二层、三层交换技术的介绍
- 格式:doc
- 大小:31.60 KB
- 文档页数:16
交换机二三层转发原理交换机是计算机网络中的一种关键设备,它可以实现数据包的转发和交换。
交换机的转发原理分为二层和三层转发原理。
下面将分别介绍交换机二三层转发原理。
二层转发原理:交换机的二层转发原理主要包括MAC地址学习、转发表和广播处理。
1.MAC地址学习:二层转发主要依靠物理地址(MAC地址)进行转发,交换机通过学习网络中不同设备的MAC地址,建立一个MAC地址表。
当交换机收到一个数据包时,会提取数据包中的源MAC地址,并将其与交换机的MAC地址表进行比对。
如果表中已存在该源MAC地址,则说明该设备已经被学习过,交换机会更新该设备的端口信息;如果表中不存在该源MAC地址,则说明该设备是一个新设备,交换机会将该设备的MAC地址和端口信息添加到MAC 地址表中。
2.转发表:转发表主要记录了交换机中各端口上对应的MAC地址和相应的出端口信息。
当交换机收到一个数据包时,首先根据数据包中的目的MAC地址查询转发表,以确定该数据包需要发送到哪个端口。
如果转发表中存在该目的MAC地址,则交换机将数据包从该端口转发出去;如果转发表中不存在该目的MAC地址,则交换机将该数据包广播到所有其他端口。
3.广播处理:广播数据包是一种发送给网络中所有设备的数据包,交换机在接收到广播数据包后,会将该数据包转发到所有其他端口上,以保证所有设备都可以接收到广播信息。
三层转发原理:交换机的三层转发原理是基于IP地址进行转发,主要包括IP地址学习、路由表和网络分割。
1.IP地址学习:三层转发主要依靠逻辑地址(IP地址)进行转发,交换机通过学习网络中不同设备的IP地址,建立一个IP地址表。
当交换机收到一个数据包时,会提取数据包中的源IP地址,并将其与交换机的IP地址表进行比对。
如果表中已存在该源IP地址,则说明该设备已经被学习过,交换机会更新该设备的端口信息;如果表中不存在该源IP地址,则说明该设备是一个新设备,交换机会将该设备的IP地址和端口信息添加到IP地址表中。
交换机的三层概念和四层技术网络设备都对应工作在OSI模型的一定层次上,工作的层次越高,说明其设备的技术性更高,性能也越好,档次也就越高。
根据工作的协议层,交换机可分二层交换机、三层交换机和四层交换机。
1.二层交换机二层交换机是最早的交换技术产品,由于它所负担的工作相对简单,处于交换网络的数据链路层,所以只需提供基本的二层数据转发功能即可。
二层交换机一般只应用于网络的接入层次。
目前桌面型交换机一般都属于这一类型。
二层交换机能够识别数据包中的MAC地址信息,然后根据MAC地址进行数据包的转发,并将这些MAC地址与对应的端口记录在内部的地址列表中。
2.三层交换机三层交换技术又称为多层交换技术、IP交换技术等,三层交换技术在网络层实现了数据包的高速转发。
它检查数据包信息,并根据网络层目标地址(IP地址)转发数据包。
三层交换机实际上是将传统交换机与路由器结合起来的网络设备,它既可以完成传统交换机的端口交换功能,又可完成部分路由功能。
当网络规模较大时,可以根据特殊应用需求划分为小的独立的VLAN网段,以减小广播风暴所造成的影响。
通常这类交换机采用模块化结构,以适应灵活配置的需要。
在实际应用中,各个VLAN之间采用三层交换技术互相通信。
它解决了局域网中网段划分之后,各网段必须依赖第三层路由设备进行管理的局面,解决了路由器传输速率低、结构复杂所造成的网络瓶颈问题。
3.四层交换机四层交换机工作于OSI参考模型的第四层,即传输层。
四层交换机在决定传输时不仅仅依据MAC地址(数据链路层信息)或源/目标IP地址(网络层信息),它可以直接面对网络中的具体应用,通过分析数据包中的TCP/UDP(传输层信息)应用端口号,四层交换机可以做出向何处转发数据流的智能决定。
四层交换机在工作中会为支持不同应用的服务器组设立虚拟IP地址,并且在网络的域名服务器(DNS)中并不存储应用服务器的真实地址,而是每项应用的服务器组所对应的虚拟IP地址。
2层交换机2层交换机是数据链路层设备。
因为它在OSI模型的二层中工作,所以它可以区分数据包中的MAC地址信息,根据MAC地址转发它,并将这些MAC地址和相应的端口记录在自身的地址表中。
三层交换机三层交换机在OSI模型的三层(网络层)中工作。
简而言之,三层交换技术是:二层交换技术+三层转发技术。
解决了局域网中子网划分网段后必须依靠路由器进行管理的问题,解决了传统路由器速度慢,复杂性高导致的网络瓶颈问题。
2层交换机和3层交换机之间的区别功能:二层交换机仅转发数据,不能基于MAC地址访问配置IP 地址;三层交换机结合了二层交换技术和三层转发功能,可以配置不同VLAN的IP地址。
应用:二层交换机主要用于网络接入层和汇聚层,三层交换机主要用于网络核心层。
协议:二层交换机支持物理层和数据链路层协议,例如以太网交换机和二层交换机,而三层交换机支持物理层,数据链路层和网络层协议。
2层交换机可以代替3层交换机吗?二层交换机可以满足接入层的应用需求,成本相对较低。
但是,更智能的3层交换机可以对网络进行分段和控制,而不会损失带宽- 多部门企业例如,具有多个部门和多个服务办公室的企业可以使用3层交换机,这可以让不同部门使用不同的IP地址段并设置不同的Internet 访问权限,从而使彼此之间不受影响。
网络要求高的地方三层交换机可以通过划分广播域将整个网络划分为独立的二层网络。
可以通过三层交换机的ACL来控制不同二层网络的访问权限,以确保网络的安全性。
一般来说,三层交换机可以隔离二层网络,以保证整体网络的稳定性和安全性。
特别是在数据包的高速转发中,二层交换机是无与伦比的。
此外,最好在核心骨干网中使用3层交换机。
否则,整个网络中的数千台计算机将位于同一个子网中,这不仅没有安全性,而且将无法被隔离。
切断广播域,无法隔离广播风暴。
三层交换技术知道B站的MAC地址,则向发送站A回复B的MAC地址。
否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,同时将B 站的MAC地址发送到二层交换引擎的MAC地址表中。
从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。
由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。
编辑本段三层交换机种类三层交换机可以根据其处理数据的不同而分为纯硬件和纯软件两大类。
(1)纯硬件的三层技术相对来说技术复杂,成本高,但是速度快,性能好,带负载能力强。
其原理是,采用ASIC芯片,采用硬件的方式进行路由表的查找和刷新。
如图1所示。
图1 纯硬件三层交换机原理当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发,否则将数据送至三层引擎。
在三层引擎中,ASIC芯片查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机,得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。
(2)基于软件的三层交换机技术较简单,但速度较慢,不适合作为主干。
其原理是,采用CPU用软件的方式查找路由表。
如图2所示。
图2 软件三层交换机原理当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发否则将数据送至CPU。
CPU查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。
因为低价CPU处理速度较慢,因此这种三层交换机处理速度较慢。
编辑本段市场产品选型近年来宽带IP网络建设成为热点,下面以适合定位于接入层或中小规模汇聚层的第三层交换机产品为例,介绍一些三层交换机的具体技术。
三层交换百科名片三层交换技术三层交换技术就是:二层交换技术+三层转发技术。
它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
目录部署简介第三层交换技术的基本原理第三层交换技术的简单拓扑结构了解网络各层第三层交换的优点第三层交换机的部署什么是三层交换部署简介第三层交换技术的基本原理第三层交换技术的简单拓扑结构了解网络各层第三层交换的优点第三层交换机的部署什么是三层交换•三层交换原理•三层交换机种类•三层交换技术与其他技术的对比展开第三层交换正迅速发展成可作为下一代应用启动平台的最适合的网络技术。
本文将详细介绍此项技术以及如何部署第三层交换才能获得最大效率。
第三层交换是局域网许多区域(包括核心和服务器集中点)的关键组件,因为该项技术能解决许多在性能、安全和控制等方面的问题。
然而,在一些网络区域,该项技术的使用效果并不十分显著,尤其是在桌面连接方面。
本文将会重点讨论这种网络性能较低的情况,特别是在新一代高级第四层桌面交换技术已经能够提供高性能和控制能力的今天。
本文也将详细阐述第二(四)层交换机是如何提供成本更低、更加简单、更易于管理的桌面解决方案。
编辑本段简介任何一种新技术进入市场时,都要经历业界专业人员对伴随这种技术的新术语和“技术行话”进行筛选的阶段。
这些新的技术术语往往会造成迷惑,甚至自相矛盾,具体情况取决于供应商使用它们的方式。
“第三层交换”和有关的技术也不例外,随着越来越多交换机和路由器技术的推出,有关它们技术术语的迷惑只会增多。
比如,第三层交换、第四层交换、多层交换、多层数据包分类和路由交换机等新术语就令交换机和路由器之间的传统区别变得模糊起来。
此外,由于许多供应商在原本用于布线室的第二层交换机平台上提供了第三层交换技术,从而让人更加迷惑不解。
这些变化使网络设计人员很难了解如何部署高效的网络解决方案。
因此,必须去伪存真,并专注于基础知识,才能真正了解何时、何地以及为什么采用第三层交换。
二层三层交换机区分交换机一般分为二层交换机和三层交换机,两者的主要区别在于:二层交换机是基于MAC地址进行转发的。
三层交换机是基于IP地址进行转发的。
二层交换技术二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。
具体的工作流程如下:(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。
从二层交换机的工作原理可以推知以下三点:(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
由于各个厂家采用ASIC不同,直接影响产品性能。
以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。
路由技术路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。
交换机端口untaged、taged、trunk、access 的区别首先,将交换机的类型进行划分,交换机分为低端(SOHO级)和高端(企业级)。
其两者的重要区别就是低端的交换机,每一个物理端口为一个逻辑端口,而高端交换机则是将多个物理端口捆绑成一个逻辑端口再进行的配置的。
cisco网络中,交换机在局域网中最终稳定状态的接口类型主要有四种:access/trunk/ multi/ dot1q-tunnel。
1、access: 主要用来接入终端设备,如PC机、服务器、打印服务器等。
2、trunk: 主要用在连接其它交换机,以便在线路上承载多个vlan。
3、multi: 在一个线路中承载多个vlan,但不像trunk,它不对承载的数据打标签。
主要用于接入支持多vlan的服务器或者一些网络分析设备。
现在基本不使用此类接口,在cisco的网络设备中,也基本不支持此类接口了。
4、dot1q-tunnel: 用在Q-in-Q隧道配置中。
Cisco网络设备支持动态协商端口的工作状态,这为网络设备的实施提供了一定的方便(但不建议使用动态方式)。
cisco动态协商协议从最初的DISL(Cisco 私有协议)发展到DTP(公有协议)。
根据动态协议的实现方式,Cisco网络设备接口主要分为下面几种模式:1、switchport mode access: 强制接口成为access接口,并且可以与对方主动进行协商,诱使对方成为access模式。
2、switchport mode dynamic desirable: 主动与对协商成为Trunk接口的可能性,如果邻居接口模式为Trunk/desirable/auto之一,则接口将变成trunk接口工作。
如果不能形成trunk模式,则工作在access模式。
这种模式是现在交换机的默认模式。
3、switchport mode dynamic auto: 只有邻居交换机主动与自己协商时才会变成Trunk接口,所以它是一种被动模式,当邻居接口为Trunk/desirable之一时,才会成为Trunk。
三层交换简单地说,三层交换技术就是:二层交换技术+三层转发技术。
它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
下面我们结合本站有关思科及微软关于三层交换方面的文章为大家介绍这方面的资讯,更多更丰富的相关方面内容我们将在以后日子里进行补充。
部署第三层交换正迅速发展成可作为下一代应用启动平台的最适合的网络技术。
本文将详细介绍此项技术以及如何部署第三层交换才能获得最大效率。
第三层交换是局域网许多区域(包括核心和服务器集中点)的关键组件,因为该项技术能解决许多在性能、安全和控制等方面的问题。
然而,在一些网络区域,该项技术的使用效果并不十分显著,尤其是在桌面连接方面。
本文将会重点讨论这种网络性能较低的情况,特别是在新一代高级第四层桌面交换技术已经能够提供高性能和控制能力的今天。
本文也将详细阐述第二(四)层交换机是如何提供成本更低、更加简单、更易于管理的桌面解决方案。
概述任何一种新技术进入市场时,都要经历业界专业人员对伴随这种技术的新术语和“技术行话”进行筛选的阶段。
这些新的技术术语往往会造成迷惑,甚至自相矛盾,具体情况取决于供应商使用它们的方式。
“第三层交换”和有关的技术也不例外,随着越来越多交换机和路由器技术的推出,有关它们技术术语的迷惑只会增多。
比如,第三层交换、第四层交换、多层交换、多层数据包分类和路由交换机等新术语就令交换机和路由器之间的传统区别变得模糊起来。
此外,由于许多供应商在原本用于布线室的第二层交换机平台上提供了第三层交换技术,从而让人更加迷惑不解。
这些变化使网络设计人员很难了解如何部署高效的网络解决方案。
因此,必须去伪存真,并专注于基础知识,才能真正了解何时、何地以及为什么采用第三层交换。
了解网络各层为了充分认识第三层交换,在此有必要对目前使用的大多数网络体系结构的强大分层模型进行分析。
如图所示,网络基础架构设备(如网桥、路由器和交换机)在传统上一直按OSI 分层模型分类。
二层转发与三层转发原理近年来,网络技术得到了迅猛的发展与普及,网络通信已经成为了人类生活的必需品。
其中,三层交换技术与二层交换技术是网络通信不可或缺的组成部分。
本文将会深入解析这两种技术的原理与应用。
一、二层转发原理二层转发技术是以 MAC 地址为关键识别单元,完成在局域网内的报文转发。
它是指通过网络交换机直接在物理层面(MAC 地址层面)实现数据包的转发,所以又称为 MAC 地址交换技术。
在进行二层转发时,交换机会从目的 MAC 地址中学习网络拓扑结构,且维护一个学习表,其中存放着每一个源 MAC 地址对应的物理端口。
当数据包发出后,交换机会查询学习表以确定目的 MAC 地址所在的端口,之后在该端口广播整个局域网内的数据包,所有其他设备都会接受到,但仅有目标设备会读取数据包,并通过 MAC 地址确认该数据包是否是自己需要的。
若该设备接收到的数据包中,目标 MAC 地址并非自身,就会直接丢在废纸篓里,并不会向上层传递,因此,如果我们希望让数据包顺利依托网络层次向目标设备传输,就需要进行三层转发。
二、三层转发原理三层交换是以 IP 地址为关键识别单元,完成在子网内和网间的报文转发。
因此也称为 IP 地址交换技术。
在进行三层转发时,交换机会在目标数据包的目的地址中解析出物理 MAC 地址和逻辑地址,并将逻辑地址与路由表相比较来决定下一个网络设备的位置,然后在物理 MAC 地址上找寻它下一个目的地址所对应的物理 MAC 地址,之后转播到相对应的端口。
交换机的路由表中会包含广域网地址(WAN)和局域网地址(LAN),因此它可以在不同子网和区域之间进行转发和路由选择。
需要注意的是,在三层交换中,不是所有的数据包都能够转发出去,因为交换机中的路由表只是一个基于软件的表,不能和路由器那样去探测和发现网络,不能实现完整的拓扑测绘和寻找最佳路由,只能选择转发。
三、二层与三层交换技术的差异1.差异性识别交换机在进行二层转发时,识别的是物理层面上的 MAC 地址信息,而在进行三层转发时,交换机会通过解析 IP 地址识别出目的设备。
1、第二层交换机第二层交换机是对应于OSI/RM的第二协议层来定义的,因为它只能工作在OSI/RM开放体系模型的第二层--数据链路层。
第二层交换机依赖于链路层中的信息(如MAC地址)完成不同端口数据间的线速交换,主要功能包括物理编址、错误校验、帧序列以及数据流控制。
这是最原始的交换技术产品,目前桌面型交换机一般是属于这类型,因为桌面型的交换机一般来说所承担的工作复杂性不是很强,又处于网络的最基层,所以也就只需要提供最基本的数据链接功能即可。
目前第二层交换机应用最为普遍(主要是价格便宜,功能符合中、小企业实际应用需求),一般应用于小型企业或中型以上企业网络的桌面层次。
2、第三层交换机第三层同样是对应于OSI/RM开放体系模型的第三层--网络层来定义的,也就是说这类交换机可以工作在网络层,它比第二层交换机更加高档,功能更加强。
第三层交换机因为工作于OSI/RM模型的网络层,所以它具有路由功能,它是将IP地址信息提供给网络路径选择,并实现不同网段间数据的线速交换。
当网络规模较大时,可以根据特殊应用需求划分为小面独立的VLAN网段,以减小广播所造成的影响时。
通常这类交换机是采用模块化结构,以适应灵活配置的需要。
在大中型网络中,第三层交换机已经成为基本配置设备。
3、第四层交换机第四层交换机是采用第四层交换技术而开发出来的交换机产品,当然它工作于OSI/RM模型的第四层,即传输层,直接面对具体应用。
第四层交换机支持的协议是各种各样的,如HTTP,FTP、Telnet、SSL等。
在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。
在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。
当某用户申请应用时,一个带有目标服务器组的VIP 连接请求(例如一个TCPSYN包)发给服务器交换机。
服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。
三层交换技术的名词解释在当今的网络通信中,三层交换技术被广泛应用于数据传输和网络连接。
它是一种基于计算机网络技术的数据包转发方式,用于在不同子网之间进行数据传输和路由选择。
本文将对三层交换技术的相关名词进行解释,帮助读者更好地理解和应用该技术。
一、三层交换技术三层交换技术是指通过网络交换设备在数据包传输中,根据目标IP地址进行路由选择和数据包转发的技术。
它兼具交换机和路由器的功能,可以在子网之间实现高效的数据交换和路由转发。
与传统的二层交换技术相比,三层交换技术具有更加灵活和高效的数据包转发能力。
二、子网子网是指在一个大网络中按照一定的地址范围进行划分的较小网络。
在一个子网中,设备可以通过相同的网络地址进行通信。
子网划分的主要目的是提高网络的管理灵活性和安全性,同时也减小了广播域的范围,减少广播冲突。
三、IP地址IP地址是在互联网中用于标识网络设备的数字地址。
它由32位或128位构成,用于识别局域网或广域网中的网络和主机。
一般情况下,IP地址分为网络地址和主机地址两部分,通过这个地址可以找到目标设备并进行数据传输。
四、路由选择路由选择是指在网络中选择合适的路径,将数据包从源设备发送到目标设备的过程。
在三层交换技术中,路由选择根据目标IP地址进行,根据路由协议或者静态配置的路由表信息,选择最佳路径进行数据包转发。
这样可以提高网络的整体性能和可靠性。
五、数据包转发数据包转发是指网络设备根据路由表和路由选择算法,将数据包从源设备转发到目标设备的过程。
在三层交换技术中,数据包转发通过查找目标设备的IP地址,确定其所在子网,并进行相关的路由选择和数据包转发操作。
六、网络设备网络设备是指用于构建和维护网络的硬件设备,如交换机、路由器、服务器等。
在三层交换技术中,网络设备起到了关键的作用,通过交换机和路由器等设备的组合,实现了高效的数据交换和路由转发。
七、网络通信网络通信是指通过计算机网络实现设备之间的信息传递和数据交换。
什么是二层交换和三层交换!三层交换机使用了三层交换技术简单地说,三层交换技术就是:二层交换技术+三层转发技术。
它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
什么是三层交换三层交换(也称多层交换技术,或IP交换技术)是相对于传统交换概念而提出的。
众所周知,传统的交换技术是在OSI网络标准模型中的第二层——数据链路层进行*作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。
简单地说,三层交换技术就是:二层交换技术+三层转发技术。
三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
三层交换原理一个具有三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件叠加在局域网交换机上。
其原理是:假设两个使用IP协议的站点A、B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网内。
若目的站B与发送站A在同一子网内,则进行二层的转发。
若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A要向“缺省网关”发出ARP(地址解析)封包,而“缺省网关”的IP地址其实是三层交换机的三层交换模块。
当发送站A对“缺省网关”的IP地址广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址。
否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC 地址表中。
从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。
由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。
物理层:中继器集线器数据链路层:二层交换机、网桥。
网卡网络层:三层交换机。
路由器中继器的作用中继器(Repeater)工作于OSI的物理层,是局域网上所有节点的中心,它的作用是放大信号,补偿信号衰减,支持远距离的通信。
集线器的作用集线器的主要功能是对接收到的信号进行再生整形放大,以扩大网络的传输距离,同时把所有节点集中在以它为中心的节点上。
它工作于OSI(开放系统互联参考模型)参考模型第一层,即“物理层”。
集线器的基本功能是信息分发,它把一个端口接收的所有信号向所有端口分发出去。
一些集线器在分发之前将弱信号重新生成,一些集线器整理信号的时序以提供所有端口间的同步数据通信。
二层交换机的作用二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。
网桥的作用网桥是第2层的设备,它设计用来创建两个或多个LAN分段。
其中,每一个分段都是一个独立的冲突域。
网桥设计用来产生更大可用宽带。
它的目的是过滤LAN的通信流,使得本地的通信流保留在本地,而让那些定向到LAN其他部分(分段)的通信流转发到那里去。
每一台网络设备在NIC(网络接口卡)中都有一个惟一的MAC(介质访问控制)地址。
网桥会记录它每一边的MAC地址,然后基于这张MAC地址表作出转发决策。
网卡的作用网卡是工作在数据链路层的网路组件,是局域网中连接计算机合传输介质的接口,不仅能实现与局域网传输介质之间的物理连接合电信号匹配,还涉及帧的发送与接收、帧的封装与拆封、介质访问控制、数据的编码与解码以及数据缓存的功能等。
三层交换机的作用交换技术就是二层交换技术+三层转发技术。
传统交换技术是在OSI网络标准模型第二层——数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,既可实现网络路由功能,又可根据不同网络状况做到最优网络性能。
1.二层交换机:它在OSI模型的第二层(数据链路层)中工作,因此称为第二层交换机。
2.三层交换机:具有部分路由器功能的交换机,在OSI网络标准模型的第三层中工作。
2,功能不同1.两层交换机:属于数据链路层设备,可以识别数据包中的MAC 地址信息,根据MAC地址进行转发,并将这些MAC地址和对应的端口记录在自身的地址表中。
2.第3层交换机:这是为了加速大型LAN中的数据交换,其路由功能也用于此目的。
它可以实现一次性路由和多次转发。
3,不同的特点1.两层交换机:第二层交换机有N个端口,每个端口的带宽为m。
如果交换机的总线带宽超过n×m,则可以实现线速切换。
2.三层交换:硬件高速地执行诸如报文转发等常规过程,而路由信息的更新,路由表维护,路由计算和路由确定等功能则由软件实现。
第2层交换技术已从网桥发展到VLAN(虚拟局域网),并已广泛用于LAN的构建和转换。
第2层交换技术是OSI的第二层七层网络模型,即数据链路层。
它根据接收到的数据包的目标MAC地址进行转发,这对网络层或高级协议是透明的。
它不处理网络层的IP地址和TCP和UDP等高级协议的端口地址。
它只需要数据包的物理地址,即MAC地址。
数据交换是通过硬件实现的,速度非常快。
这是第二层交换的显着优势。
但是,它无法处理不同IP子网之间的数据交换。
传统路由器可以处理IP子网中的大量数据包,但其转发效率低于第二层。
因此,为了利用二层转发的高效率,必须处理三层IP报文,从而诞生了三层交换技术。
相对于传统交换概念,提出了三层交换(也称为多层交换技术或IP交换技术)。
众所周知,传统的交换技术在OSI网络标准模型的第二层数据链路层中运行,而三层交换技术在网络模型的第三层中实现数据包的高速转发。
简而言之,三层交换技术是:两层交换技术+三层转发技术。
二层、三层交换技术介绍二层、三层交换技术介绍一、二层交换技术介绍二层交换机工作于OSI模型的第2层(数据链路层),故而称为二层交换机。
二层交换技术的发展已经比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC 地址与对应的端口记录在自己内部的一个地址表中。
(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC 地址,这样它就知道源MAC地址的机器是连在哪个端口上的;(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。
从二层交换机的工作原理可以推知以下三点:(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BUFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
由于各个厂家采用ASIC不同,直接影响产品性能。
以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。
路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。
(一)二层交换机,三层交换机,四层交换机的区别二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。
具体的工作流程如下:(1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;(2) 再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;(3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;(4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。
从二层交换机的工作原理可以推知以下三点:(1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;(2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;(3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC(Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
由于各个厂家采用ASIC不同,直接影响产品性能。
以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。
(二)路由技术路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。
二层、三层交换技术介绍一、二层交换技术介绍二层交换机工作于OSI模型的第2层(数据链路层),故而称为二层交换机。
二层交换技术的发展已经比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC 地址与对应的端口记录在自己部的一个地址表中。
(1)当交换机从某个端口收到一个数据包,它先读取中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;(2)再去读取中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。
从二层交换机的工作原理可以推知以下三点:(1)由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;(2)学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BUFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;(3)还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC (Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
由于各个厂家采用ASIC不同,直接影响产品性能。
以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。
路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。
工作原理是在路由器的部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向哪里走,如果能从路由表中找到数据包下一步往哪里走,把链路层信息加上转发出去;如果不能知道下一步走向哪里,则将此包丢弃,然后返回一个信息交给源地址。
路由技术实质上来说不过两种功能:决定最优路由和转发数据包。
路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。
接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。
二、三层交换机介绍随着Internet的发展,局域网和广域网技术得到了广泛的推广和应用。
数据交换技术从简单的电路交换发展到二层交换,从二层交换又逐渐发展到今天较成熟的三层交换,以致发展到将来的高层交换。
三层交换技术就是:二层交换技术+三层转发技术。
它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
二层交换技术从网桥发展到VLAN(虚拟局域网),在局域网建设和改造中得到了广泛的应用。
第二层交换技术是工作在OSI七层网络模型中的第二层,即数据链路层。
它按照所接收到数据包的目的MAC地址来进行转发,对于网络层或者高层协议来说是透明的。
它不处理网络层的IP地址,不处理高层协议的诸如TCP、UDP的端口地址,它只需要数据包的物理地址即MAC 地址,数据交换是靠硬件来实现的,其速度相当快,这是二层交换的一个显著的优点。
但是,它不能处理不同IP子网之间的数据交换。
传统的路由器可以处理大量的跨越IP子网的数据包,但是它的转发效率比二层低,因此要想利用二层转发效率高这一优点,又要处理三层IP数据包,三层交换技术就诞生了。
一个具有三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件叠加在局域网交换机上。
第三层交换工作在OSI七层网络模型中的第三层即网络层,是利用第三层协议中的IP包的报头信息来对后续数据业务流进行标记,具有同一标记的业务流的后续报文被交换到第二层数据链路层,从而打通源IP地址和目的IP地址之间的一条通路。
这条通路经过第二层链路层。
有了这条通路,三层交换机就没有必要每次将接收到的数据包进行拆包来判断路由,而是直接将数据包进行转发,将数据流进行交换。
其原理是:假设两个使用IP协议的站点A、B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网。
若目的站B与发送站A在同一子网,则进行二层的转发。
若两个站点不在同一子网,如发送站A要与目的站B通信,发送站A要向“缺省网关”发出ARP(地址解析)封包,而“缺省网关”的IP地址其实是三层交换机的三层交换模块。
当发送站A对“缺省网关”的IP地址广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址。
否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。
从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。
由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。
三层交换机可以根据其处理数据的不同而分为纯硬件和纯软件两大类。
(1)纯硬件的三层技术相对来说技术复杂,成本高,但是速度快,性能好,带负载能力强。
其原理是,采用ASIC芯片,采用硬件的方式进行路由表的查找和刷新。
当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发,否则将数据送至三层引擎。
在三层引擎中,ASIC芯片查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机,得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。
(2)基于软件的三层交换机技术较简单,但速度较慢,不适合作为主干。
其原理是,采用CPU用软件的方式查找路由表。
当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发否则将数据送至CPU。
CPU 查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。
因为低价CPU处理速度较慢,因此这种三层交换机处理速度较慢。
宽带IP网络建设成为热点,下面以适合定位于接入层或中小规模汇聚层的第三层交换机产品为例,介绍一些三层交换机的具体技术。
在市场上的主流接入第三层交换机,主要有Cisco的Catalyst 2948G-L3、Extreme 的Summit24和AlliedTelesyn的Rapier24等,这几款三层交换机产品各具特色,涵盖了三层交换机大部分应用特性。
当然在选择第三层交换机时,用户可根据自己的需要,判断并选择上述产品或其他厂家的产品,如北电网络的Passport/Acceler系列、原Cabletron的SSR系列(在Cabletron 一分四后,大部分SSR三层交换机已并入Riverstone公司)、Avaya的Cajun M系列、3Com的Superstack3 4005系列等。
此外,国产网络厂商神州数码网络、TCL网络、广电应确信、紫光网联、首信等都已推出了三层交换机产品。
下面就其中三款产品进行介绍,使您能够较全面地了解三层交换机,并针对自己的情况选择合适的机型。
Cisco Catalyst 2948G-L3交换机结合业界标准IOS提供完整解决方案,在版本12.0(10)以上全面支持IOS访问控制列表ACL,配合核心Catalyst 6000,可完成端到端全面宽带城域网的建设(Catalyst 6000使用MSFC模块完成其多层交换服务,并已停止使用RSM路由交换模块,IOS版本6.1以上全面支持ACL)。
Extreme公司三层交换产品解决方案,能够提供独特的以太网带宽分配能力,切割单位为500kbps或200kbps,服务供应商可以根据带宽使用量收费,可实现音频和视频的固定延迟传输。
AlliedTelesyn公司Rapier24三层交换机提供的PPPoE特性,丰富和完善了用户认证计费手段,可适合多种接入网络,应用灵活,易于实现业务选择,同时又保护用户的已有投资,另可配合NAT(网络地址转换)和DHCP的Server等功能,为许多服务供应商看好。
总之,三层交换机从概念的提出到今天的普及应用,虽然只历经了几年的时间,但其扩展的功能也不断结合实际应用得到丰富。
随着ASIC硬件芯片技术的发展和实际应用的推广,三层交换的技术与产品也会得到进一步发展。
三层交换技术可以在以太网交换机和ATM交换机中实现,其实现的原理一样,但实现的复杂程度稍有不同,封装方式不同。
基于不同的考虑,各公司的产品在具体的实现上略有不同,采用的芯片也有不同,有的公司采用ASIC,有的采用RISC,有的采用网络处理器等等。
当然,采用不同等级的芯片,对数据包的转发效率,网络流量的控制和三层交换机的整体性能是有影响的。
在当今信息高速发展过程中,三层交换机广泛地应用到了一些大型企业网和教育网中,尤其是ATM交换机在网络建设中更为火爆,广泛地深入到了网络的骨干层、汇聚层和接入层。
建立大容量的三层交换系统是当今网络设备制造商的当务之急,中兴通讯公司的宽带网络产品ZXB10系列正是基于这种考虑而研制出的,具有三层交换技术业务的ZXB10系列包括四个品种,即ZXB10-BX:宽带核心交换机;ZXB10-AX:宽带接入交换机; ZXB10-MX:宽带业务复用器;ZXB10-SX:宽带业务接入器,均属于ATM交换机系列。
可以看出,二层交换机主要用在小型局域网中,机器数量在二、三十台以下,这样的网络环境下,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低廉价格为小型网络用户提供了很完善的解决方案。
在这种小型网络中根本没必要引入路由功能从而增加管理的难度和费用,所以没有必要使用路由器,当然也没有必要使用三层交换机。
三层交换机是为IP设计的,接口类型简单,拥有很强二层包处理能力,所以适用于大型局域网,为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划他成一个一个的小局域网,也就是一个一个的小网段,这样必然导致不同网段之间存在大量的互访,单纯使用二层交换机没办法实现网间的互访而单纯使用路由器,则由于端口数量有限,路由速度较慢,而限制了网络的规模和访问速度,所以这种环境下,由二层交换技术和路由技术有机结合而成的三层交换机就最为适合。