勾股定理逆定理典型例题及知识点
- 格式:pdf
- 大小:282.08 KB
- 文档页数:9
CBAFEDCB A勾股定理及其逆定理(讲义)一、 知识点睛1. 11-19的平方:_______________________________________________________________________________________________________.2. 勾股定理:_______________________________________________________________________________________________________. 3. 勾股定理的验证:4. 勾股定理逆定理:_______________________________________________________________________________________________________.5. 勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有______________;______________;_______________;________________;________________;_________________.二、精讲精练1. 一个直角三角形两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长是________.S 3S 2S 1AB C86C3. 已知:如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF长为12cm ,则正方形CDEF 的面积为_________.4. 如图,在△ABC 中,∠ABC =90°,分别以BC ,AB ,AC 为边向外作正方形,面积分别记为S 1,S 2,S 3.若S 2=4,S 3=6,则S 1=___________.5. 如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.6. (1)等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三角形较长的直角边长都为a ,较短的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为c 2,也可以表示为4×12ab +(a -b )2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则a 2+b 2=c 2.图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形的两直角边长为3和4,则斜边上的高为________. 7. 如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F . (1)求证:DE ⊥AB ;(2)若已知BC =a ,AC =b ,AB =c ,你能借助本题提供的图形证明勾股定理吗?试一试吧.图2图1b ba ED A ABDEFc c图2b aba ED CBAlcba8. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_________.第8题图 第9题图9. 如图,在△ABC 中,∠ACB =90°,AC >BC ,分别以AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,正方形BCMN ,正方形CAFG ,连接EF ,GM ,ND .设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 110. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.11. 如图,从电线杆离地面8m 处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m ,那么需要多长的 钢索?12. 小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,子拉到离旗杆底端5米处,发现此时绳子底端距离打结处1米.法算出旗杆的高度.13. 下列各组数中不能作为直角三角形三边长的是( )DCBAAB C DE F GH图3图2图1h 26246b 106c 125A .B .C .D .7152024257202425715202425252420157图2图1DCBAA .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,4114. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 15. 若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.16. 将直角三角形的三边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形17. 三边长分别是15,36,39的三角形是_______三角形.18. 如图,求出下列直角三角形中未知边的长度:c =____,b =____,h =_____.19. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )20. 一个零件的形状如图1中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边长如图2请说明理由.勾股定理及其逆定理(随堂测试)1.有一块土地形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7BAD CB .A .c b c a b a a b c a b c c b a c b a A BCD EF D .c b a a b c C .米,则这块地的面积为__________.2.若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④0.3,0.4,0.5;⑤2n +1,2n ,2n 2+2n +1(n 为正整数).则其中能构成直角三角形的是_____________.3.如图,在四边形ABCD 中,AD =3,AB =4,BC =12,CD =13,∠BAD =90°. (1)求BD 的长; (2)证明:BD ⊥BC ; (3)求四边形ABCD 的面积.勾股定理及其逆定理(作业)1. 以下列长度的三条线段为边,不能组成直角三角形的是( )A .1.5,2,2.5B .9,12,15C .7,24,25D .1,1,22. 若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④11,60,61;⑤22(+)12(+)(+)+1m n m n m n ,,(m ,n 为正整数).其中能构成直角三角形的有( )A .2个B .3个C .4个D .5个3. 下列选项中,不能用来证明勾股定理的是( )4. 已知甲、乙两人从同一点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距______.5. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为____________.DC BAF E D CB A 6. 记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( A .S l +S 2>S 3 B .S l +S 2< S 3C .S 1+S 2=S 3D .S 12+S 22=S 327. 中最大的正方形的边长为7cm ,则正方形A ,B ,___________cm 2.8. 如图,每个小方格都是边长为1的正方形,则四边形ABCD 的面积为_________.9. 如图,在正方形ABCD 中,AB =4,AE =2,DF =1,则图中共有直角三角形________个.10. 11. 如图,一架长25(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4方向上滑动了几米?12. 已知一个三角形的三边长分别是5cm ,12cm ,13cm ,你能算出这个三角形的面积吗?b915勾股定理及其逆定理【参考答案】➢ 课前预习1. 大于,互余;2. 121,144,169,196,225,256,289,324,3613. 16A S =9B S = 25C S =A B C S S S +=➢ 知识点睛1. 直角三角形两直角边的平方和等于斜边的平方.2. 略3. 三角形两边的平方和等于第三边的平方,直角三角形.4. 3,4,5;5,12,13;7,24,25;8,15,17;9,40,41;11,60,61.➢ 精讲精练1. C2. 169 cm 23. 24.245. 证明略6. 167. 148. AD =12 cm ,AC =15 cm 9. B 10. B 11. 90 12. 直角 13. C14. 符合要求,理由略15. (1)同位角相等,两直线平行.逆命题成立.(2)如果两个实数的积是正数,那么这两个实数是正数.逆命题不成立. (3)锐角三角形是等边三角形.逆命题不成立.(4)到一条线段两个端点距离相等的点在这条线段的垂直平分线上.逆命题成立.。
勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。
求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。
第3章《勾股定理》: 3.2 勾股定理的逆定理填空题1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长.(第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm.3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米.4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.(第4题)(第5题)(第6题)5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)(第7题)(第8题)(第9题)8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3)9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.(第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .解答题14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.15.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.16.先请阅读下列题目和解答过程:“已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.18.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.19.请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,A∴c2(a2-b2)=(a2+b2)(a2-b2),B∴c2=a2+b2,C∴△ABC为直角三角形.D问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是;(3)本题正确的结论是:.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.21.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 …a 22-1 32-1 42-1 52-1 …b 4 6 8 10 …c 22+1 32+1 42+1 52+1 …(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a= ,b= ,c= ;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.22.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=95.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米, 3 ≈1.732).25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5米,求梯子顶端A下落了多少米?28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.答案:填空题1.故答案为:1.5m.考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm.考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3.故答案为:6厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC长,那么利用勾股定理可得内径.解答:解:根据条件可得筷子长为12厘米.如图AC=10厘米,BC=错误!=错误!=6厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2 2 .考点:平面展开-最短路径问题.专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•错误!=2,CB=2.∴AC=AB2+BC2 =8 =2 2 ,故答案为:2 2 .点评:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.6.故答案为:3 5 m.考点:平面展开-最短路径问题.专题:压轴题;转化思想.分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=nπ×6 180,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=32+62 =45 =3 5 m.故小猫经过的最短距离是3 5 m.故答案是:3 5 m.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.7.故答案为:22m.考点:平面展开-最短路径问题.专题:压轴题.分析:要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:其侧面展开图如图:AD=πR=4π,AB=CD=20m.DE=CD-CE=20-2=18m,在Rt△ADE中,AE=AD2+DE2 =错误!≈21.9≈22m.故他滑行的最短距离约为22m.点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20m.本题就是把U型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm.考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB=122+(3π)2 =错误!=错误!=15cm.故蚂蚁经过的最短距离为15cm.(π取3)点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9.故答案为:10.考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB=62+82 =10,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5.考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解答:解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,解得x=2.5.点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60.考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.解答:解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2×2=2.4米;宽为1米.于是最短路径为: 2.42+12 =2.60米.故答案为:2.60.点评:本题主要考查两点之间线段最短,有一定的难度,是中档题.12.故答案为:25寸.考点:平面展开-最短路径问题.分析:根据两点之间线段最短,运用勾股定理解答.解答:解:将台阶展开矩形,线段AB 恰好是直角三角形的斜边,两直角边长分别为24寸,7寸,由勾股定理得AB=72+242 =25寸. 点评:本题结合实际,运用两点之间线段最短等知识来解答问题.13.故答案为:b=84,c=85;考点:勾股数. 专题:规律型.分析:认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n 组数为(2n+1),((2n +1)2−12), ((2n +1)2+12 ),由此规律解决问题.32-12解答:在32=4+5中,4=32-12 ,5=32+12; 在52=12+13中,12=52-12 ,13=52+12; …则在13、b 、c 中,b=132-12 =84,c=132+12=85; 点评:认真观察各式的特点,总结规律是解题的关键. 解答题14.考点:等边三角形的性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型.分析:根据等边三角形的性质利用SAS 判定△ABP≌△CBQ,从而得到AP=CQ ;设PA=3a ,PB=4a ,PC=5a ,由已知可判定△PBQ 为正三角形从而可得到PQ=4a ,再根据勾股定理判定△PQC 是直角三角形.解答:解:(1)猜想:AP=CQ ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC ,BP=BQ ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;勾股定理的逆定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(3分)(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形;(7分)(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∵∠OAD=180°-(∠AOD+∠ADO)=50°,∴α-60°=50°∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵190°-α=50°∴α=140°.综上所述:当α的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12分)说明:第(3)小题考生答对1种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型.分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2分)(2)等号两边不能同除a2-b2,因为它有可能为零.(4分)(3)(从头或直接从第③步写解答过程都行),∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),移项得:c2(a2-b2)-(a2+b2)(a2-b2)=0,得(a2-b2)(c2-a2-b2)=0,(5分)∴a2=b2或c2=a2+b2(6分)∴△ABC是直角三角形或等腰三角形.(7分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17.考点:勾股定理;勾股定理的逆定理.分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.解答:解:(1)∵AD=3,AB=4,∠BAD=90°,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18.考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题.分析:(1)根据SAS 判定△ACE≌△BCD,从而得到∠EAC=∠DBC,根据角之间的关系可证得AF⊥BD.(2)互相垂直,只要证明∠AFD=90°,从而转化为证明∠EAC+∠CDB=90即可解答:(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC,CE=CD ,∠ACE=∠BCD=90°,在△ACE 和△BCD,⎩⎪⎨⎪⎧∠AC =BC∠ACE =∠BCD CE =CD ∴△ACE≌△BCD(SAS );(2)解:直线AE 与BD 互相垂直,理由为:证明:∵△ACE≌△BCD,∴∠EAC=∠DBC,又∵∠DBC+∠CDB=90°,∴∠EAC+∠CDB=90°,∴∠AFD=90°,∴AF⊥BD,即直线AE 与BD 互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C 步 (2)等式两边同时除以a 2-b 2 (3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状. 解答:解:(1)C ;(2)方程两边同除以(a 2-b 2),因为(a 2-b 2)的值有可能是0;(3)∵c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)∴c 2=a 2+b 2或a 2-b 2=0∵a 2-b 2=0∴a+b=0或a-b=0∵a+b≠0∴c 2=a 2+b 2或a-b=0∴c 2=a 2+b 2或a=b∴该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20.考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△BDC是直角三角形,则四边形ABCD的面积=直角△ABD的面积+直角△BDC 的面积.解答:解:∵在△ABD中,AB⊥AD,AB=3,AD=4,∴BD=AB2+AD2 =32+42 =5.在△BDC中,CD=12,BC=13,BD=5.∵122+52=132,即CD2+BD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴S四边形A B C D=S△A B D+S△B D C=12AB•AD+12BD•CD12×3×4+12×5×12=36,即四边形ABCD的面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n,n2+1;考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a,b,c与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.解答:解:(1)由题意有:n2-1,2n,n2+1;(2)猜想为:以a,b,c为边的三角形是直角三角形.证明:∵a=n2-1,b=2n;c=n2+1∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22.考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ABC是直角三角形.解答:解:(1)∵CD⊥AB且CB=3,BD=95,故△CDB为直角三角形,∴在Rt△CDB中,CD=CB2−BD2 =32−(95)2 =125,在Rt△CAD中,AD=AC2−CD2 =42−(125)2 =165.(2)△ABC为直角三角形.理由:∵AD=165,BD=95,∴AB=AD+BD=165+95=5,∴AC2+BC2=42+32=25=52=AB2,∴根据勾股定理的逆定理,△ABC为直角三角形.点评:本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.23.故答案为:32m或(20+4 5 )m或803m.考点:勾股定理的应用;等腰三角形的性质.专题:分类讨论.分析:根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.解答:解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6由勾股定理有:AB=10,应分以下三种情况:①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10-6=4m,∴AD=4 5 m,∴△ABD的周长=10+10+4 5 =(20+4 5 )m.③如图3,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理得:AD=82+(x−6)2 =x解得,x=253,∴△ABD的周长为:AD+BD+AB=803m.点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为∠CAD=30°,则AC=2CD,再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ACD中,∠CAD=30°,AD=3,设CD=x,则AC=2x,由AD2+CD2=AC2,得,32+x2=4x2,x= 3 =1.732,所以大树高1.732+1.68≈3.4(米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,在Rt△AEC中,AC=AE2+EC2 =错误!=10m,故小鸟至少飞行10m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考点:勾股定理的应用.分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=8 ,∴AD 2=AE 2+DE 2=36m(8 )2+(8 )2=16,∴AD=4,即梯子的总长为4米.∴AB=AD=4.在Rt△ABC 中,∵∠BAC=60°,∴∠ABC=30°,∴AC=12AB=2, ∴BC 2=AB 2-AC 2=42-22=12, ∴BC=12 =2 3 m ;∴点B 到地面的垂直距离BC=2 3 m .点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解答:解:在Rt△ACB 中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC=2,∵BD=0.5,∴CD=2.在Rt△ECD 中,EC 2=ED 2-CD 2=2.52-22=2.25,∴EC=1.5,∴AE=AC -EC=2-1.5=0.5. 答:梯子顶端下滑了0.5米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C ,D 两村到E 站的距离相等,需要证明DE=CE ,再根据△DAE≌△EBC,得出AE=BC=10km ; 解答:解:∵使得C ,D 两村到E 站的距离相等.∴DE=CE,∵DA⊥AB 于A ,CB⊥AB 于B ,∴∠A=∠B=90°,∴AE 2+AD 2=DE 2,BE 2+BC 2=EC 2,∴AE 2+AD 2=BE 2+BC 2,设AE=x ,则BE=AB-AE=(25-x ),∵DA=15km,CB=10km ,∴x 2+152=(25-x )2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD=DA2−AC2 =2002−1602 =120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.30.考点:勾股定理的应用.分析:连接AC,根据已知条件运用勾股定理逆定理可证△ABC和△ACD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.解答:解:连接AC,∵∠B=90°,∴△ABC为直角三角形,∵AC2=AB2+BC2=82+62=102,∵AC>0,∴AC=10,在△ACD中,∵AC2+CD2=100+576=676,AD2=262=676,∴AC2+CD2=AD2,∴△ACD为直角三角形,且∠ACD=90°,∴S四边形A B C D=S△A B C+S△A C D=12×6×8+12×10×24=144.点评:通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过程变得简单.。
勾股定理及逆定理的综合应用一、勾股定理的逆定理逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边。
逆定理说明:①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
②在运用这一定理时,可用两小边的平方和22+与较长边的平方2c作比较,若它们a b相等时,以a,b,c为三边的三角形是直角三角形;若222+<时,以a,b,c为三边a b c的三角形是钝角三角形;若222+>时,以a,b,c为三边的三角形是锐角三角形。
a b c二、实际应用定理中的注意问题1. 定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形三a b c边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但是b为a c b斜边;2. 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。
三、勾股定理逆定理的几种典型应用总结:1. 理解勾股定理与勾股定理逆定理之间的关系;2. 掌握好数形结合的思想及方程思想的应用。
例题1 如图,△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A. 15B. 16C. 17D. 18解析:延长AD至E使ED=AD,利用好“AD是中线”这个条件,再根据题中数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD的长度了,再根据BC=2BD,所以BC的长也就求出了。
答案:解:延长AD 至E ,使DE=AD ;连接B E , ∵AD=8.5,∴AE=2×8.5=17, 在△ADC 和△EDB 中,AD =DE ∵∠ADC =∠EDB BD =CD ,∴△ADC≌△EDB(S AS ),∴BE=AC=8,BE 2+AB 2=82+152=289,AE 2=172=289, ∴∠ABE=90°,∵在Rt△BED 中,BD 是中线, ∴BD=21AE=8.5,∴BC=2BD=2×8.5=17。
勾股定理专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (3)1.勾股定理: (3)2.勾股定理的逆定理: (3)3.勾股定理的证明 (3)4.含特殊角的直角三角形三边的关系 (3)5.逆命题与逆定理 (4)三、常考题型 (5)1.勾股定理在几何计算中的应用-求线段的长 (5)2. 勾股定理在几何计算中的应用-坐标平面内两点的距离 (6)3. 勾股定理在几何计算中的应用-面积问题 (8)4.构造直角三角形 (9)5.勾股定理的逆定理的应用 (11)四、重难点题型 (14)1.利用勾股定理解计算问题 (14)2勾股数组 (15)3.与线段平方关系有关的证明题 (16)4.矩形和直角三角形中的折叠问题 (18)二、基础知识点1.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2注:1)仅在直角三角形中存在勾股定理2)由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边两直角边的平方和,避免出现这样的错误2.勾股定理的逆定理:如果三角形三边长分别为a,b,c,且满足a2+b2=c2,那么这个三角形是以c为斜边的直角三角形。
注:在同一个三角形中,大边对大角,小角对小边3.勾股定理的证明方法一:方法二:4.含特殊角的直角三角形三边的关系勾股数:1)a=3,b=4,c=52)a=5,b=12,c=13特殊直角三角形①a=x,c=2x,b=√3x②a=x,b=x,c=√2x③AC=x,DC=x,AD=√2x,BD=√2x④AC=x,AF=2x,DC=√3x,BD=2x5.逆命题与逆定理命题与定理命题:判断一件事的语句定理:经过我们一定推理,得到的真命题互逆命题:两个命题的题设、结论正好相反的命题。
若将其中一个叫做原命题,则另一个就是它的逆命题逆定理:若一个定理的逆命题成立,则这个定理与原定理互为逆定理三、常考题型1.勾股定理在几何计算中的应用-求线段的长解析:应用勾股定理,在直角三角形中,“知二求一”。
勾股定理及逆定理1.勾股定理的基本概念Rt △ABC 中,∠A,∠B,∠C 的对边长分别为a ,b ,c 则222c b a =+,222b c a -=,222a c b -=(c 为三角形的斜边)2.勾股定理的证明如图,小正方形的面积421)(22⨯-+=ab b a c ,化简即222c b a =+. b aa c c bc cb aa b3. 勾股定理的逆定理如果一个三角形的三边满足222c b a =+,222b c a -=,222a c b -=之一,那么这个三角形一定是直角三角形.4.勾股定理及逆定理的综合应用运用勾股定理及直角三角形的判别条件解决一些实际问题.例题精讲知识点一 勾股定理的基本概念例1.在Rt △ABC 中,∠A=90°,∠A,∠B,∠C 的对边长分别为a ,b ,c ,那么下列等式一定成立的是( )A.222c b a =+B.222b c a =+ C .222a c b =+ D .222a c b =-训练1-1. 下列四组数据均为三条线段的长度,其中能作为Rt △ABC 三边的是( )A.1cm,2cm,3cm B .3cm,4cm,5cmC .7cm,12cm,13cmD .1cm,1cm,3cm知识点二 勾股定理的验证例 2.如图,是一个由两个全等的斜边为c ,两直角边分别为a ,b 的直角三角形和一个两直角边均为c 的直角三角形组成的图形,试用这个图形证明勾股定理.b cc a b 训练2-1.将两个全等的直角三角形按如图所示摆放,其中∠DAB=90°,试用面积法证明:222c b a =+(提示:四边形ADCB =S △ACD +S △ABC,S 四边形ADCB =S △ADB +S △DCB )训练2-2.如图三角形ADE 和三角形ABC 是全等的两个直角三角形,其中c 为斜边,试用面积法证明222c b a =+.(提示:可参照训练1-1的方法)知识点三 勾股定理的逆定理例3.△ABC 中,∠A,∠B,∠C 的对边长分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是( )A. ∠A =∠C-∠BB. 4:3:2::=c b aC. 222c b a -=D.1,45,43===c b a训练3-1.已知a ,b ,c 是三角形的三边长,如果满足(a -6)2+10c -=0,那么下列说法中不正确的是( )A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.8训练3-2.若a ,b ,c 是△ABC 的三条边,且满足0222=+-b ab a ,222)(c ab b a +=+,则△ABC 的形状为( ) A. 锐角三角形 B. 钝角三角形 C. 等边三角形 D. 等腰直角三角形知识点四 勾股定理及逆定理的应用例4.如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( )A .12cm ≤h ≤19cmB .12cm ≤h ≤13cmC .11cm ≤h ≤12cmD .5cm ≤h ≤12cm训练4-1.如图:一个长、宽、高分别为4cm 、3cm 、12cm 的长方体盒子能容下的最长木棒长为( )A .11cmB .12cmC .13cmD .14cm训练4-2.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是( )A.3.5尺. B.4尺. C.4.5尺. D.5尺.例5.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A 点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是 .训练5-1.如图是放在地面上的一个长方体盒子,其中AB=9,BB′=5,B′C′=6,在线段AB的三等分点E(靠近点A)处有一只蚂蚁,B′C′中点F处有一米粒,则蚂蚁沿长方体表面爬到米粒处的最短距离为 .例 6.如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形,试说明理由.(1)若AB=4,BC=8,求AF.(2)若对折使C在AD上,AB=6,BC=10,求AE,DF的长.训练6-1.(1)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,BG=10.①当折痕的另一端点F在AB边上时,如图①,求△EFG的面积;②当折痕的另一端点F在AD边上时,如图②,证明四边形BGEF为菱形,并求出折痕GF的长.(2)在矩形纸片ABCD中,AB=5,AD=13.如图③所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.综合运用1.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )A.5cm B.12cm C.16cm D.20cm2.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )A.2cm B.3cm C.4cm D.5cm3.有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8m B.10m C.12m D.14m4.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为( )A.3 B.4 C.5 D.65.一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明( )A.没有危险B.有危险C.可能有危险 D.无法判断6.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为( )A.6000米 B.5000米C.4000米 D.2000米7.如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,此时AO=2.4m,若梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移了(参考数据取1.4,取1.7,取1.8)( )A.0.8m B.1.5m C.0.9m D.0.4m8.如图,在△ABC中,AB=5,AC=4,BC=3经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q则线段PQ长度的最小值是( ) BA.4.5B. 4.8C.5D.24 QC P A9.一根长16cm牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中.牙刷露在杯子外面的长度为hcm,则h的取值范围是______.10.小明从家出发向正北方向走了150米,接着向正东方向走到离家250米远的地方,小明向正东方向走了______米.11.如图,是矗立在高速公路水平地面上的交通警示牌,已知如下数据:AM=4米,BM=米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为______米.12.如图所示,一场暴雨过后,垂直于地面的一颗树在C处折断,树尖B恰好碰到地面,经测量AB=4米,∠ABC=30°,则树折断前高______米.13.如图,△ABC是安庆市在拆除违章建筑后的一块三角形空地,已知∠A=120°,AB=30m,AC=20m,如果要在这块空地上种草皮,按每平方米a元计算,则需要资金______ 元.14.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,此时绳子末端距离地面2m,则绳子的长度为______ m.16.我区的自然风光无限,最具特色的是青龙大峡谷(A)和文佛奇峰山(B),它们位于笔直的高速公路X同侧,AB=10km,A,B到直线X的距离分别为AE=10.5km 和BD=4.5km.(1)方案一:旅游开发公司计划在高速公路X旁修建一服务区C,并从服务区C向A、B两景区修建笔直公路运送游客.公司选择较节省的方案(如图1:点B关于直线X的对称点是B1,连接AB1交直线X于点C),C到A、B的距离之和S 1=AC+BC,求S1.(2)方案二:在A,B两景区之间有一条与高速公路X垂直的省级公路Y,且A 到省级公路Y的距离AH=7km(如图2).旅游开发公司打算在省级公路Y旁修建一服务区P,并从服务区P向A、B两景区修建笔直公路运送游客.由于地形条件的限制,P只能选择图2的位置,通过测量得PA=PB,P到A、B的距离之和S 2=AP+BP.请你通过计算比较S1,S2的大小.(参考数据:2=1.414)。
勾股定理及其逆定理1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A. 1B. 2C. 3D. 42.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A. 5cmB. 10cmC. 14cmD. 20cm3.如图:图形A的面积是()A.225B.B. 144C.C. 81D.D. 无法确定4.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A. 6B. 8C. 10D. 125.如图,两个正方形的面积分别为64和49,则AC等于()A. 15B. 17C. 23D. 1136. 如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间6.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3C.D. 58. 直角三角形的两条直角边的长分别为4和5,则斜边长是()A. 3B. 41C.D. 97.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个8.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A. 8B. 10C. 12D. 169.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A. 6B. 7C. 8D. 910.如图,字母B所代表的正方形的面积是()A. 12 cm2B. 15 cm2C. 144 cm2D. 306 cm213. 已知直角三角形的两边长分别为2、3,则第三边长可以为()A. B. 3 C. D.14. 如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A. (5,4)B. (4,5)C. (4,4)D. (5,3)11.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.3B.4C.5D.612.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A. 5B.6C.7D.2513.如图,菱形中,,这个菱形的周长是()A. B. C. D.18. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 8014.如图,E为正方形ABCD内部一点,且,,,则阴影部分的面积为()A. 25B. 12C. 13D. 1915.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=10km,BC=24km,则M、C两点之间的距离为( )A. 13kmB. 12kmC. 11kmD. 10km16.Rt△ABC中,∠C=90°,AC=8,BC=15,则AB=()A. 17B.C. 289D. 18117.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是()A. 5B. 6C. 6.5D. 1318.如图,在矩形ABCD中,AC与BD交于点O,E是CD的中点,已知,,则AC的长为( )A. 10B. 11C. 12D. 1319.在下列四组数中,不是勾股数的一组数是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=720.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.21.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10 mB. 15 mC. 18 mD. 20 m22.下列长度的三条线段能组成直角三角形的是()A. 3,4,5B. 2,3,4C. 4,6,7D. 5,11,1223.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A. 4、7、9B. 5、12、13C. 6、8、10D. 7、24、2524.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A. 20cmB. 50cmC. 40cmD. 45cm25.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是().A. B.C. D.26.以下列各组数为边长,不能构成直角三角形的是()A. 3,4,5B. 9,12,15C. ,,D. 0.3,0.4,0.527.-64的立方根是()A. ±8B. 4C. -4D. 1628.-8的立方根是()A. -2B. ±2C. 2D. -29.的立方根是()A. -1B. 0C. 1D. ±130.下列说法正确的是()A. 1的相反数是-1B. 1的倒数是-1C. 1的立方根是±1D. -1是无理数31.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 332.在实数,,,中有理数有()A. 1个B. 2个C. 3个D. 4个33.8的相反数的立方根是()A. 2B.C. -2D.34.下列说法正确的是()A. 是有理数B. 5的平方根是C. 2<<3D. 数轴上不存在表示的点35.-的相反数是()A. -B. -C. ±D.36.|1-|的值为()A. 1-B. 1+C. -1D. +137.在下列实数中:π,-,0,,最小的数是()A. -B. 0C.D. π38.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数39.下列说法正确的是()A. 3.14是无理数B. 是无理数C. 是有理数D. 2p是有理数40.下列各式正确的为()A. =±4B. -=-9C. =-3D.41.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数42.下列四个数:-2,-0.6,,中,绝对值最小的是()A. -2B. -0.6C.D.43.与最接近的整数是()A. 4B. 5C. 6D. 744.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或145.下列说法:①带根号的数都是无理数;②无理数都可用数轴上的点表示;③的平方根是±4:④a2的算术平方根是a;⑤负数也有立方根,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个答案和解析1.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选:C.2.【答案】D【解析】【分析】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.3.【答案】C【解析】【分析】根据勾股定理列式计算即可得解;本题考查了勾股定理,是基础题,主要是对勾股定理的理解与应用.【解答】解:由勾股定理得,A边长,故A的面积.故选C.4.【答案】C【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.5.【答案】B【解析】【分析】本题考查了勾股定理,求出AB、BC的长是解题的关键.根据正方形的性质求出AB、BD、DC的长,再根据勾股定理求出AC的长即可.【解答】解:如图,∵两个正方形的面积分别是64和49,∴AB=BD=8,DC=7,∴BC=BD+DC=8+7=15,根据勾股定理得:AC==17.故选B.6.【答案】C【解析】解:由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.利用勾股定理列式求出OB,再根据无理数的大小判断即可.本题考查了勾股定理,估算无理数的大小,熟记定理并求出OB的长是解题的关键.7.【答案】B【解析】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2-EB2=22-12=3,∴正方形ABCD的面积=BC2=3.故选:B.先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了正方形的性质.8.【答案】C【解析】解:由勾股定理得:斜边长为,故选:C.利用勾股定理即可求出斜边长.本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.9.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C10.【答案】C【解析】【分析】此题主要考查了勾股定理,正确应用勾股定理是解题关键.直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选C.11.【答案】C【解析】【分析】本题考查的知识点是勾股定理和等腰三角形的性质,在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得等腰底边上的高.【解答】解:根据题意画出图形,,如图:BC =12,AB=AC=10 ,在△ABC中,AB =AC,AD⊥BC,则BD =DC=BC=6 ,在Rt△ABD中,AB=10,BD=6,,故选C.12.【答案】C【解析】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225-81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.本题考查了勾股定理:会利用勾股定理进行几何计算.13.【答案】D【解析】【分析】本题考查了勾股定理,是基础题,难点在于要分情况讨论,分3是直角边和斜边两种情况讨论求解.【解答】解:3是直角边时,第三边==,3是斜边时,第三边==,所以,第三边长为或.故选D.14.【答案】A【解析】【分析】此题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,∴AB=AO+OB=5,∴AD=AB=CD=5,∴DO===4,∴点C的坐标是(5,4).故选A.15.【答案】A【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选A.16.【答案】A【解析】【分析】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB===5.故选:A.17.【答案】C【解析】【分析】通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.【解答】解:因为四边形ABCD是菱形,所以AC⊥BD,设AC与BD交于点O,则AO=1,BO=2,所以AB=.周长为4AB=4.故选C.18.【答案】C【解析】【分析】本题考查勾股定理以及正方形的性质,解题关键是利用勾股定理求出正方形的边长,然后利用部分之和等于整体求出阴影部分面积.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE转换求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE=AB2-×AE×BE=100-×6×8=76.故选C.19.【答案】D【解析】【分析】本题考查了正方形的性质,勾股定理的运用,利用勾股定理求出正方形的边长并观察出阴影部分的面积的表示是解题的关键,根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.20.【答案】A【解析】【分析】本题考查勾股定理和直角三角形斜边上的中线的性质,在Rt△ABC中,由勾股定理可得AB=26,根据直角三角形斜边上的中线等于斜边的一半,即可得到M、C两点之间的距离.【解答】解:在Rt△ABC中,AB2=AC2+CB2,∴AB==26,∵M点是AB中点,∴MC=AB=13,故选A.21.【答案】A【解析】【分析】本题考查了勾股定理在直角三角形中的运用,掌握勾股定理是解决问题的关键.由题意可知:斜边为AB,直接由勾股定理求得答案即可.【解答】解:根据勾股定理,AB===17.故选A22.【答案】C【解析】解:由题意得,斜边=,所以斜边上的中线=×13=6.5.故选:C.根据勾股定理,先求出直角三角形的斜边长,再根据直角三角形斜边上的中线等于斜边的一半,即可求出中线长.此题考查了勾股定理以及直角三角形斜边上的中线的性质.23.【答案】D【解析】【分析】考查了矩形的性质,三角形中位线定理,勾股定理,了解矩形的性质是解答本题的关键,难度不大.首先利用三角形的中位线定理求得BC的长,然后利用勾股定理求得AC的长即可.【解答】解:∵四边形ABCD为矩形,∴O为BD的中点,∵E为CD的中点,∴OE为△ABC的中位线,∵OE=6,∴BC=2OE=12,∵AB=5,∴AC==13,故选D.24.【答案】D【解析】【分析】本题考查了勾股数的定义,掌握勾股数的知识是解决问题的关键.理解勾股数的定义,即在一组(三个数)中,两个数的平方和等于第三个数的平方.解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.25.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.26.【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.本题考查的是勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.【解答】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).故选C.27.【答案】A【解析】解:A.∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B.∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C.∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D.∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.28.【答案】A【解析】解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.29.【答案】C【解析】【分析】本题考查勾股定理的实际应用,首先要正确理解题意,明白怎么放桶内所能容下的木棒最长,然后灵活利用勾股定理,难度一般.根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.30.【答案】A【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;B.∵,设a、b、c边长为k、k、k∴则有k2+k2=2k2,即a2+b2=c2,∴∠C=90°,故能判定△ABC是直角三角形;C.∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D.∵b2=a2-c2,∴b2+c2=a2,故能判定△ABC是直角三角形.故选A.31.【答案】C【解析】解:A、因为32+42=52,故能构成直角三角形,此选项错误;B、因为92+122=152,能构成直角三角形,此选项错误;C、因为()2+()2≠()2,不能构成直角三角形,此选项正确;D、因为0.32+0.42=0.52,能构成直角三角形,此选项错误.故选:C.根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.32.【答案】C【解析】【分析】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.依据立方根的定义求解即可.【解答】解:∵(-4)3=-64,∴-64的立方根是-4.故选C.33.【答案】A【解析】解:∵-2的立方等于-8,∴-8的立方根等于-2.故选:A.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.34.【答案】C【解析】解:的立方根是1,故选:C.根据开立方运算,可得一个数的立方根.本题考查了立方根,先求幂,再求立方根.35.【答案】A【解析】解:A、1的相反数是-1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、-1是有理数,故错误;故选:A.根据相反数、倒数、立方根,即可解答.本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.36.【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.37.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.38.【答案】C【解析】解:8的相反数是-8,-8的立方根是-2,则8的相反数的立方根是-2,故选:C.根据相反数的定义、立方根的概念计算即可.本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.39.【答案】C【解析】【分析】本题考查了实数的意义、实数与数轴的关系,利用被开方数越大算术平方根越大是解题关键.根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选C.40.【答案】D【解析】解:根据相反数、绝对值的性质可知:-的相反数是.故选:D.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.41.【答案】C【解析】解:|1-|的值为-1.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.绝对值的性质,负数的绝对值是其相反数.考查了实数的性质,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.42.【答案】A【解析】解:∵-<<0<π,∴最小的数是-.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.43.【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.44.【答案】C【解析】解:整数和分数统称为有理数.A.3.14是小数,可写成分数的形式,所以是有理数,错误.B.是有理数,错误.D.2p表示p的2倍,要视乎p本身是否为有理数而定,错误.故选:C.按照有理数无理数的定义判断即可.本题考查了有理数的定义,正确理解有理数定义是解题关键.45.【答案】D【解析】解:A、=4,故原题计算错误;B、-=9,故原题计算错误;C、=3,故原题计算错误;D、=,故原题计算正确;故选:D.根据=|a|进行化简计算即可.此题主要考查了二次根式和立方根,关键是掌握二次根式的性质.46.【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.47.【答案】C【解析】解:∵|-2|=2,|-0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.此题考查了实数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.48.【答案】B【解析】【分析】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和5.5之间,题目比较典型,根据无理数的意义和二次根式的性质,即可求出答案.【解答】解:∵,∴,∴最接近的整数为,∴.故选B.49.【答案】C【解析】【分析】本题考查了实数,利用平方根的意义、立方根的意义、实数与数轴的关系是解题关键.根据平方根的意义、立方根的意义、实数与数轴的关系,可得答案.【解答】解:A.实数与数轴上的点一一对应,说法正确,故选项不符合题意;B.π+(1-π)=1,说法正确,故选项不符合题意;C.负数的立方根是负数,说法错误,故选项符合题意;D.算术平方根等于它本身的数只有0或1,说法正确,故选项不符合题意.故选C.50.【答案】B【解析】【分析】本题主要考查了实数中无理数的概念,算术平方根,平方根,立方根的概念.①根据无理数的定义即可判定;②根据无理数与数轴的关系即可判定;③根据算术平方根、平方根的定义计算即可判定;④根据算术平方根的定义即可判定;⑤根据立方根的定义即可判定.【解答】解:①带根号的数不一定是无理数,有的是有理数,故说法错误;②无理数都可用数轴上的点表示,故说法正确;③=4,4的平方根是±2,故说法错误:④a2的算术平方根是|a|,故说法错误;⑤负数也有立方根,故说法正确.正确的是:②⑤.故选B.。
勾股定理逆定理 12题附答案一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).图18-2-4 图18-2-5 图18-2-63.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.二、综合·应用7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.图18-2-910.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC 是直角三角形.问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______;②错误的原因是______________ ;③本题的正确结论是_________ _.11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD 的面积.图18-2-10参考答案一、基础·巩固1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D.2.解:过D 点作DE ∥AB 交BC 于E, 则△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°. 又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.根据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.3.思路分析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S .4.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可.解:∵E 为AB 中点,∴BE=2.∴CE 2=BE 2+BC 2=22+42=20.同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25.∵CE2+EF2=CF2,∴△EFC是以∠CEF为直角的直角三角形.5.思路分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ABD中,AB2+AD2=32+42=9+16=25=BD2,所以△ABD为直角三角形,∠A =90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.所以△BDC是直角三角形,∠CDB =90°.因此这个零件符合要求.6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.二、综合·应用7.思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证).8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10, OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10, ∴OA2+AB2=O B2.∴△OAB是以OB为斜边的等腰直角三角形.10.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B) ②没有考虑a=b 这种可能,当a=b 时△ABC 是等腰三角形;③△ABC 是等腰三角形或直角三角形.11.思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;(3)已知a 、b 、c ,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由已知可得a 2-10a+25+b 2-24b+144+c 2-26c+169=0,配方并化简得,(a -5)2+(b -12)2+(c -13)2=0.∵(a -5)2≥0,(b -12)2≥0,(c -13)2≥0.∴a -5=0,b -12=0,c -13=0.解得a=5,b=12,c=13.又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.12.思路分析:(1)作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );(2)DE=AB=4,BE=AD=3,EC=EB =3;(3)在△DEC 中,3、4、5为勾股数,△DEC 为直角三角形,DE ⊥BC ;(4)利用梯形面积公式,或利用三角形的面积可解.解:作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ),∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE 2+CE 2=32+42=25=CD 2,∴△DEC 为直角三角形.又∵EC=EB=3,∴△DBC 为等腰三角形,DB=DC=5.在△BDA 中AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12. ∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.。
专题02 勾股定理逆定理及应用一、知识点勾股定理的逆定理:两个边平方之和等于第三边的平方的三角形是直角三角形。
第三边即为直角三角形的斜边。
勾股定理逆定理的应用:证明直角三角形二、标准例题:例1:如图,一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.例2:课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、________、________;(2)若第一个数用字母a (a 为奇数,且a ≥3)表示,那么后两个数用含a 的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=32−12,12=52−12,24=72−12……,于是他很快表示了第二数为a 2−12,则用含a 的代数式表示第三个数为________;(3)用所学知识证明你的结论.三、练习1.将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是( )A .1,2,3B .4,5,6C .5,12,15D .1,√3,22.下列几组数中,不能作为直角三角形三边长度的是( ) A .a=23 ,b=2 , c=54; B .a=1.5 ,b=2 , c=2.5 C .a=6 ,b=8 , c= 10; D .a= 15,b=8 , c=173.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是 ( ) A .∠A =∠C -∠B B .a 2=b 2-c 2 C .a:b:c =2:3:4 D .a =34,b =54,c =14.以下列数组为边长,能构成直角三角形的是( ) A .2 ,3,4 B .1,12,13 C .1,√2,√3 D .0.2,0.5,0.6 5.下列说法中,正确的有( )①如果∠A+∠B -∠C=0,那么△ABC 是直角三角形; ②如果∠A:∠B:∠C=5:12:13,则△ABC 是直角三角形; ③如果三角形三边之比为√7:√10:√17,则△ABC 为直角三角形;④如果三角形三边长分别是n 2−4、4n 、n 2+4(n >2),则△ABC 是直角三角形; A .1个 B .2个 C .3个 D .4个6.已知△ABC 的三边长a 、b 、c 满足√a −1+|b −1|+(c −√2)2=0,则△ABC 一定是( )三角形。
初二数学下册知识点《勾股定理的逆定理》经典例题及解析副标题一、选择题(本大题共73小题,共219.0分)1.如图所示,被纸板遮住的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能【答案】D【解析】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个锐角.故选D.三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.本题考查了三角形内角和定理的运用以及图形的识别能力和推理能力,解题的关键是熟记三角形内角和定理.2.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. π-6B. πC. π-3D. +π【答案】B【解析】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积-△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.3.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则△ABC是()A. 直角三角形B. 等腰三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C【解析】【分析】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解. 【解答】解:移项得,a2c2-b2c2-a4+b4=0,c2(a2-b2)-(a2+b2)(a2-b2)=0,(a2-b2)(c2-a2-b2)=0,所以,a2-b2=0或c2-a2-b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选C.4.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( ).A. 10B. 12C. 24D. 48【答案】B【解析】【分析】此题主要考查了三角形面积,直角三角形的判定,勾股定理及其逆定理,解答此题的关键是根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形.根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形,然后根据三角形面积公式得出BD•AC=AB•BC,即可求得答案.【解答】解:已知三角形的三边分别是BC=15,AB=20,AC=25,BD是AC上的高,∵BC=15,AB=20,AC=25,∴AC2=AB2+BC2,∴三角形ABC为直角三角形,∵BD是AC上的高,∴BD•AC=AB•BC,∴BD=12.故选B.5.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.6.下列以a,b,c为边的三角形,不是直角三角形的是()A. a=1,b=1,B. a=1,,c=2C. a=3,b=4,c=5D. a=2,b=2,c=3【答案】D【解析】解:A、∵12+12=()2,∴该三角形是直角三角形,故此选项不符合题意;B、∵12+()2=22,∴该三角形是直角三角形,故此选项不符合题意;C、∵32+42=52,∴该三角形是直角三角形,故此选项不符合题意;D、∵22+22≠32,∴该三角形不是直角三角形,故此选项符合题意.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. 0.5,1.2,1.3C. 7,8,9D. 7,24,25【答案】C【解析】解:A、92+122=152,故是直角三角形,故不符合题意;B、(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C、72+82≠92,故不是直角三角形,故符合题意;D、72+242=252,故是直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.如图△ABC,BC=6,AC=8,AB=10,则点B到AC的距离是()A. 6B. 7C. 8D. 10【答案】A【解析】解:∵BC2+AC2=62+82=100,AB2=102=100,∴BC2+AC2=AB2,根据勾股定理逆定理得,△ABC是直角三角形,∠C=90°,所以,点B到AC的距离是6.故选:A.利用勾股定理逆定理判断出△ABC是直角三角形,∠C=90°,再根据点到直线的距离的定义解答.本题考查了勾股定理逆定理,点到直线的距离的定义,熟记定理并判断出三角形是直角三角形是解题的关键.9.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【答案】B【解析】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形,则使△ABC为直角三角形的概率是:.故选:B.由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.此题主要考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】本题主要考查了勾股定理逆定理,关键是正确作出图形,不要漏掉任何一种情况.以AB为直角边有2个,以AB为斜边有2个,共4个.【解答】解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选B.11.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. 不是直角三角形【答案】A【解析】解:∵(a+b)(a-b)=c2,∴a2-b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,∴∠A为直角.故选:A.先把等式化为a2-b2=c2的形式,再根据勾股定理的逆定理判断出此三角形的形状,进而可得出结论.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A. B. C. D.【答案】A【解析】解:A、三角形各边长为、、,()2+()2<()2,故该三角形不是直角三角形;B、由图可知该三角形为直角三角形;C、各边长、、,()2+()2=()2,故该三角形为直角三角形;D、各边长、2、5,()2+(2)2=(5)2,故该三角形为直角三角形.故选:A.由图可知B为直角三角形,分别求A、C、D三个选项中各边长,根据勾股定理的逆定理可以判定C、D中三角形为直角三角形,A不是直角三角形,即可解题.本题中考查了勾股定理的逆定理判定直角三角形,勾股定理在直角三角形中的运用,本题中求证B、C、D选项中三角形是直角三角形是解题的关键.13.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5.⑤a2=(b+c)(b-c)中,能确定△ABC是直角三角形的有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】解:①∠A+∠B=∠C时,∠C=90°,是直角三角形;②∠C=90°,是直角三角形;③AC:BC:AB=3:4:5,∴32+42=52,是直角三角形;④∠A:∠B:∠C=3:4:5时,∠C=180°×<90°,是锐角三角形;⑤a2=(b+c)(b-c),a2=b2-c2,是直角三角形.故能确定△ABC是直角三角形的有4个.故选:C.分别求出最大的角的度数,然后根据直角三角形的定义和勾股定理的逆定理解答.本题考查了直角三角形的性质,关键是掌握勾股定理,以及三角形内角和定理.14.以下各组线段为边不能组成直角三角形的是()A. 3,4,5B. 6,8,10C. 5,12,13D. 8,15,20【答案】D【解析】解:A、∵32+42=52,∴能构成直角三角形,故本选项错误;B、∵62+82=102,∴能构成直角三角形,故本选项错误;C、∵52+122=132,∴能构成直角三角形,故本选项错误;D、∵82+152≠202,∴不能构成直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对四个选项进行逐一判断即可.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.满足下列条件的△ABC中,不是直角三角形的是()A. b2=c2-a2B. a:b:c=3:4:5C. ∠C=∠A-∠BD. ∠A:∠B:∠C=3:4:5【答案】D【解析】解:A、b2=c2-a2,a2+b2=c2,故能组成直角三角形,不符合题意;B、32+42=52,故能组成直角三角形,不符合题意;C、∠C=∠A-∠B,∠A=∠B+∠C,故能组成直角三角形,不符合题意;D、∠A:∠B:∠C=3:4:5,∠C=180°×=75°,故不能组成直角三角形,符合题意.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.三角形的三边长a,b,c满足(a+b)2—c2 =2ab,则此三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形【答案】A【解析】【分析】本题考查勾股定理的逆定理,若是两边的平方和等于另一个边的平方,那么这个三角形是直角三角形.因为a、b、c,为三角形的三边长,可化简:(a+b)2-c2=2ab,得到结论.【解答】解:∵(a+b)2-c2=2ab,∴a2+2ab+b2-c2=2ab ,∴a2+b2=c2.所以为直角三角形.故选A.17.下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=5:12:13;④△ABC中,三边长分别为,其中,直角三角形的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①△ABC中,∠C=∠A-∠B,即∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故①正确;②△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴△ABC是直角三角形,故②正确;③∵△ABC中,a:b:c=5:12:13,∴a2+b2=c2,即△ABC是直角三角形,故③正确;④∵△ABC中,三边长分别为,∴()2+()2≠()2,即△ABC不是直角三角形,故④错误;即正确的个数是3个,故选:C.根据三角形内角和定理即可判断②;根据勾股定理的逆定理即可判断③④.本题考查了勾股定理的逆定理和三角形的内角和定理,能灵活运用定理进行推理和计算是解此题的关键.18.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A. B.C. D.【答案】C【解析】【分析】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.过C作CD⊥AB于D,依据AB=6,AC=8,可得CD≤8,进而得到当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC 的面积最大.【解答】解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,19.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.故选:A.要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm可以满足要求,其中5cm、12cm为直角边,13cm为斜边.本题考查了勾股定理逆定理的运用以及三角形的三边关系,两边的平方和等于第三边的平方.属于比较简单的题目.20.下列各组数据中能作为直角三角形的三边长的是()A. 1,2,2B. 1,1,C. 4,5,6D. 1,,2【答案】D【解析】【分析】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.解答此题根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A.∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B.∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C.∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D.∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.21.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,则满足下列条件但不是直角三角形的是()A. a2-c2=b2B. a=n2-1,b=2n,c=n2+1 (n>1)C. ∠A:∠B:∠C=3:4:5D. ∠A=∠B=∠C【答案】C【解析】解:A、a2-c2=b2,那么a2=b2+c2,故△ABC是直角三角形;故不符合题意;B、∵a2+b2=(n2-1)2+(2n)2=(n2+1)2=c2,故△ABC是直角三角形;故不符合题意;C、∠A:∠B:∠C=3:4:5,故△ABC不是直角三角形;故符合题意;D、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,故△ABC是直角三角形;故不符合题意;故选:C.运用直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.此题主要考查了直角三角形的判定方法,勾股定理逆定理的实际运用,灵活的应用此定理是解决问题的关键.22.以a,b,c为边的三角形是直角三角形的是()A. a=2,b=3,c=4B. a=1,b=,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【解析】解:A、32+22≠42,故不是直角三角形,故本选项不符合题意;B、12+()2=22,故是直角三角形,故本选项符合题意;C、42+52≠62,故不是直角三角形,故本选项不符合题意;D、22+22≠()2,故不是直角三角形,故本选项不符合题意.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理,并能进行推理计算是解决问题的关键.23.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,连接AB,BC,CA,则∠ACB的度数为()A. 30°B. 45°C. 60°D. 75°【答案】B【解析】解:根据勾股定理可以得到:AC=AB=,BC=,∵,即AC2+AB2=BC2,∴△ABC是等腰直角三角形.∴∠ACB=45°.故选:B.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.24.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【解答】解:A.∵a2+b2=c2,根据勾股定理的逆定理∠C=90°,是直角三角形,故本选项错误;B.∵(3k)2+(4k)2=25k2=(5k)2,∴△ABC是直角三角形,故本选项错误;C.∵∠C=∠A-∠B,∴∠C+∠B=∠A,∴∠A=90°,是直角三角形,故本选项错误;D.∵∠A:∠B:∠C=3:4:5,∴最大的角∠C=180°×<90°,是锐角三角形,故本选项正确.故选D.25.下列给定的三条线段中,不能组成直角三角形的是()A.9,12,15 B. ,, C. 7,8,9 D. 7,24,25【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.92+122=152,故是直角三角形,故不符合题意;B.(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C.72+82≠92,故不是直角三角形,故符合题意;D.72+242=252,故是直角三角形,故不符合题意.故选C.26.若△ABC的三边长a,b,c满足(a -b)(b-c)=0 ,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰或等边三角形【答案】D【解析】【分析】此题主要考查等腰三角形的判断.根据(a-b)(b-c)=0,可知三边关系,即可判断结果. 【解答】解:∵a,b,c是△ABC的三边长,又∵(a-b)(b-c)=0,∴a=b或者b=c或者a=b=c,所以三角形是等腰三角形或等边三角形 .故选D.27.五根小木棒,其长度分别为,现将他们摆成两个直角三角形,其中正确的是( )A. B.C. D.【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A:152+202≠242,72+242=252,故A错误;B:72+242=252,152+202≠242,故B错误;C:72+242=252,152+202=252,故C正确;D:72+202≠252,152+242≠252,故D错误.故选C.28.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A.由b2-a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B.由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C.由三角形三个角度数和是180°及∠C=∠A-∠B解得∠A=90°,故是直角三角形;D.由∠A:∠B:∠C=3:4:5,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.故选D.29.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A. 6B. 8C. 12D. 14【答案】C【解析】解:在Rt △ABC 中,∵AC =6,BC =8,∠C =90°, ∴AB ==10,由翻折的性质可知:AE =AC =6,CD =DE , ∴BE =4,∴△BDE 的周长=DE +BD +BE =CD +BD +E =BC +BE =8+4=12, 故选:C .利用勾股定理求出AB =10,利用翻折不变性可得AE =AC =6,推出BE =4即可解决问题. 本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.30.下列各组数不能构成直角三角形的是A. 12,5,13B. 40,9,41C. 7,24,25D. 10,20,16【答案】D【解析】【分析】本题主要考查了勾股定理的逆定理的运用,判断三条线段能否构成直角三角形,只需看两条短边的平方和是否等于长边的平方,如果等就是直角三角形,不等就不是直角三角形,解答此题根据勾股定理的逆定理进行判断即可. 【解答】解:A .∵52+122=132,∴能构成直角三角形; B .∵402+92=412,∴能构成直角三角形; C .∵72+242=252,∴能构成直角三角形; D .∵102+162≠202,∴不能构成直角三角形. 故选D .31. 以下列各组线段为边作三角形,能构成直角三角形的是( )A. 2,3,4B. 4,4,6C. 6,8,10D. 7,12,13 【答案】C【解析】解:A 、22+32=13≠42,不能构成直角三角形,故本选项错误; B 、42+42=32≠62,不能构成直角三角形,故本选项错误; C 、62+82=100=102,能构成直角三角形,故本选项正确; D 、122+72=193≠132,不能构成直角三角形,故本选项错误; 故选:C .只要验证两小边的平方和等于最长边的平方即可判断是直角三角形. 本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.32. 有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是( )A.B.C.D.【答案】D【解析】解:所有的情况有:4,6,8;4,6,10;4,8,10;6,8,10,共4种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种, 所以从中任取三条能构成直角三角形的概率是;故选:D .找出四条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.33.若△ABC三边分别是a,b,c,且满足(b-c)(a2+b2)=bc2-c3,则△ABC是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形【答案】D【解析】略34.下列选项中,不能判断△ABC为直角三角形的是()A.∠A+∠B=∠C B. A:∠B:∠C=1:2:3C. ∠A=∠B=2∠CD. AB2+BC2=AC2【答案】C【解析】解:A、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;B、因为∠A:∠B:∠C=1:2:3,所以设∠A=x,则∠B=2x,∠C=3x,故x+2x+3x=180°,解得x=30°,3x=30°×3=90°,故为直角三角形;C、因为∠A=∠B=2∠C,∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,故此三角形是锐角三角形,错误;D、因为AB2+BC2=AC2,故为直角三角形;故选:C.A、根据三角形的内角和为180度,即可计算出∠C的值;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠A、∠B、∠C的值;D、根据勾股定理的逆定理进行判定即可.此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.35.在下列条件中:,,,④,⑤中,能确定是直角三角形的条件有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】本题考查了三角形内角和定理的应用,能求出每种情况的最大角的度数是解此题的关键,题目比较好,难度适中.根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,故②正确;③∵∠A=90°-∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故③正确;④∵∠A=∠B=∠C,设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,∴x=30º,3x=90º,∴∠C=90°,∴△ABC是直角三角形,故④正确,⑤∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴5∠C=180°∴∠C=36°∴∠A=∠B=72°∴△ABC不是直角三角形,∴⑤错误.综上所述①②③④4个全部符合题意.故选D.36.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】略37.下列说法中:①如果∠A+∠B﹣∠C=0,那么△ABC是直角三角形;②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形;③如果三角形三边之比为,则△ABC为直角三角形;④如果三角形三边长分别是n2﹣4、4n、n2+4(n>2),则△ABC是直角三角形.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查了直角三角形的判定,勾股定理的逆定理和三角形的内角和定理.利用三角形内角和定理和勾股定理逆定理逐项进行判断,从而得到答案.【解答】解:①符合题意,由三角形内角和定理可求出∠C为90度;②不符合题意,根据三角形的内角和定理可以求出三角形的三个内角分别为30°,72°,78°,不是直角三角形;③符合题意,设三边分别为x,x,x,则有7x2+10x2=17x2,则△ABC为直角三角形;④符合题意,因为,则△ABC是直角三角形.所以正确的有①③④.故选C.38.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()A. 6cm2B. 30cm2C. 24cm2D. 36cm2【答案】C【解析】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD-S△ABC=AC×CD-AB×BC=×5×12-×4×3=30-6=24(cm2).故四边形ABCD的面积为24cm2.故选:C.连接AC,在Rt△ADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ADC 中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt△ACD与Rt△ABC的面积之差.本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出△ACD的形状是解答此题的关键.39.王老师给出了下列三条线段的长度,其中能首尾相接构成直角三角形的是()A. 1,2,3B.C. 6,8,9D. 5,12,13【答案】D【解析】解:A、由22+12=5≠32,故本选项错误;B、由()2+()2=7≠()2,故本选项错误;C、由62+82=100≠92,故本选项错误;D、由52+122=169=132,故本项正确.故选:D.根据三边的长,运用勾股定理的逆定理进行分析解答即可.本题主要考查勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.40.图中三角形的个数是( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题考查了三角形的定义,根据图形找出其中三角形即可得结果.【解答】解:图中三角形有ΔABF、ΔADF、ΔCDF、ΔAEC、ΔACD、ΔABD、ΔAED、ΔBDE,共8个.故选C.41.在下列几组数中,能作为直角三角形三边的是().A. 0.9,1.6,2.5B. ,,C. 32,42,52D. ,,【答案】D【解析】解:A、0.92+1.62≠2.52,不符合勾股定理的逆定理,故选项错误;B、()2+()2≠()2,不符合勾股定理的逆定理,故选项错误;C、(32)2+(42)2≠(52)2,不符合勾股定理的逆定理,故选项错误;D、()2+()2=()2,符合勾股定理的逆定理,故选项正确.故选D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.42.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是()A. ①②B. ②③C. ③④D. ①④【答案】C【解析】【分析】此题考查了勾股数:满足a2+b2=c2的三个正整数,称为勾股数.注意:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是勾股数.②一组勾股数扩大相同的整数倍得到的三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;….欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:①由于0.32+0.42=0.52,所以以0.3,0.4,0.5为边长的三角形是直角三角形,但是0.3,0.4,0.5不是整数,所以0.3,0.4,0.5不是勾股数,故①说法错误;②虽然以0.5,1.2,1.3为边长的三角形是直角三角形,但是0.5,1.2,1.3不是整数,所以0.5,1.2,1.3不是勾股数,故②说法错误;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2,故③说法正确;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,故④说法正确.故选:C.43.已知△ABC,三边长AB=8cm,AC=6cm,BC=10cm,则最长边上的高是()A. 48cmB. 4.8cmC. 0.48cmD. 5cm【答案】B【解析】【分析】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,三角形的面积,是基础知识要熟练掌握.勾股的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 首先根据勾股定理的逆定理得出斜边为AB,再利用“面积法”来求AB边上的高.【解答】解:∵Rt△ABC的三边AC=6cm,BC=8cm,AB=10cm,∴AB2=AC2+BC2,∠C=90°,,∴AB边上的高.故选B.44.线段BC上有3个点P1、P2、P3,线段BC外有一点A,把A和B、P1、P2、P3、C连接起来,可以得到的三角形个数为()A. 8个B. 10个C. 12个D. 20个【答案】B【解析】解:从5个点中,任意选2个点组合,显然有10种情况.故选B.45.将下列各组数据中的三个数作为三角形的三边长,其中能构成直角三角形的是( )。
勾股定理知识点及典型例题一、勾股定理:勾股定理定义为:直角三角形两直角边的平方和等于斜边的平方,即a²+b²=c²,其中a和b是直角三角形的两条直角边,c是斜边。
勾股定理的逆定理为:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。
勾股数是满足a²+b²=c²的三个正整数a,b,c。
注意,若a,b,c为勾股数,那么ka,kb,kc同样也是勾股数。
常见的勾股数有3,4,5;6,8,10;9,12,15;5,12,13.判断直角三角形的方法有两种:一是如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。
二是如果有一个角为90°或两个角互余,那么这个三角形是直角三角形。
具体判断方法是确定最大边(不妨设为c),若c=a+b,则为直角三角形;若a+bc,则为锐角三角形。
直角三角形斜边上的中线等于斜边的一半,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
勾股定理的作用有四个:一是已知直角三角形的两边求第三边;二是已知直角三角形的一边,求另两边的关系;三是用于证明线段平方关系的问题;四是利用勾股定理,作出长为a,b,c的直角三角形。
二、勾股定理的证明:勾股定理的证明方法有很多种,其中常见的是拼图的方法。
具体证明过程如下:在直角三角形ABC中,以BC为底边,作等腰直角三角形ABD,连接AD,则AD=AB,BD=BC。
因此,AB²=AD²+BD²=AD²+BC²,即a²=b²+c²。
1.一个无盖的正方体盒子内有两只昆虫,昆虫甲在顶点C1处,昆虫乙在棱BB1的中点E处。
昆虫乙要在最短时间内捕捉到昆虫甲,可以沿着路径A→E→C1爬行。
第九讲勾股定理知识概要1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.(注:应用勾股定理的关键在于构造直角三角形)2、勾股定理逆定理:如果三角形的三边长a,b,c满足222+=,那么这个三角形是直角三角形,其a b c中c为斜边。
3、勾股定理的作用|(1)已知直角三角形的两边求第三边.(2)已知在特殊直角三角形中,直角三角形的一边,求另两边的关系.(3)用于证明平方关系的问题.4、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证2c与2a+2b是否具有相等关系.若2c=2a+2b,则△ABC是以∠C=90°的直角三角形;:若2c≠2a+2b,则△ABC不是直角三角形.【注意】当2c≠2a+2b时有两种情况.(1)当2a+2b<2c时,此三角形为钝角三角形;(2)当2a+2b>2c时,此三角形为锐角三角形,其中c为三角形的最大边.5、常用勾股数组:(3, 4 ,5); (5, 12 ,13); (6, 8, 10); (7, 24, 25); (8, 15, 17) ; (9, 40 ,41);(20,21,29)……6、一组勾股数中各数的相同的正整数倍得到的一组新数还是勾股数。
7、一组勾股数中各数的相同的正数倍得到的一组新数为边,仍构成直角三角形。
8、(9、直角三角形的性质:(1)直角三角形中斜边最大;(2)直角三角形中有勾股定理;(3)直角三角形中,30度角所对应直角边等于斜边的一半;(4)直角三角形中,斜边上的中线等于斜边的一半;(5)等积原理(ab=ch )10、双垂图中的射影定理例题精讲~【例1】如图,证明勾股定理.【例2】填空题:》在△ABC 中,∠C 为直角.(1)若BC =2, AC=3则AB = ; 若BC =5, AB=13.则AC = ;若AB=61, AC=11.则BC = .(2)若BC ∶AB =3∶5且AB =20则AC= .(3)若∠A=60°且AC=2cm 则AB= cm ,BC= cm.【巩固练习】1、2、Rt △ABC 中,C ∠是直角,3、(1)已知6BC =,8AC =,求AB 之长;4、(2)已知25AB =,14BC =,求AC 之长;(3)板块一 勾股定理aaa ab b] b@(3)已知13AC =,19AB =,求BC 之长.2、已知等边三角形的边长为a ,求等边三角形一边上的高和这等边三角形的面积.¥【例 3】已知60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 和AD 的长.>【巩固练习】已知:如图所示,在四边形ABCD 中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD 的周长为32,求BC 和CD 的长.《【例 4】如图,已知AB =13,BC =14,AC =15,BC AD ⊥于D ,求AD 的长.'ABCD【 BA DCB AD【例 5】如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP += ."【例 6】如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .$【巩固练习】 1、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部分的面积与直角三角形的面积相等.`P M B C A ; A B S 12、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是A.13 B.26 C.47 D.94^3、在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则1S+2S+3S+4S=____$"1S2S3S4231【例7】在△ABC 中,如果a ∶b ∶c =1∶3∶2, 那么∠A= °,∠B= °∠C= °如果a ∶b ∶c =1∶1∶2, 那么∠A= °,∠B= °∠C= °`【例 8】判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1)15a =,8b =,17c =;(2)13a =,14b =,15c =;(3)7a =,24b =,25c =.【例 9】已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c , 《试判断△ABC 的形状《【例 10】如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .,板块二 勾股定理逆定理A【例 11】已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点即3CE =EB求证:AF ⊥FE .(》【例 12】如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.|【巩固练习】1.若一个三角形的周长为123cm,一边长为33cm,其他两边之差为3cm,则这个三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形2.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°>3.有一块土地形状如图所示,∠B=∠D=90°,AB=20米,BC=15米,CD=7米,请计算这块地的面积.~ 4.如图,在四边形ABCD 中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数。
勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 2 5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ABCDA B CD5312138. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.AA D C B拓广创新试一试,你一定能成功哟!9. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a =m 2-n 2,b =2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下.123456 (2)3 4 5 6 …… … … … … ……勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 勾股 数n m A ME NB9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝◆ 仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?D B C AB12 59.如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D 处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.拓广创新试一试,你一定能成功哟!10.如图,在△ABC中,∠ACB=90º,AC=BC,P是△ABC内的一点,且PB=1,PC=2,P A=3,求∠BPC的度数.BACD.ACPB18.2 勾股定理的逆定理(1)参考答案1.B2.A3.B4.C5.C6.24m 27.符合 8.由勾股定理得AE 2=25,EF 2=5,AF 2=20,∵AE 2= EF 2 +AF 2,∴△AEF 是直角三角形 . 9.略18.2 勾股定理的逆定理(2)参考答案1.B2.D3.C4.5,12,13; 8,15,17; 11,60,61(此题答案不唯一)5.3或416.120cm 27.由BD 2+DC 2=122+162=202=BC 2得CD ⊥AB 又AC =AB =BD +AD =12+AD ,在Rt△ADC 中,AC 2=AD 2+DC 2,即(12+AD )2=AD 2+162,解得AD =314,故 △ABC 的周长为2AB +BC =3153cm 8.由勾股定理的逆定理可判定△ABC 是直角三角形,由面积关系可求出公路的最短距离BD =1360km , ∴最低造价为120000元 9.设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米) 10.如图,将△APC 绕点C 旋转,使CA 与CB 重合,即△APC ≌△BEC ,∴△PCE 为等腰Rt △,∴∠CPE =45°,PE 2=PC 2+CE 2=8. 又∵PB 2=1,BE 2=9,∴PE 2+ PB 2= BE 2,则∠BPE =90°,∴∠BPC =135°.第10题图。
一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
练习题:1. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm (B )8 cm (C )10 cm (D )12 cm2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )643.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )13几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) A B CD 几何表达式举例: (1) ∵AD 平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD 是角平分线2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)A BC D 几何表达式举例: (1) ∵AD 是三角形的中线 ∴ BD = CD (2) ∵ BD = CD ∴AD 是三角形的中线E A B C D从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图)ABC D(1) ∵AD 是ΔABC 的高 ∴∠ADB=90° (2) ∵∠ADB=90° ∴AD 是ΔABC 的高※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C几何表达式举例: (1) ∵AB+BC >AC ∴……………(2) ∵ AB-BC <AC ∴……………5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形. (如图) A B C几何表达式举例: (1) ∵ΔABC 是等腰三角形 ∴ AB = AC (2) ∵AB = AC∴ΔABC 是等腰三角形6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形. (如图) A BC几何表达式举例:(1)∵ΔABC 是等边三角形∴AB=BC=AC (2) ∵AB=BC=AC∴ΔABC 是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4)几何表达式举例: (1) ∵∠A+∠B+∠C=180° ∴………………… (2) ∵∠C=90° ∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B ∴………………… (4) ∵∠ACD >∠A ∴………………… 8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图)A B C几何表达式举例: (1) ∵∠C=90° ∴ΔABC 是直角三角形 (2) ∵ΔABC 是直角三角形∴∠C=90° D AB C A B C AB C两条直角边相等的直角三角形叫等腰直角三角形.(如图) AB C(1) ∵∠C=90° CA=CB ∴ΔABC 是等腰直角三角形 (2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质: (1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图) 几何表达式举例: (1) ∵ΔABC ≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG∴∠A=∠E ……… 11.全等三角形的判定: “SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图) (1)(2) (3) 几何表达式举例: (1) ∵ AB = EF ∵ ∠B=∠F 又∵ BC = FG ∴ΔABC ≌ΔEFG(2) ………………(3)在Rt ΔABC 和Rt ΔEFG中 ∵ AB=EF又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图) (2)到角的两边距离相等的点在角平分线上.(如图)A O BC DE 几何表达式举例: (1)∵OC 平分∠AOB 又∵CD ⊥OA CE ⊥OB ∴ CD = CE (2) ∵CD ⊥OA CE ⊥OB又∵CD = CE∴OC 是角平分线 13.线段垂直平分线的定义: 垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图) A B E FO 几何表达式举例: (1) ∵EF 垂直平分AB ∴EF ⊥AB OA=OB (2) ∵EF ⊥AB OA=OB ∴EF 是AB 的垂直平分线A B C G EFA B C G E FA B C E F G14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)A BCMNP几何表达式举例:(1) ∵MN是线段AB的垂直平分线∴PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)AB C(1)AB CD(2)AB C(3)几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)AB C(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C∴AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AEEFMOABCNG18.勾股定理及逆定理:(1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例:(1) ∵ΔABC 是直角三角形∴a2+b2=c2 (2) ∵a2+b2=c2∴ΔABC 是直角三角形19.Rt Δ斜边中线定理及逆定理: (1)直角三角形中,斜边上的中线是斜边的一半;(如图) (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)DA BC几何表达式举例:∵ΔABC 是直角三角形 ∵D 是AB 的中点∴CD = 21AB(2) ∵CD=AD=BD∴ΔABC 是直角三角形练习题:一、选择题1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
第02讲勾股定理逆定理课程标准学习目标①勾股定理逆定理②勾股数③勾股定理的应用1.掌握勾股定理的逆定理内容,并能够熟练的运用它来判断直角三角形。
2.掌握勾股数并能够判断勾股数。
3.能够在各类实际问题中熟练应用勾股定理。
知识点01勾股定理逆定理1.勾股定理逆定理内容:在△ABC 中,如果三角形的三边分别是c b a ,,且满足222c b a =+,则该三角形一定是有一个直角三角形且∠C 是直角。
勾股定理的逆定理用于判断一个三角形是不是直角三角形。
2.直角三角形的判定①勾股定理逆定理②三角形中有一个角是90°。
③三角形中有两个角之和为90°。
【即学即练1】1.以下列数据为长度的线段中,可以构成直角三角形的是()A.1,2,3B.2,3,4C.1,,D.,3,5【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、12+()2=()2,能构成直角三角形,故符合题意;D、()2+32≠52,不能构成直角三角形,故不符合题意.故选:C.【即学即练2】2.如图,在△ABC中,AC=6cm,BC=8cm,AB=10cm,AB的垂直平分线交AB于点D,交BC于点E.(1)试说明△ABC为直角三角形.(2)求CE的长.【分析】(1)先计算AC2+BC2=62+82=100,AB2=102=100,再利用勾股定理的逆定理可得结论;(2)设CE长为x cm,则BE=(8﹣x)cm.由DE垂直平分AB,可得AE=BE=8﹣x.再利用勾股定理建立方程即可.【解答】(1)证明:∵AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC为直角三角形.(2)解:设CE长为x cm,则BE=(8﹣x)cm.∵DE垂直平分AB,∴AE=BE=8﹣x.在Rt△ACE中,由勾股定理得x2+62=(8﹣x)2,解得,所以CE的长为.知识点02勾股数1.勾股数的定义:满足勾股定理:即222cba=+的三个正整数称为勾股数。