可靠性加速测试方法
- 格式:ppt
- 大小:142.50 KB
- 文档页数:21
术语和定义HALT(High Accelerated Life Test):高加速寿命试验,即试验中对试验对象施加的环境应力比试验对象整个生命周期内,包括运输、存储及运行环境内,可能受到的环境应力大得多,以此来加速暴露试验样品的缺陷和薄弱环节,而后对暴露的缺陷和故障从设计、工艺和用料等诸方面进行分析和改进,从而达到快速提升可靠性的目的。
运行限或操作限(Operation Limit):指产品某应力水平上失效(样品不工作或其工作指标超限),但当应力值略有降低或回复初始值时,试样又恢复正常工作,则样品能够恢复正常的最高应力水平值称为运行限。
破坏限(Destruct Limit):在某应力水平上升到某值时,样品失效,即使当应力回落到低于运行限时,试样仍然不能恢复正常工作,这时的应力水平值称为破坏限。
裕度(Margin):产品运行环境应力的设计限与运行限或破坏限的差值。
产品的裕度越大,则其可靠性越高。
夹具(Fixture):在HALT试验的振动项目中固定试样的器具。
振动试验必须使用夹具,使振台振动能量有效地传递给试样。
加速度传感器(Accelerometer):在某方向测量试样振动加速度大小的传感器。
在HALT试验的振动项目中使用加速度传感器可以监视试验箱振动能量通过夹具有效传递给试样的效率。
振动功率谱密度(Vibrating Power Spectral Density):也称为加速谱密度,衡量振动在每个频率点的加速度大小,单位为(g2/Hz)。
Grms(Gs in a root mean square):振动中衡量振动强度大小的物理单位,与加速度单位相同,物理含义为对振动功率谱密度在频率上积分后的平方根。
热电偶(Thermocouple):利用“不同导体结合在一起产生与温度成比例的电压”这一物理规律制作的温度传感器。
在HALT试验的热应力测试项目中,利用热电偶监视产品各点的温度分布。
功能测试(Functional Test):对试样的测试,用以判断试样能否在测试环境下完成规定的功能,性能是否下降。
医疗产品可靠性试验-加速实验1、加速试验概念加速试验是指在保证不改变产品失效机理的前提下,通过强化试验条件,使受试产品加速失效,以便在较短时间内获得必要信息,来评估产品在正常条件下的可靠性或寿命指标。
通过加速试验,可迅速查明产品的失效原因,快速评定产品的可靠性指标。
2、加速试验的目的与特点进行加速试验的目的可概括如下:(1)为了适应日益激烈的竞争环境;(2)在尽可能短的时间内将产品投入市场;(3)满足用户预期的需要。
加速试验是一种在给定的试验时间内获得比在正常条件下(可能获得的信息)更多的信息的方法。
它是通过采用比设备在正常使用中所经受的环境更为严酷的试验环境来实现这一点的。
由于使用更高的应力,在进行加速试验时必须注意不能引入在正常使用中不会发生的故障模式。
在加速试验中要单独或者综合使用加速因子,主要包括:更高频率的功率循环;更高的振动水平;高湿度;更严酷的温度循环;更高的温度。
3、加速试验分类加速试验主要分为两类,每一类都有明确的目的:(1)加速寿命试验--估计寿命;(2)加速应力试验--确定(或证实)和纠正薄弱环节。
这两类加速试验之间的区别尽管细微,但却很重要,它们的区别主要表现在下述几个方面:作为试验的基础的基本假设、构建试验时所用的模型、所用的试验设备和场所、试验的实施方法、分析和解释试验数据的方法。
表1 对这两类主要的加速试验进行了比较。
4、加速试验的产品层次要明确进行加速试验的产品层次(级别)是设备级还是零部件级,这一点很重要。
某些加速方法只适用于零件级的试验,而有的方法只能用于较高级别的总成(设备),只有少数方法同时适用于零件级和总成(设备)级。
对零件级非常合适的基本假设和建模方法在对较高级别的设备进行试验时可能完全不成立,反之亦然。
表2 列出了在两个主要的级别(设备级和零部件级)上进行试验的信息。
5、先进的加速试验过去,大多数加速试验都是使用单一应力和在定应力谱进行的。
包括周期固定的周期性应力(如温度在规定的上下限之间循环,温度的上限和下限以及温度的变化率是恒定的)。
产品加速试验方法一、引言产品加速试验是指在产品开发过程中,为了验证产品的可靠性、稳定性和耐久性等性能指标,采用一定的手段和方法对产品进行加速试验,以模拟产品在正常使用条件下的工作环境和工作负荷,加速产品的老化和损坏过程,从而评估产品的寿命和可靠性,为产品改进和优化提供依据。
二、产品加速试验方法的分类根据不同的试验目的和试验对象,产品加速试验方法可以分为以下几类:1. 温度加速试验:通过提高环境温度,使产品在较短时间内经历长时间使用所产生的热老化和热膨胀应力,加速产品的老化和破坏过程。
常用的温度加速试验方法有恒温老化试验、温度循环试验和高温老化试验等。
2. 振动加速试验:通过施加不同频率、幅值和方向的振动载荷,模拟产品在运输、使用和储存过程中所受到的振动环境,加速产品的疲劳破坏过程。
常用的振动加速试验方法有正弦振动试验、随机振动试验和冲击振动试验等。
3. 湿热加速试验:通过将产品暴露在高温高湿的环境中,模拟产品在潮湿环境下的使用条件,加速产品的腐蚀和老化过程。
常用的湿热加速试验方法有恒湿恒温试验和湿热循环试验等。
4. 光照加速试验:通过模拟产品在阳光照射下的工作环境,加速产品的光老化和颜色变化过程。
常用的光照加速试验方法有紫外光老化试验和可见光照射试验等。
5. 化学腐蚀加速试验:通过将产品暴露在酸碱盐等化学腐蚀介质中,加速产品的腐蚀和损坏过程。
常用的化学腐蚀加速试验方法有酸碱腐蚀试验和盐雾腐蚀试验等。
三、产品加速试验方法的步骤产品加速试验的步骤主要包括试验计划制定、试验环境搭建、试验参数设置、试验过程监控、数据分析和试验结果评估等。
1. 试验计划制定:根据产品的使用条件和要求,制定试验的目标、方法和参数等。
确定试验的时间、温度、湿度、振动频率和幅值等。
2. 试验环境搭建:根据试验计划,搭建符合要求的试验环境,包括温度控制系统、湿度控制系统、振动控制系统和光照控制系统等。
3. 试验参数设置:根据产品的特点和试验目的,设置试验的参数,包括温度、湿度、振动频率和幅值等。
可靠性测试产品高加速寿命试验方法指南一、试验前准备1.定义试验目标:明确试验的目标,例如研究产品在高加速条件下的寿命和可靠性。
2.确定试验条件:确定试验的温度、湿度、震动等条件,通常通过考虑实际使用环境和产品的特性来确定。
3.设定试验方案:根据试验目标和条件,制定试验方案,包括试验时间、采样点、数据记录等。
二、试验过程1.安装产品:按照产品的安装要求进行安装,并确保安装牢固可靠。
2.试验设备检查:检查试验设备的工作状态、仪器的准确度、传感器的连接等,确保设备正常工作。
3.数据采集与记录:使用合适的数据采集设备和记录方法,实时采集试验过程中的数据,例如温度、湿度、振动等。
三、试验注意事项1.温度控制:根据试验需求和产品的设计要求,控制试验环境的温度稳定在目标温度,避免产生温度过高或过低的影响。
2.湿度控制:根据试验需求和产品的设计要求,控制试验环境的湿度稳定在目标湿度,避免产生湿度过高或过低的影响。
3.震动控制:根据试验需求和产品的设计要求,设定合适的震动频率、振幅和持续时间,控制试验中的震动条件。
4.数据处理与分析:将试验过程中采集到的数据进行处理和分析,例如计算产品的寿命、可靠性指标等,得出试验结果并进行评估。
四、试验结果分析1.寿命分析:根据试验结果,计算产品的寿命参数,例如平均寿命、失效率曲线等,分析产品在高加速条件下的寿命特性。
2.可靠性评估:根据试验数据,分析产品的可靠性指标,例如可靠度、失效率、故障率等,评估产品在高加速条件下的可靠性水平。
3.结果解释和改进:根据试验结果和分析,结合产品的设计和制造过程,解释试验结果,并提出改进产品可靠性的建议和措施。
五、试验注意事项1.安全措施:在进行高加速寿命试验时,要注意保证试验人员的安全,使用符合要求的试验设备和设施,正确使用试验设备以避免发生事故。
2.数据记录与保存:确保试验过程中的数据记录的准确性和完整性,并妥善保存试验数据,以备后续分析和评估使用。
车载电子电器零件常用加速试验及可靠性计算方法随着汽车技术的不断进步,车载电子电器成为车辆中不可或缺的重要组成部分。
为了保证车载电器的可靠性和性能,需要进行加速试验和可靠性计算。
本文将介绍车载电子电器常用的加速试验方法和可靠性计算方法。
一、车载电子电器加速试验车载电子电器加速试验是指在较短时间内进行的试验,通过模拟产品在长期使用中承受的环境力学、电学、热学等因素,验证其可靠性和耐久性。
车载电子电器加速试验一般可以分为以下几类:1. 加速气候试验加速气候试验是通过模拟低温、高温、潮湿、干燥等恶劣气候条件,对车载电子电器进行加速试验。
试验时需要严格控制环境温度、湿度等条件,并在相应条件下进行长时间的运行测试。
2. 加速震动试验加速震动试验是通过模拟车辆行驶在路面颠簸、颠簸、起伏等道路环境下,对车载电子电器进行增强振动测试。
试验时需要根据实际道路条件,模拟相应的振动频率和振动加速度。
3. 加速老化试验加速老化试验是通过模拟车辆长期使用中承受的环境力学、电学、热学等因素,对车载电子电器进行长时间的老化测试。
试验时需要对电子电器的电气特性、机械强度等进行测量分析,以评估其可靠性和耐久性。
二、车载电子电器可靠性计算方法可靠性计算是指通过统计分析的方法,对车载电子电器在长期使用中可能出现的故障概率进行评估。
常用的车载电子电器可靠性计算方法有以下几种:1. 应力-强度模型应力-强度模型是一种较为简单的可靠性计算方法,通过对电子电器的应力水平和机械强度等因素进行分析,计算其故障概率。
其中,应力水平一般可以通过模拟车辆长期使用中的实际工作条件进行检测,机械强度则需要对电子电器的设计和制造工艺进行评估。
2. 事件树模型事件树模型是一种较为复杂的可靠性计算方法,通过将电子电器可能遇到的故障事件进行分类、定性和定量分析,计算其故障概率。
其中,事件树模型需要涉及到电子电器的设计、制造、测试、安装、维护等多个环节,以保证可靠性的全过程。
可靠性加速测试方法可靠性是指产品在一定时间内保持正常工作的能力。
在产品开发过程中,通过加速测试可以模拟产品在长时间、复杂条件下的使用情况,从而评估产品的可靠性。
环境加速是通过模拟产品在不同环境条件下的使用情况,来评估产品的可靠性。
具体方法有:1.温度环境测试:将产品在不同温度下进行测试,检查其在极端温度条件下的性能表现和可靠性。
2.湿度环境测试:将产品在高湿度、低湿度环境下进行测试,检查其在湿度变化条件下的耐用性和可靠性。
3.震动环境测试:将产品在不同加速度和振动频率下进行测试,模拟产品在运输和使用过程中的振动环境,评估其抗震性和可靠性。
负载加速是通过给产品施加超过正常工作负载的条件,来评估产品在高负荷情况下的可靠性。
具体方法有:1.运行时间加速:在短时间内连续运行产品,超过其正常使用寿命,检查其在超载运行情况下的稳定性和可靠性。
2.负载循环加速:在短时间内反复施加产品正常工作负载,模拟产品长时间使用过程中的负荷变化,评估其在负荷变化条件下的可靠性。
时间加速是通过缩短加速测试时间,来评估产品在相对较短时间内的可靠性。
具体方法有:1.加速老化:将产品暴露在高温、高湿度等恶劣环境下,加速其老化过程,评估其在相对较短时间内的可靠性。
2.加速失效:通过施加高压、高温、高频率等条件,加速产品失效过程,评估其在相对较短时间内的可靠性。
故障加速是通过模拟产品在各种故障情况下的使用情况,来评估产品的可靠性。
具体方法有:1.故障注入:通过预先在产品中引入故障,在加速测试过程中观察和记录产品的故障表现和反应,评估其在故障条件下的可靠性。
2.突发故障加速:在产品正常工作条件下,突然施加故障条件,观察产品的响应和恢复能力,评估其在突发故障条件下的可靠性。
此外,还可以结合统计学方法,如应用Weibull分析、生存分析等方法,对加速测试结果进行数据分析和可靠性预测。
总之,可靠性加速测试方法是评估产品可靠性的重要手段,通过模拟产品在不同环境、负载、时间和故障条件下的使用情况,可以提前发现和解决潜在问题,确保产品在长时间使用中的稳定性和可靠性。
一、可靠性理论基础1.可靠度:如果有N个LED产品从开始工作到t时刻的失效数为n(t),当N足够大时,产品在t时刻的可靠度可近似表示为:随时间的不断增长,将不断下降。
它是介于1与0之间的数,即。
2.累积失效概率:表示发光二极管在规定条件下工作到t这段时间内的失效概率,用F(t)表示,又称为失效分布函数.如果N个LED产品从开始工作到t时刻的失效数为n(t),则当N足够大时,产品在该时刻的累积失效概率可近似表示为:3.失效分布密度:表示规定条件下工作的发光二极管在t时刻的失效概率。
失效分布函数的导函数称为失效分布密度,其表达式如下:•早期失效期;•偶然失效期(或稳定使用期);•耗损失效期。
二、寿命老化:LED发光亮度随着长时间工作而出现光强或光亮度衰减现象。
器件老化程度与外加恒流源的大小有关,可描述为:B t为t时间后的亮度,B0为初始亮度。
通常把亮度降到B t=0。
5B0所经历的时间t称为二极管的寿命. 1。
平均寿命如果已知总体的失效分布密度f(t),则可得到总体平均寿命的表达式如下:2. 可靠寿命可靠寿命T R是指一批LED产品的可靠度下降到r时,所经历的工作时间。
T R可由R(T R)=r求解,假如该产品的失效分布属指数分布规律,则:即可求得T R如下:3. 中位寿命中位寿命T0。
5指产品的可靠度R(t)降为50%时的可靠寿命,即:对于指数分布情况,可得:二、LED寿命测试方法LED寿命加速试验的目的概括起来有:•在较短时间内用较少的LED估计高可靠LED的可靠性水平•运用外推的方法快速预测LED在正常条件下的可靠度;•在较短时间内提供试验结果,检验工艺;•在较短时间内暴露LED的失效类型及形式,便于对失效机理进行研究,找出失效原因;•淘汰早期失效产品,测定元LED的极限使用条件1. 温度加速寿命测试法由于通常LED寿命达到10万小时左右,因此要测得其常温下的寿命时间太长,因此采用加速寿命的方法。
浅谈可靠性加速寿命试验浅谈可靠性加速寿命试验加速寿命试验是可靠性试验中的一项重要的试验方法。
采取加速寿命试验的作用在于加快试验进程,为预测系统或设备的可靠度提供重要的依据。
可靠性试验的方法和试验的规模由试验的对象及要求来决定。
对于系统、设备及元器件,各自采用的试验方法是不同的。
对于整机,通过试验剔除对系统有影响的不可靠元器件;对于机械零部件侧重于疲劳寿命试验;而对于电子元器件则主要进行寿命试验。
产品或系统的可靠度,应该按最终使用条件评价。
所以,寿命试验应该按实际的使用条件与实际的环境条件(应力)来进行。
但由于时间上,经济上的考虑,总希望以较少的试验费用,早一些取得满意的结果。
为此,所采用的手段之一,是通过提高环境应力(如温度)与工作应力(施加给产品的电压、负荷等),来加快试验进程,缩短产品或系统的寿命试验时间。
这种为缩短试验时间而按严苛条件(应力)进行的加速寿命试验与强制老化试验,实际上大同小异。
都是以严苛的条件,加速产品质量特性的老化、促进产品寿命缩短的试验。
例如,开关与继电器之类的产品,是按工作次数来计测寿命的,为加速试验,可用更高速度进行接通与断开试验,以检测产品的可靠性寿命。
加速寿命试验与产品例行试验(例如,一般强度和变形的性能测定)是不同的。
例行试验的目的,只是保证产品进出厂验收前,其各种性能参数是否符合一定的标准,而没有测定产品在规定时间内的失效率。
从而不能对产品的可靠性提出任何保证。
而加速寿命试验,是对产品在规定的使用时间内符合一定的可靠性指标提出保证。
同时,加速寿命试验也是产品可靠性预测和检验的基础。
加速寿命试验比产品的例行试验时间要长。
因为,时间短促难以取得足以说明可靠度水平的数据。
在试验数据的处理上,例行试验由于它仅是性能的通过试验,所以数据处理简单,而加速寿命因为它要对某一批产品的可靠性进行推断,所以要采用严格的数据统计方法,以便得出较为可靠的结论。
采取加速寿命试验的作用在于:通过严苛条件试验,可以确定产品、零部件的安全裕度,剔除与筛选可靠度低的零件;在严苛条件下观察到的寿命值(或故障率),同正常条件下的寿命值之间,有一定的规律性,利用此种规律性,可以预测正常条件下的寿命值。
一、概述随着科技的不断发展,加速试验技术在各个领域的应用越来越广泛,成为产品研发和生产过程中不可或缺的一环。
加速试验技术能够快速模拟产品在长时间使用过程中所受到的各种环境和应力,从而提前评估产品的可靠性和耐久性,为产品的改进和优化提供重要依据。
加速试验技术及产品加速试验方法标准的研究和推广具有重要意义。
二、加速试验技术概述1. 加速试验技术的定义加速试验技术是一种通过模拟产品在实际使用过程中所受到的各种环境和应力,以加速时间的方式进行测试和评估的技术手段。
其目的是通过短时间内对产品进行高强度、高频次的试验,来预测产品在较长时间内的使用寿命和可靠性。
2. 加速试验技术的应用领域加速试验技术广泛应用于电子电气、汽车航空航天、通信设备、新能源、医疗器械、家电及照明等行业。
通过对产品在高温、低温、湿热、振动、冲击等条件下的加速试验,可以迅速发现产品的设计缺陷和制造缺陷,从而提高产品的可靠性和安全性。
三、加速试验方法标准介绍1. 加速试验方法标准的概念加速试验方法标准是针对不同领域和产品类型制定的一套试验方法和参数规范,旨在确保加速试验能够真实、准确地模拟产品在实际使用过程中所受到的环境和应力,从而得出可靠的测试结果。
2. 加速试验方法标准的制定依据加速试验方法标准的制定依据主要包括国家标准、行业标准、国际标准以及企业内部标准等。
这些标准会考虑到产品的特性、使用环境、试验设备和试验方法等方面的要求,以确保试验结果的准确性和可靠性。
3. 加速试验方法标准的内容不同领域和产品类型的加速试验方法标准内容各有不同,但一般包括试验条件、试验设备、试验方法、试验参数、试验过程控制和试验结果评定等内容。
这些内容能够帮助用户在进行加速试验时明确具体的操作步骤和要求,从而保证试验的科学性和可比性。
四、加速试验技术及产品加速试验方法标准的发展现状1. 加速试验技术的发展趋势随着科技的不断进步和市场的不断需求,加速试验技术将会朝着智能化、自动化、精细化的方向发展,试验设备和方法将会更加先进和高效,试验结果评定和分析将更加科学和准确。
硬件测试中的可靠性与稳定性测试方法硬件设备的可靠性与稳定性一直是电子行业关注的重要问题。
在硬件测试过程中,我们需要确定可靠性测试和稳定性测试的方法,以确保产品在长期使用中不会出现故障或性能下降。
本文将介绍硬件测试中常用的可靠性与稳定性测试方法,以及实施这些测试的步骤和注意事项。
一、可靠性测试方法1. 环境试验法环境试验法是一种常用的可靠性测试方法,通过模拟真实的使用环境对硬件设备进行测试。
常见的环境试验包括高低温试验、湿度试验、振动试验和冲击试验等。
这些试验可以评估硬件设备在不同的环境条件下的可靠性。
2. 寿命试验法寿命试验法是对硬件设备进行长时间工作的测试,以评估其在长期使用中的可靠性。
在寿命试验中,我们可以设置不同的工作条件和负载,观察硬件设备在不同工况下的性能表现和故障率。
通过寿命试验,我们可以预测硬件设备的使用寿命和故障率。
3. 应力加速试验法应力加速试验法是通过提高硬件设备的工作条件,加速其故障发生的过程,以评估其可靠性。
常见的应力加速试验方法包括加速老化试验、高温高湿试验和电磁辐射试验等。
这些试验可以帮助我们快速评估硬件设备的寿命和可靠性。
4. 退化试验法退化试验法是一种常用的可靠性测试方法,通过对硬件设备进行特定的退化操作,观察其性能和故障发生的变化。
退化试验可以帮助我们了解硬件设备在不同退化程度下的可靠性特性,从而提前预测故障发生的可能性。
二、稳定性测试方法1. 连续运行测试连续运行测试是一种常用的稳定性测试方法,通过长时间运行硬件设备,观察其在不间断工作的情况下是否出现故障、性能下降等问题。
连续运行测试可以帮助我们评估硬件设备在长时间使用中的稳定性和可靠性。
2. 负载测试负载测试是一种常用的稳定性测试方法,通过对硬件设备施加大负载,观察其在高负载情况下的性能表现和稳定性。
负载测试可以帮助我们确定硬件设备在承受大负载时是否会出现故障或性能下降。
3. 异常条件测试异常条件测试是一种常用的稳定性测试方法,通过模拟异常的操作或工作条件,观察硬件设备的反应和稳定性。
76研究与探索Research and Exploration ·监测与诊断中国设备工程 2019.07 (下)现代复杂电子装备的MTBF 高达2000~5000h,甚至更长。
经典的可靠性试验方法已经无法满足电子装备发展的要求,如何验证电子装备的可靠性水平已经是装备承制单位急需解决的问题。
在此形势下,可靠性加速试验应运而生,并成为电子装备可靠性试验领域的重要研究方向。
加速等效如图1。
1 加速试验的假设图1 加速等效加速寿命试验的加速因子定义:(1)式中,t R,O 和t R,t 表示产品在加速应力水平S t 与正常应力水平S o 下的达到相同可靠度的可靠寿命。
AF t,o 为加速应力水平S t 相对于正常应力水平S o 的加速因子。
通过公式可以发现加速因子就是可靠寿命之比,反映了产品分别在两种应力水平下寿命过程的相对快慢程度。
Nelson 对加速因子的定义进行了扩展。
若产品在应力水平S i 与S j 下分别作用时间为t i 和t j 的累积失效概率相同,即F i (t i )=F j (t j ),则加速应力水平S i 相对于正常应力水平S j 的加速因子可以表示为:电子装备可靠性加速试验方法孔耀,王晋忠,朱绪垚(中国电子科技集团公司第五十四研究所质量管理部,河北 石家庄 050081)摘要:文章通过国外可靠性加速试验相关规范研究以及国内开展可靠性加速试验的工程应用调研,给出了恒定应力可靠性加速试验、步进应力可靠性加速试验、可靠性加速退化试验、基于试件等效的可靠性加速试验、基于时间等效的可靠性加速试验的几种方法。
关键词:电子装备;可靠性;加速试验中图分类号:U674.70 文献标识码:A 文章编号:1671-0711(2019)07(下)-0076-02(2)从本质上来讲这两个定义是一致的,如果对上式进行变换,则可以得到(3)如果产品应力S i 作用下试验了时间t i ,则在应力S j 作用下达到相同退化累积的等效时间t j 可以通过计算确定,因此通过式(3)可以对不同应力水平的试验时间进行折算。