主板之间的同步运⾏的速度,在这种⽅式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运⾏状态。
外频与前端总线(FSB)频率很容易被混为⼀谈,下⾯的前端总线介绍我们谈谈两者的区别。
3.前端总线(FSB)频率 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。
由于数据传输最⼤带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据带宽)/8。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运⾏的速度。
也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡⼀千万次;⽽100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。
4.倍频系数 倍频系数是指CPU主频与外频之间的相对⽐例关系。
cpu参数详解CPU是Central ProcessingUnit(中央处理器)的缩写,CPU一般由逻辑运算单元、控制单元和存储单元组成。
在逻辑运算和控制单元中包括一些寄存器,这些寄存器用于CPU在处理数据过程中数据的暂时保存。
大家需要重点了解的CPU主要指标/参数有:1.内核构架INTEL CPU 内核架构核心(Die)又称为内核,是CPU最重要的组成部分。
CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。
各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。
为了便于CPU设计、生产、销售的管理,CPU制造商会对各种CPU核心给出相应的代号,这也就是所谓的CPU核心类型。
不同的CPU(不同系列或同一系列)都会有不同的核心类型(例如Pentium4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50等等),甚至同一种核心都会有不同版本的类型(例如Northwood核心就分为B0和C1等版本),核心版本的变更是为了修正上一版存在的一些错误,并提升一定的性能,而这些变化普通消费者是很少去注意的。
每一种核心类型都有其相应的制造工艺(例如0.25um、0.18um、0.13um以及0.09um 等)、核心面积(这是决定CPU成本的关键因素,成本与核心面积基本上成正比)、核心电压、电流大小、晶体管数量、各级缓存的大小、主频范围、流水线架构和支持的指令集(这两点是决定CPU实际性能和工作效率的关键因素)、功耗和发热量的大小、封装方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、接口类型(例如Socket370,Socket A,Socket 478,Socket T,Slot 1、Socket940等等)、前端总线频率(FSB)等等。
cpu的技术参数
CPU的技术参数是衡量其性能和能力的重要指标。
其中,关键的技术参数包括处理器型号、核心数量、频率、缓存、架构和制造工艺等。
下面是对这些参数的简要介绍:
1. 处理器型号:处理器型号是CPU的标识符,用于区分不同型号之间的性能和功能差异。
2. 核心数量:核心数量是指CPU内部的处理核心数量,更多的核心可以提高多任务处理性能。
3. 频率:频率是指CPU的时钟速度,通常以赫兹(Hz)为单位,频率越高,性能越强。
4. 缓存:缓存是CPU内部的存储器,用于快速存取数据,通常分为一级缓存、二级缓存和三级缓存,缓存大小越大,性能越强。
5. 架构:架构是CPU内部的逻辑设计,包括指令集、流水线、超标量等,不同架构对处理性能和功耗有较大影响。
6. 制造工艺:制造工艺是CPU芯片制造的关键技术,包括晶体管的尺寸和工艺工具的水平等,制造工艺越先进,性能越强,耗电越少。
以上是CPU的关键技术参数,对于选择和购买CPU有一定的参考价值。
- 1 -。
cpu指标参数CPU的指标参数包括以下几项:1. 主频:CPU的工作频率,指每秒钟能执行的指令数,例如3.0GHz。
2. 核心数:CPU内部的处理器核心数,每个核心可以独立执行指令。
3. 线程数:CPU可以同时处理的线程数,线程是处理器能够独立调度和执行的最小单位。
4. 缓存大小:CPU内部的缓存容量,用于存储频繁使用的指令和数据,缓存越大,对性能的提升越明显。
5. 微架构:CPU的内部架构设计,包括指令集、流水线设计、分支预测、乱序执行等,不同微架构有不同的性能表现。
6. 功耗:CPU的能耗水平,通常以瓦特(watt)为单位,功耗越低,能效越高。
7. 性能(benchmark):根据标准测试工具对CPU性能进行评估,常用的有SPEC CPU、Cinebench等。
8. 温度:CPU的工作温度,高温会影响CPU的稳定性和寿命,需要进行散热处理。
这些指标参数可以帮助用户选择合适的CPU,根据自己的需求和预算找到最合适的性价比。
当选择CPU时,还需要考虑以下一些指标参数:1. TDP:热设计功耗(Thermal Design Power),表示CPU在正常工作状态下的最大热量输出,低功耗的CPU通常能减少散热需求。
2. 架构代号:不同代号的CPU架构可能有不同的性能和特性,例如Intel的Sandy Bridge、Ivy Bridge、Haswell等。
3. 厂商:常见的CPU厂商有Intel和AMD,它们在不同价位和性能水平上都有不同的产品线可供选择。
4. 超线程技术:部分CPU支持超线程技术,能够将一个物理核心模拟成两个逻辑核心,提升多线程性能。
5. 精度:CPU的精度表示其浮点计算的位数,通常有32位和64位两种选择,64位能够处理更大范围的浮点数。
6. 支持的主板插槽:不同型号的CPU需要与相应的主板插槽兼容,如Intel的LGA和AMD的AM系列。
7. 超频能力:一些CPU支持超频技术,可以通过提高工作频率来获得更高的性能,但需要注意散热和稳定性。
CPU的主要性能参数CPU主要性能参数是指用来衡量CPU性能的参数。
下面将介绍几个主要的性能参数:1. 主频(Clock Speed):主频指的是CPU内部时钟的频率,表示CPU每秒钟能够执行的指令数。
主频越高,CPU的处理速度越快。
单位为Hz(赫兹)。
2. 核心数(Number of Cores):核心数指的是CPU中独立执行指令的处理单元数量。
多核CPU可以同时执行多个任务,提高系统的并发处理能力。
3. 线程数(Number of Threads):线程数指的是CPU同时可处理的线程数量。
每个核心可以同时执行多个线程。
多线程技术可以提高并行处理能力,提高系统的响应速度。
4. 缓存(Cache):缓存是CPU内部存储器,用于存放频繁使用的数据和指令,以提高数据的读取速度。
缓存分为L1、L2、L3等级别,级别越高,容量越大,速度越快。
5. 插槽类型(Socket):插槽类型指的是CPU和主板上插槽的对应关系。
不同的CPU型号通常会使用不同的插槽类型,所以在选择CPU时需要确保与主板兼容。
6. 制程工艺(Process Technology):制程工艺是指CPU芯片制造过程中的技术,制程工艺的进步可以提高芯片的性能和效能。
常见的制程工艺有14nm、10nm、7nm等。
7. TDP(Thermal Design Power):TDP是指CPU在正常工作状态下消耗的热量,也被用来作为CPU散热系统设计的参考。
TDP越高,CPU的功耗越大,需要更好的散热系统。
8. 性能评分(Performance Rating):性能评分是指厂商根据CPU的性能指标进行的评分。
常见的性能评分有PassMark、Cinebench等。
9. 指令集(Instruction Set):指令集是CPU能够执行的指令集合。
常见的指令集有x86、ARM等,不同的指令集对应不同的CPU架构和应用场景。
10. 超线程技术(Hyper-Threading):超线程技术可以让单个核心同时处理两个线程,提高CPU的并行处理性能。
CPU的主要性能参数
CPU(Central Processing Unit),即中央处理器,是计算机的大脑,其主要功能是将程序指令转换成机器指令执行,它是操作系统和应用程序
的核心。
CPU的性能参数一般有主频、内存带宽、多核数、缓存大小、功耗等。
1、主频
主频指CPU的工作频率,又称时钟频率(Clock Frequency),它是
指CPU给出的最高指令速度,单位为MHz,一般越高意味着CPU性能越高。
2、内存带宽
内存带宽是指CPU与内存之间的数据传输速度,一般以MT/s或GB/s
表示,一般越高,对处理器的性能要求越高。
3、多核数
多核数指CPU内部有多少个的处理核心,一般来说,多核数越多,则CPU的性能也会越好。
4、缓存大小
缓存大小是指程序在缓存中存储的数据量,单位为KB、MB等,CPU
缓存数据量越大,程序的运行速度也会相应加快。
5、功耗
功耗指CPU的功率消耗,以瓦特表示,一般越低,CPU的性能会更稳定,更加可靠。
以上就是CPU的主要性能参数。
可以看出,CPU的主要性能参数对于确定其处理性能起着重要作用,因此,在选择CPU时,应该仔细考虑这些参数来确定CPU的选择。
CPU主要性能参数第一、主频,外频、倍频。
CPU的主频:其实指的就是CPU时钟频率。
英文全称:CPU Clock Speed,简单地说也就是CPU运算速度。
一般说来,主频越高,当然CPU的速度也就越快了。
至于外频就是系统总线的工作频率;而倍频则是指CPU外频与主频相差的倍数。
三者是有十分密切的关系的:主频=外频x倍频。
第二:内存总线速度,英文全称是Memory-Bus Speed。
CPU处理的数据是从主存储器那里来的,而主存储器指的就是我们平常所说的内存了。
一般我们放在外存(磁盘或者各种存储介质)上面的资料都要通过内存,再进入CPU进行处理的。
所以与内存之间的通道枣内存总线的速度对整个系统性能就显得很重要了,由于内存和CPU之间的运行速度或多或少会有差异,因此便出现了二级缓存,来协调两者之间的差异,而内存总线速度就是指CPU与二级(L2)高速缓存和内存之间的通信速度。
第三、扩展总线速度,英文全称是Expansion-Bus Speed。
扩展总线指的就是指安装在微机系统上的局部总线如VESA或PCI总线,我们打开电脑的时候会看见一些插槽般的东西,这些就是扩展槽,而扩展总线就是CPU联系这些外部设备的桥梁。
第四、地址总线宽度。
地址总线宽度决定了CPU可以访问的物理地址空间,简单地说就是CPU到底能够使用多大容量的内存。
第五、数据总线宽度。
数据总线负责整个系统的数据流量的大小,而数据总线宽度则决定了CPU与二级高速缓存、内存以及输入/输出设备之间一次数据传输的信息量。
第六、动态处理。
动态处理是应用在高能奔腾处理器中的新技术,创造性地把三项专为提高处理器对数据的操作效率而设计的技术融合在一起。
这三项技术是多路分流预测、数据流量分析和猜测执行。
动态处理并不是简单执行一串指令,而是通过操作数据来提高处理器的工作效率。
CPU的功能组成及性能参数CPU(中央处理器)是一台计算机中最重要的部件之一,它负责执行计算机指令并控制计算机的操作。
CPU的功能组成和性能参数有许多,下面将详细介绍。
一、功能组成:1. 控制单元(Control Unit):控制单元负责解析和执行计算机指令。
它包括指令寄存器、程序计数器和指令译码器等组成部分。
控制单元根据指令的要求发出相关的控制信号,使CPU中的其他部件工作。
2. 算术逻辑单元(Arithmetic Logic Unit, ALU):算术逻辑单元是执行计算和逻辑操作的核心部件。
它包括加法器、逻辑门和运算控制电路等,用于执行算术运算(加法、减法等)和逻辑运算(与、或、非等)。
3. 寄存器(Register):寄存器是存储器件,用于保存临时数据和指令。
常见的寄存器包括累加器(用于存储计算结果)、通用寄存器(存储临时数据)和程序计数器(存储当前指令地址)等。
4. 缓存(Cache):缓存是位于CPU和主存之间的一级高速存储器。
它能够暂时存储最常用的数据和指令,以加快CPU对这些数据和指令的访问速度。
5. 数据总线(Data Bus):数据总线是CPU内部用于传送数据的通道。
它负责将数据从一个部件传送到另一个部件。
数据总线的宽度决定了CPU能够同时传送的数据位数,也就是数据的带宽。
6. 地址总线(Address Bus):地址总线是CPU内部用于传送地址的通道。
它负责将计算机内存的地址传送给主存储器,以便读取或写入数据。
7. 控制总线(Control Bus):控制总线是CPU内部用于传送控制信号的通道。
它负责将控制信号传送到相关的部件,以使它们按照指令要求工作。
二、性能参数:1. 主频(Clock Speed):主频指的是CPU的振荡频率,也被称为时钟频率。
它表示CPU每秒钟执行指令的次数,常用单位是赫兹(Hz)。
主频越高,CPU的工作速度越快。
2. IPC(Instructions Per Cycle):IPC表示每个时钟周期内执行的指令数。
CPU,全称“Central Processing Unit”,中文名为“中央处理器”,在大多数网友的印象中,CPU只是一个方形配件,正面是金属盖,背面是一些密密麻麻的针脚或触点,可以说毫无美感可言。
但在这个小块头的东西上,却是汇聚了无数的人类智慧在里面,我们今天能上网、工作、玩游戏等全都离不开这个小小的东西,它可谓是小块头有大智慧。
作为普通用户、网友,我们并不需要解读CPU里的所有“大智慧”,但CPU既然是电脑中最重要的配件、并且直接决定电脑的性能,了解它里面的部分知识还是有必要的。
下面笔者将给大家介绍CPU里最重要的基础知识,让大家对CPU有新的认识。
1、CPU的最重要基础:CPU架构CPU架构:采用Nehalem架构的Core i7/i5处理器CPU架构,目前没有一个权威和准确的定义,简单来说就是CPU核心的设计方案。
目前CPU大致可以分为X86、IA64、RISC等多种架构,而个人电脑上的CPU架构,其实都是基于X86架构设计的,称为X86下的微架构,常常被简称为CPU架构。
更新CPU架构能有效地提高CPU的执行效率,但也需要投入巨大的研发成本,因此CPU 厂商一般每2-3年才更新一次架构。
近几年比较著名的X86微架构有Intel的Netburst (Pentium 4/Pentium D系列)、Core(Core 2系列)、Nehalem(Core i7/i5/i3系列),以及AMD的K8(Athlon 64系列)、K10(Phenom系列)、K10.5(Athlon II/Phenom II系列)。
Intel以Tick-Tock钟摆模式更新CPU自2006年发布Core 2系列后,Intel便以“Tick-Tock”钟摆模式更新CPU,简单来说就是第一年改进CPU工艺,第二年更新CPU微架构,这样交替进行。
目前Intel正进行“Tick”阶段,即改进CPU的制造工艺,如最新的Westmere架构其实就是Nehalem架构的工艺改进版,下一代Sandy Bridge架构将是全新架构。
AMD方面则没有一个固定的更新架构周期,从K7到K8再到K10,大概是3-4年更新一次。
制造工艺:更新制作工艺,使同一面积的晶圆可切割出更多CPU芯片我们常说的CPU制作工艺是指生产CPU的技术水平,改进制作工艺,就是通过缩短CPU 内部电路与电路之间的距离,使同一面积的晶圆上可实现更多功能或更强性能。
制作工艺以纳米(nm)为单位,目前CPU主流的制作工艺是45nm和32nm。
对于普通用户来说,更先进的制作工艺能带来更低的功耗和更好的超频潜力。
32位与64位CPU:2003年AMD发布第一款X86的64位CPU,开创民用64位先河32/64位指的是CPU位宽,更大的CPU位宽有两个好处:一次能处理更大范围的数据运算和支持更大容量的内存。
对于前者,普通用户暂时没法体验到其优势,但对于后者,很多用户都碰到过,一般情况下32位CPU只支持4GB以内的内存,更大容量的内存无法在系统识别(服务器级除外)。
于是就有了64位CPU,然后就有了64位操作系统与软件。
64位CPU的优势,需要64位操作系统和64软件支持目前所有主流CPU均支持X86-64技术,但要发挥其64位优势,必须搭配64位操作系统和64位软件。
遗憾的是目前主流的软件和游戏均是基于32位开发的,采用64位系统难免会有一些兼容性问题,而直接采用64位开发的风险较高,这也是64位在过去7年一直不能普及的原因,但未来64位一定会取代32位成为主流的。
2、决定CPU性能的参数:频率、核心数、缓存除了CPU架构外,决定CPU性能的几个重要参数还有频率、核心数、线程数以及缓存。
TDP热设计功耗也是网友关注的参数,下面将为大家介绍这几样参数。
主频、倍频、外频、超频:CPU盒装会标出主频、缓存等重要参数CPU主频,就是CPU运算时的工作频率,在单核时代它是决定CPU性能的最重要指标,一般以MHz和GHz为单位,如Phenom II X4 965主频是3.4GHz。
说到CPU主频,就不得不提外频和倍频,由于CPU发展速度远远超出内存、硬盘等配件的速度,于是便提出外频和倍频的概念,它们的关系是:主频=外频x倍频。
而我们常说的超频,就是通过手动提高外频或倍频来提高主频。
核心数、线程数:目前最强CPU拥有4个物理核心、8个逻辑核心虽然提高频率能有效提高CPU性能,但受限于制作工艺等物理因素,早在2004年,提高频率便遇到了瓶颈,于是Intel/AMD只能另辟途径来提升CPU性能,双核、多核CPU便应运而生。
目前主流CPU有双核、三核和四核,六核也将在今年发布。
其实增加核心数目就是为了增加线程数,因为操作系统是通过线程来执行任务的,一般情况下它们是1:1对应关系,也就是说四核CPU一般拥有四个线程。
但Intel引入超线程技术后,使核心数与线程数形成1:2的关系,如四核Core i7支持八线程(或叫作八个逻辑核心),大幅提升了其多任务、多线程性能。
关于超线程技术,后面将有详细介绍。
缓存:拥有三级缓存(L3 Cache)的CPU缓存,Cache,它也是决定CPU性能的重要指标之一。
为什么要引入缓存?在解释之前必须先了解程序的执行过程,首先从硬盘执行程序,存放到内存,再给CPU运算与执行。
由于内存和硬盘的速度相比CPU实在慢太多了,每执行一个程序CPU都要等待内存和硬盘,引入缓存技术便是为了解决此矛盾,缓存与CPU速度一致,CPU从缓存读取数据比CPU在内存上读取快得多,从而提升系统性能。
当然,由于CPU芯片面积和成本等原因,缓存都很小。
目前主流级CPU都有一级和二级缓存,高端的甚至有三级缓存。
TDP热设计功耗:以前的盒装CPU标有TDP热设计功耗TDP的是“Thermal Design Power”的简称,即“热设计功耗”,它指的是CPU达到负荷最大的时候释放出的热量,单位是瓦特,它主要是给散热器厂商的参考标准。
高性能CPU 同时也带来了高发热量,例如Phenom II X4 965,其TDP达到了140W,而主流级的Athlon II X2 250只有65W,对散热器的要求显然不同。
值得注意的是,CPU的TDP并不是CPU的实际功耗,CPU的实际功耗是通过初中学的物理知识来计算的:功率(P,单位W)=电流(I,单位A)x 电压(U,单位V)。
不要把TDP 看成CPU的实际功耗,CPU的实际功耗必然小于TDP的。
3、提高工作效率:多媒体指令和虚拟化技术多媒体指令集:通过CPU-Z等工具可查看CPU支持的指令集MMX、3DNOW!和SSE均是CPU的多媒体扩展指令集,它们对CPU的运算有加速作用,前提是需要软件支持。
如果软件对CPU的多媒体指令集有优化,那么CPU的运算速度会有进一步提升。
对于普通用户而言,目前用得最多的多媒体指令是SSE系列,现在已经发展到SSE4(分为SSE4.1和SSE4.2两个部分)了。
多媒体指令需要软件支持才能体现它的优势虽然多媒体指令的普及速度相对较慢,但随着时间的推移,支持新指令的软件和游戏会越来越多,例如现在大部分游戏和软件均需要SSE、甚至SSE2指令支持,否则是运行不了。
值得一提的是,AMD CPU支持的SSE4A和Intel CPU支持的SSE4是不完全相同的,可以这样简单理解:AMD SSE4A是Intel SSE4的简化版,主要是精简了为Intel CPU优化的部分。
虚拟化技术:Windows 7中安装XP模式,需要CPU的虚拟化技术支持CPU的虚拟化技术(Virtualization Technolegy,简称VT)就是单CPU模拟多CPU,并允许一个平台同时运行多个操作系统,而应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高工作效率。
在Windows 7中安装XP模式就是一个很好的例子,当需要使用XP时直接调用,不需要重启切换系统,这点对于程序员来说是非常有用的。
虽然虚拟化可以通过软件实现,但是CPU硬件支持的话,执行效率会大大提升,也可以支持64位操作系统,其中Windows 7的XP模式则是必须要CPU的虚拟化技术支持。
目前Intel/AMD绝大部分CPU都支持虚拟化技术,但对于普通用户而言,虚拟化技术没有实质作用。
如果要用到虚拟化技术,需要先在BIOS开启该技术。
节能技术:CPU节能技术,空闲时自动降低频率随着CPU的性能越来越强大,也带来了更高的功耗,为减少CPU在闲置时的能量浪费,Intel和AMD均不约而同地为CPU添加节能技术。
Intel方面,采用的节能技术叫“Enhance Intel SpeedStep Technology”,简称EIST,虽然经过多次增强优化,但名字始终没变。
而AMD的节能技术则是“Cool 'n' Quiet”,现在已经发展到3.0版。
简单来说,它们均是在CPU空闲时自动降低CPU的主频,从而降低CPU功耗与发热量,达到节能目的。
节能技术需要在BIOS开启无论是Intel还是AMD的节能技术,均需要在BIOS开启才有效,找到类似EIST(Intel CPU)或C'n'Q(AMD CPU)的选项进行开启即可。
4、两大特色技术:超线程和睿频加速超线程技术和睿频加速技术可以说是Intel CPU两大特色技术,下面我们为大家介绍两种技术。
Hyper-Threading,超线程技术:Hyper-Threading,超线程技术在前面我们已提到过超线程技术,本节我们将作详细介绍。
超线程技术(Hyper-Threading,简称HT),最早出现在2002年的Pentium 4上,它是利用特殊的硬件指令,把单个物理核心模拟成两个核心(逻辑核心),让每个核心都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高CPU的运行效率。
Core i7/i5/i3再次引入超线程技术,使四核的Core i7可同时处理八个线程操作,而双核的Core i5 600、Core i3也可同时处理四线程操作,大幅增强它们多线程性能。
超线程技术使Core i7四核CPU拥有八个逻辑内核超线程技术只需要消耗很小的核心面积代价,就可以在多任务的情况下提供显著的性能提升,比起完全再添加一个物理核心来说要划算得多。
相比Pentium 4的第一代HT,Core i7/i5/i3的优势是有更大的缓存和更大的内存带宽,能更有效地发挥多线程的作用。
根据评测结果显示,支持Core i7/i5/i3开启HT后,多任务性能提升20-30%。
Turbo Boost,睿频加速技术:Turbo Boost,睿频加速技术Turbo Boost是一种动态加速技术,基于Nehalem架构的电源管理技术,通过分析当前CPU的负载情况,智能地完全关闭一些用不上的核心,把能源留给正在使用的核心,并使它们运行在更高的频率,进一步提升性能;相反,需要多个核心时,动态开启相应的核心,智能调整频率。