八年级上学期期末数学试卷 (解析版)
- 格式:doc
- 大小:990.00 KB
- 文档页数:29
2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列亚运会的会徽中,是轴对称图形的是( )A. B. C. D.2.下列长度的三条线段中,能组成三角形的是( )A. 3cm,5cm,8cmB. 8cm,8cm,18cmC. 1cm,1cm,1cmD. 3cm,4cm,8cm3.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC三个内角度数分别是( )A. 30°,60°,90°B. 45°,45°,90°C. 20°,40°,60°D. 36°,72°,108°4.点(−4,3)关于x轴对称的点坐标是( )A. (−4,−3)B. (4,3)C. (4,−3)D. (3,−4)5.计算2−3的结果是( )A. 8B. 0.8C. −8D. 186.下列计算正确的是( )A. x3⋅x−3=0B. x2⋅x3=x6C. (x2)3=x5D. x2÷x5=1x37.如图是一个钝角△ABC,利用一个直角三角板作边AC上的高,下列作法正确的是( )A. B.C. D.8.在解一个分式方程时,老师设计了一个接力游戏,规则是:每人只能看见前一个人给的式子,进行一步计算后将结果传递给下一个人,最后完成计算.下面是其中一个组的解答过程,老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:3x−1=1−xx+1.甲:3(x+1)=(x+1)(x−1)−x(x−1).乙:3x+3=x2+1−x2+x.丙:3x−x=1−3.丁:解得,x=−1.在接力中,出现计算错误步骤的同学是( )A. 甲B. 乙C. 丙D. 丁9.如果二次三项式a2+mab+b2是一个完全平方式,那么m的值是( )A. 1B. 2C. ±2D. ±110.在如图的3×3正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数是( )A. 2B. 3C. 4D. 5二、填空题:本题共5小题,每小题3分,共15分。
2023-2024学年四川省乐山市市中区八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1. 下列各数中,是无理数的是( )A. B. 0 C. D. 【答案】D【解析】【分析】本题考查的是无理数的识别.根据无理数是无限不循环小数解答即可.【详解】解:A 、是整数,属于有理数,故本选项不符合题意;B 、0是整数,属于有理数,故本选项不符合题意;C,3是整数,属于有理数,故本选项不符合题意;D 、是无理数,故本选项符合题意;故选:D .2. 下列计算结果是a 5 的是( )A. a 2+a 3B. a 10÷a 2C. (a 2)3D. a 2·a 3【答案】D【解析】【分析】根据实数的运算依次计算即可选出正确答案.【详解】解:A .a 2与a 3不属于同类项,所以不能相加,故A 不符合题意;B .a 10÷a 2=a 10-2=a 8,故B 不符合题意;C .(a 2)3=a 6,故C 不符合题意;D .a 2•a 3=a 5,故D 符合题意;故选:D .【点睛】本题考查实数的运算,涉及同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方和积的乘方,熟练掌握计算法则,细心运算是解题关键.3. 计算的结果为( )A. 3B. C. D. 【答案】D【解析】3-π3-3=π10099133⎛⎫-⨯- ⎪⎝⎭3-1313-【分析】本题主要考查积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【详解】解:原式故选D .4. 下列命题是真命题的有( )①等边三角形3个内角都为;②斜边和一条直角边分别相等的两个直角三角形全等;③全等三角形对应边上的高相等;④三边长分别为5,12,13的三角形是直角三角形.A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】本题考查了真假命题的判断.根据全等三角形的性质,等腰三角形的性质以及勾股定理逆定理逐项判断即可作答.【详解】解:①等边三角形3个内角都为,本项是真命题;②斜边和一条直角边分别相等的两个直角三角形全等,本项是真命题;③全等三角形对应边上的高相等,本项是真命题;④∵,∴三边长分别为5,12,13的三角形是直角三角形,本项是真命题.综上,①②③④都是真命题;故选:A .5. 如图,要测量河岸相对的两点A 、B 间的距离,先在的垂线上取两点C 、D ,使,再定出的垂线,使点A 、C 、E 在同一条直线上,测量的长度就是的长,这里,其根据是( )A. B. C. D. 【答案】C 9999113()()33=-⨯-⨯-13=-60︒60︒22251213+=AB BF BC CD =BF DE DE AB ABC EDC △≌△S.A.SA.A.S A.S.A H.L【解析】【分析】本题主要考查全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.根据全等三角形的判定方法进行证明即可.【详解】解:在和中,故选C .6. 如图,在数轴上,A 、B ,点A 是线段的中点,则点C 所对应的实数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查数轴上表示的数以及中点的定义,熟练掌握数轴上两点之间的距离计算是解题的关键.由点A 是线段的中点,得到,即可得到答案.【详解】解:设点C 所对应的实数为,点A 是线段的中点,,A 、B ,,,解得故选:D .7. 如图,中,,,,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积为( ),BF AB DE BD⊥⊥ 90ABC CDE \Ð=Ð=°ABC V EDC △90ABC EDC CB CDACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩(ASA)ABC EDC ∴≌△△1-BC 11--22-BC AC AB =x BC ∴AC AB = 1-1,(1)1AC x AB ∴=--=--=+11x ∴--=+2x =-Rt ABC △90C ∠=︒6AC =8BC =A. B. C. 24 D. 【答案】C【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.先求出直角三角形的斜边,再进行计算即可.【详解】解: 中,,,,,,.故选C .8. 如图,中,,点O 是边垂直平分线的交点,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了线段垂直平分线的性质,三角形内角和定理,等边对等角.连接,利用线段垂直平分线的性质结合等边对等角求得,,,再利用三角形内角和定理即可求解.【详解】解:连接,4.5π8π12.5πRt ABC △90C ∠=︒6AC =8BC=10AB ===2221111346852222S πππ=⨯+⨯+⨯⨯-⨯9258242422πππ=++-=ABC V 58A ∠=︒AB AC 、BCO ∠28︒32︒36︒40︒OA OB 、13∠=∠24∠∠=56∠=∠OA OB 、∵点O 是边垂直平分线的交点,∴,,∴,∴,,,∵,∴,,∴,∴,故选:B .9. 对于实数a 、b ,定义的含义为:当时,,当时,,例如:,已知,,,且x 和y 为两个连续正整数,则的算术平方根为( )A. 16B. 8C. 4D. 2【答案】D【解析】【分析】本题主要考查新定义,准确理解题意是解题的关键.根据题意求出的值即可得到答案.,由于x 和y 为两个连续正整数,,,的算术平方根为,故选D .10. 如图,中,,交于E ,C 为上一点,.若,AB AC、OA OB =OA OC =OA OB OC ==13∠=∠24∠∠=56∠=∠58A ∠=︒354618058122∠+∠+∠+∠=︒-︒=︒123458BAC ∠+∠=∠+∠=∠=︒561225864∠+∠=︒-︒=︒1664322BCO ∠=∠=⨯︒=︒{},min a b a b <,{}min a b a =a b >,{}b min a b =2}2{1,min =--}min x x =}min y =x y 、x >y <34<<3,4x y ∴==4==2ABD △45D ∠=︒BE AC ⊥AD BD AB AC =2BC =则的长为( )A. 1B. C. D. 2【答案】B【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的外角性质.作于点,作于点,求得,再求得,,从而求得,根据证明,据此求解即可.【详解】解:设,作于点,作于点,∵,∴,,∵,垂足为,∴,∴,∵,∴,∵是的一个外角,∴,而,∴,∴,∴,DEAF BC ⊥F EH BD ⊥H CAF BAF DBE α∠=∠=∠=45AEB α∠=︒+45BAE α∠=︒+BA BE =AAS BAF EBH ≌△△DBE α∠=AF BC ⊥F EH BD ⊥H AB AC =112BF CF BC ===BAF CAF ∠=∠BE AC ⊥G 90AFC BGC ∠=∠=︒90CAF BAF ACF DBE α∠=∠=︒-∠=∠=45D ∠=︒45DAF ∠=︒AEB ∠BED V 45AEB α∠=︒+45BAE DAF BAF AEB α∠=∠+∠=︒+=∠BA BE =()AAS BAF EBH V V ≌1EH BF ==∵,,∴是等腰直角三角形,∴,∴故选:B .二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:992+198+1=________.【答案】10000【解析】【分析】将992化为后利用完全平方公式计算,再将结果相加即可.【详解】解:原式===10000.故答案为:10000.【点睛】本题考查用完全平方公式简便运算.熟记完全平方公式并能对原式正确变形是解题关键.12 分解因式:______.【答案】【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.13. 如图,在中,,,D 为上一点,且,则_____..EH BD ⊥45D ∠=︒EHD △1DH EH ==DE ==2(1001)-2(1001)1981-++1000020011981-+++2xy x -=()()11x y y +-2xy x-()21x y =-()()11x y y =+-()()11x y y +-ABC V AB AC =108BAC ∠=︒BC AB BD =CAD ∠=【答案】##36度【解析】【分析】本题考查了等腰三角形的性质,三角形内角和定理.根据等边对等角结合三角形内角和定理求得和的度数,进一步计算即可求解.详解】解:∵,,∴,∵,∴,∴,故答案为:.14. 若,则__________.【答案】81【解析】【分析】根据,得到,再利用整体思想,代入求值即可.【详解】解:∵,∴,∴;故答案为:.【点睛】本题考查代数式求值,幂的乘方的逆用以及同底数幂的乘法,解题的关键是掌握相关运算法则,利用整体思想代入求值.15. 如图,在中,.按以下步骤作图:①以点C 为圆心,适当长为半径画弧,分别交于点M 、N ;②分别以M 、N为圆心,大于的长为半径画弧,两弧交于点F ;③作射线.若,E 为边的中点,D 为射线上一动点.则的最小值为 _____.【36︒B ∠BAD ∠AB AC =108BAC ∠=︒()1180362B C BAC ∠=∠=︒-∠=︒AB BD =()118036722BAD BDA ∠=∠=⨯︒-︒=︒36CAD BAC BAD ∠=∠-∠=︒36︒2340x y +-=927x y ⋅=2340x y +-=234x y +=2340x y +-=234x y +=()23234927333381x y x y x y +⋅=⋅===81Rt ABC △90ACB ∠=︒AC CB 、12MN CF 2BC =BC CF BD DE +【解析】【分析】本题考查了作图-基本作图,全等三角形的判定和性质,角平分线的性质和最短线段问题.利用基本作图得到得平分,作上截取,连接交于D ,根据证明得到,接着利用两点之间线段最短可判断此时的值最小,最小值为的长,然后利用勾股定理计算出即可.【详解】解:由作法得平分,作上截取,连接交于D ,如图,∵平分,∴,∵,,∴,∴,∴,∴此时的值最小,最小值为的长,∵,E 为边的中点,∴,在,,∴CF ACB ∠AC CG CE =BG CF SAS DCE DCG ≌△△DG DE =BD DE +BG BG CF ACB ∠AC CG CE =BG CF CF ACB ∠DCE DCG ∠=∠CD CD =CG CE =()SAS DCE DCG ≌△△DG DE =BD DE BD DG BG +=+=BD DE +BG 2BC =BC 1CG CE ==Rt BCG V BG ==BD DE +16. 南宋数学家杨辉在其著作《详解九章算法》中揭示了(n 为自然数)展开式的各项的次数和系数规律,后人也将此称为“杨辉三角”.如图,请你仔细观察这两个规律,写出展开式中的第二项 _____.【答案】【解析】【分析】本题主要考查杨辉三角,熟练掌握杨辉三角的规律即可得到答案.根据杨辉三角的规律即可解答.【详解】解:根据题意可得:展开式中的第二项为,即为.故答案为:.三、本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:.【答案】【解析】【分析】本题主要考查立方根以及算术平方根的混合计算,熟练掌握运算法则是解题的关键.根据运算法则进行求解即可.【详解】解:原式.18. 因式分解:.【答案】【解析】()na b+202412x⎛⎫- ⎪⎝⎭20231012x -202412x ⎛⎫- ⎪⎝⎭2024112024(2x --20231012x -20231012x -23--16-934=---16=-322344x y x y xy -+()22xy x y -【分析】先提取公因式,再应用完全平方公式,即可求解,本题考查了因式分解,解题的关键是:熟练应用完全平方公式,进行因式分解.【详解】解:,故答案为:.19. 计算:.【答案】【解析】【分析】本题考查整式的混合运算.先利用完全平方公式、平方差公式以及单项式乘多项式的运算,再合并同类项,最后进行除法运算.【详解】解:.20. 如图,在△ABC 中,D 是边BC 的中点,过点C 画直线CE ∥AB ,交AD 的延长线于点E .求证:AD =ED .【答案】见解析【解析】【分析】由CE ∥AB ,得∠BAD =∠E ,由D 是边BC 的中点,得BD =CD ,证△ABD ≌△ECD (AAS ),即可得出结论.【详解】证明:∵CE ∥AB,xy 322344x y x y xy -+()2244xy x xy y =-+()22xy x y =-()22xy x y -()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g x y+()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g ()()22222444422x xy y x y x xy x =-++--+÷-()()2222x xy x =--÷-()()22222x x xy x --÷÷--=x y =+∴∠BAD =∠E ,∵D 是边BC 的中点,∴BD =CD ,在△ABD 和△ECD 中,,∴△ABD ≌△ECD (AAS ),∴AD =ED .【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.21. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲!如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c .(1)请利用“赵爽弦图”证明:;(2)若大正方形的面积为20,小正方形面积为4,求其中一个直角三角形的面积.【答案】(1)见解析(2)【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理以及完全平方公式是解题的关键.(1)根据小正方形的面积加上四个直角三角形的面积等于大正方形的面积即可证明;(2)根据(1)中得到的计算即可.【小问1详解】解:直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c ,小正方形的面积四个直角三角形的面积大正方形的面积,,,BAD E ADB EDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩222+=a b c 4222+=a b c +=221()42a b ab c ∴-+⨯=22222a ab b ab c ∴-++=;【小问2详解】解:由题意可得:,即,,故一个直角三角形的面积为.22. 如图,在中,,点D 、E 、F 分别在AB 、BC 、AC 边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.【答案】22. 见解析23. 【解析】【分析】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理.(1)利用证明即可求证;(2)根据,结合全等三角形的性质即可求解.【小问1详解】证明:∵,,,,,,∴是等腰三角形;【小问2详解】∴222+=a b c 221()42a b ab c -+⨯=144202ab +⨯=142ab ∴=4ABC V AB AC =12∠=∠BE CF =DEF V 36A ∠=︒DEF ∠72DEF ∠=︒ASA DBE ECF V V ≌()180DEF FEC BED ∠=︒-∠+∠AB AC =B C ∴∠=∠12∠=∠ BE CF =()ASA DBE ECF ∴V V ≌DE EF ∴=DEF V解:∵,,,,,.23. 嘉州学校坚持“立德树人,五育并举”,为提高学生运动技能,计划利用课后服务时间开设以下五种体育课程:A .足球,B .篮球,C .排球,D .羽毛球,E .乒乓球.每名学生都必须且只能在这五种课程中选择一类自己最喜欢的课程,学校对学生选择的课程进行了一次随机抽样调查,并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)求本次抽样调查学生的人数;(2)在扇形统计图中,求“排球”所在扇形的圆心角的度数;(3)补全条形统计图;(4)根据以上统计分析,估计该校七年级440名学生中最喜爱“篮球”的人数.【答案】(1)本次抽样调查学生的人数为200名;(2)“排球”所在扇形的圆心角的度数为;(3)见解析(4)该校七年级440名学生中最喜爱“篮球”的人数约有120名.【解析】【分析】本题考查了条形统计图、扇形统计图的制作方法和统计图中各个数据之间的关系,正确识别统计图是解答问题的前提.(1)从两个统计图中可得喜欢“足球”的人数为40人,占调查人数的,可求出调查人数;(2)用乘以样本中“排球”所占的比即可;(3)计算出喜欢“乒乓球”和“篮球”人数,再补全条形统计图;36A ∠=︒18036722B ︒-︒∴∠==︒1108BDE ∴∠+∠=︒DBE ECF △≌△BDE FEC ∴∠=∠1108FEC ∴∠+∠=︒()180172DEF FEC ∴∠=︒-∠+∠=︒36︒20%360︒(4)根据样本估计总体即可求解.【小问1详解】解:本次抽样调查学生的人数为(名);【小问2详解】解:“排球”所在扇形的圆心角的度数为;【小问3详解】解:喜欢“乒乓球”的人数为(名),喜欢“篮球”人数为(名),补全条形统计图如图所示:;【小问4详解】解:(名).答:该校七年级440名学生中最喜爱“篮球”的人数约有120名.24. 我们把二次三项式恒等变形为(h 、k 为常数)的形式叫做配方.巧妙地运用配方法不仅可以将一个的多项式进行因式分解,也能求一个二次三项式的最值,还能结合非负数的意义来解决一些实际问题.例如,分解因式:.解:.请用配方法解答下列问题:(1)分解因式:①,②;(2)求多项式的最小值;(3)已知a 、b 、c 是的三边长,且满足.判断的形状.【答案】(1)①;②(2) 的4020%200÷=2036036200°´=°20025%50⨯=2004050302060----=60400120200⨯=2ax bx c ++()2a x h k ⋅++245x x +-()()()2222454492351x x x x x x x +-=++-=++-=-g 223x x +-2245a ab b +-2245x x -+ABC V 222a b c ab bc ca ++=++ABC V (3)(1)x x +-(5)()a b a b +-3(3)等边三角形【解析】【分析】本题主要考查因式分解的应用,关键是配方法的灵活运用.(1)根据题意进行分解即可;(2)分解因式再根据平方的非负性即可得到答案;(3)分解因式进行判定.【小问1详解】解:①原式;②原式;【小问2详解】解:原式,,故多项式的最小值为;【小问3详解】解:,,,,,,2214x x =++-2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-222449a ab b b =++-22(2)9a b b =+-(23)(23)a b b a b b =+++-(5)()a b a b =+-22(21)25x x =-+-+22(1)3x =-+2(1)0x -≥ 2245x x -+3 222a b c ab bc ca ++=++2220ab bc c a c a b ∴--++=-2222222220a b c ab bc ca ∴++---=2222220222a b ab bc c b a c a c ∴-+--+++=+222()()()0a b b c c a ∴-+-+-=0,0,0a b b c c a ∴-=-=-=,即的形状为等边三角形.25. 【阅读下列材料】:若,,则,,∴.)∵,,∴.“称为“基本不等式”,利用它可求一些代数式的最值及解决一些实际问题.(a 、b 为正数;积定和最小;和定积最大;当时,取等号.)【例】:若,,,求的最小值.解:∵,, ∴,∴.∴时,的最小值为8.【解决问题】(1)用篱笆围成一个面积为的长方形菜园,当这个长方形的边长为多少时,所用篱笆最短?最短篱笆的长是多少;(2)用一段长为篱笆围成一个长方形菜园,当这个长方形的边长是多少时,菜园面积最大?最大面积是多少;(3)如图,四边形的对角线相交于点O ,、的面积分别为2和3,求四边形面积的最小值.【答案】(1)这个长方形的长、宽分别为米,米; (2)菜园的长为50m ,宽为m 时,面积最大为;(3)四边形面积的最小值为.【解析】【分析】本题主要考查完全平方公式的应用,二次根式的应用.的a b c ==∴ABC V 0a >0b >2a =2b =2a b =+-=20≥0a b +-≥a b +≥a b +≥a b =0a >0b >16ab =a b +0a >0b >16ab =0a b +-≥8a b +≥=4a b ==a b +2100m 100m ABCD AC BD 、AOD △BOC V ABCD 2521250m ABCD 5+(1)设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,,所以所用篱笆的长为米,再根据材料提供的信息求出的最小值即可;(2)设垂直于墙的一边为x m ,利用矩形的面积公式得到菜园的面积关于x 的关系式,再利用非负数的性质求解即可;(3)设点B 到的距离为,点D 到的距离为,又、的面积分别是2和3,则,,,从而求得,然后根据材料提供的信息求出最小值即可.【小问1详解】解:设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,∴,∴所用篱笆的长为米,∵当且仅当时,的值最小,最小值为,∴或(舍去).∴这个长方形的长、宽分别为米,米时,所用的篱笆最短,最短的篱笆是【小问2详解】解:设垂直于墙的一边为x m ,则平行于墙的一边长为m ,∴菜园的面积,又∵,∴当时,菜园的面积有最大值为1250,答:菜园的长为50m ,宽为m 时,面积最大为;【小问3详解】y 100xy =100y x =1002x x ⎛⎫+ ⎪⎝⎭1002x x ⎛⎫+ ⎪⎝⎭AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+ABCD S 四边形y 100xy =100y x=1002x x ⎛⎫+ ⎪⎝⎭1002x x +≥=1002x x =1002x x+x =x =-()1002x -()()22100221002251250x x x x x -=-+=--+()22250x --≤25x =2521250m解:设点B 到的距离为,点D 到的距离为,又∵、的面积分别是2和3,∴,,∴,∴∵.∴当且仅当时,取等号,即,∴四边形面积的最小值为.26.(1)【课本探究】如图1,小明将两个含全等的三角尺摆放在一起,可以得到为等边三角形,从而发现:,即:.请将小明的这个发现写成命题的形式;(2)【小试牛刀】①如图2,在中,,,平分,若,求的长;②如图3,在等边中,是边上的中线,点P 为上一动点,连结,若,求的最小值;(3)【拓展应用】如图4,在四边形中,,,,点M 从点B 出发,沿线段以每秒2个单位长度的速度向终点A 运动,过点M 作于点E ,作交延长线于点N ,交射线于点F ,点M 运动时间为.求t 为何值时,与全等,并说明理由.的AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+121122ABC ADC ABCD S S S AC h AC h =+=⋅+⋅V V 四边形()1212AC h h =+()211212123216452h h h h h h h h ⎛⎫=++=++ ⎪⎝⎭211232h h h h +≥=211232h h h h =211232h h h h +ABCD 5+30︒ABC V 1122BD CD BC AB ===12BD AB =Rt ABC △90ACB ∠=︒30B ∠=︒AD BAC ∠2CD =BC ABC V AD BC AD BP 4BC =12BP AP +ABCD AB CD ∥6AB BC ===60B ∠︒BA ME BC ⊥MN AB ⊥DC BC ()s t BME V CFN V【答案】(1)角所对的直角边等于斜边的一半;(2)①;②的最小值为;(3)秒或3秒时,与全等.【解析】【分析】(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①在中,,推出,再证明,即可得答案;②过点P 作于点E ,过点B 作于点F ,求得,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,据此即可求解;(3)分点在线段上或点在的延长线上,分别根据图形可得,从而解决问题.【详解】解:(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①如图2,在中,, ,,平分,∴,∴,,,∴,,;②如图3,过点P 作于点E ,过点B 作于点F,30︒6BC =12BP AP+1t =BME V CFN V 30︒Rt ABC △30CAD ∠=︒24AD CD ==4AD DB ==PE AC ⊥BF AC ⊥12PE AP =BF AC ⊥BP PE +BF F BC F BC 2BF BM =30︒Rt ABC △90ACB ∠=︒30B ∠=︒60CAB ∴∠=︒AD BAC ∠1302CAD DAB CAB ∠=∠=∠=︒24AD CD ==30B DAB ∠=∠=︒4AD DB ∴==6BC CD DB =+= 2CD =6BC ∴=PE AC ⊥BF AC ⊥是等边三角形,∴,,,,,∴,∴∵,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,∴的最小值为;(3)当点在线段上时,∵,,,,,,,ABC V 60BAC ∠=︒30DAC DAB ∴∠=∠=︒12PE AP ∴=60ABC ∠=︒ 30ABF ∴∠=︒122AF AB ==BF ==12BP AP BP PE +=+∴BF AC ⊥BP PE +BF 12BP AP +F BC AB CD ∥MN AB ⊥90N ∴∠=︒BME CFN ≌△△2CF BM t ∴==60B ∠=︒ 30BME ∠=︒∴,,;当点在的延长线上时,,,同理得,,,;综上:或3时,与全等.【点睛】本题主要考查了全等三角形的性质,等边三角形的性质,平行线的性质,含角所对的直角边等于斜边的一半,勾股定理,垂线段最短等知识,熟练掌握全等三角形的性质进行分类讨论是解题的关键.24BF BM t ∴==246t t ∴+=1t ∴=F BC BME CFN ≌△△BM CF ∴=4BF t =26BC t ∴==3t ∴=1t =BME V CFN V 30︒。
八年级(上)期末数学试卷一、选择题:每空3分,共30分.1.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠12.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,93.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形5.如图,每个小正方形的边长为1,△ABC的三边a、b、c的大小关系式正确的是()A.c<a<b B.a<b<c C.a<c<b D.c<b<a6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为()A.60°B.62°C.64°D.66°9.(2x)n﹣81分解因式后得(4x2+9)(2x+3)(2x﹣3),则n等于()A.2 B.4 C.6 D.810.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.二、填空题:每空3分,共18分.11.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.12.当x=时,2x﹣3与的值互为倒数.13.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,若∠BAC=80°,则∠BOD的度数为.14.因式分解:(x2+4)2﹣16x2=.15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.16.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是.三、解答题:第17-21题各8分,第22-23题各10分,第24题12分,共72分。
.....若分式的值为,则( )....11x x -+A .166.已知一个等腰三角形的一边长等于A .13cm A .100厘米xy x y =-≠三、解答题(将解答过程写在答题卡上指定的位置,本大题共有分)19.先化简,再从20.如图,在下列带有坐标系的网格中,,(1)画出关于轴的对称的22121x x x x x -+÷-+-()23A -,(B -ABC x嘉铭同学通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如下图,在上截取,使得,连接,可以得到全等三角形,进而解决此问题方法2:如下图,延长到点,使得,连接,可以得到等腰三角形,进而解决此问题(1)根据探究,直接写出,,之间的数量关系;【迁移应用】(2)如下图,在中,是上一点,,于,探究,,之间的数量关系,并证明.【拓展延伸】(3)如下图,为等边三角形,点为延长线上一动点,连接.以为边在上方作等边,点是的中点,连接并延长,交的延长线于点.若,求证:;AC AE AE AB =DE .AB E BE BD =DE .AC AB BD ABC D BC 2B C ∠=∠AD BC ⊥D CD AB BD ABC D AB CD CD CD CDE F DE AF CD G G ACE ∠=∠GF AE AF =+参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意得: 解得:x=1故答案为B|x|-1=010x ⎧⎨+≠⎩【点睛】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.5.C在和中,,∴,∴,∵,∴,故④正确;故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,等腰三角形三线合一的性质,垂线段最短等知识,能正确证明两个三角形全等是解此题的关键.16.(1)(2)【分析】(1)先计算积的乘方,再根据多项式除以单项式的计算法则求解即可;(2)先根据完全平方公式和平方差公式去括号,然后合并同类项即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了整式的混合计算,熟知相关计算法则是解题的关键.17.(1)(2)AFB △CNA V 4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩()ASA AFB CAN ≌AF CN =AF AE =AE CN =23y xy+25x +()233xy xy xy ⎡⎤+÷⎣⎦()3223xy x y xy=+÷23y xy =+()()()2122x x x +-+-()22214x x x =++--22214x x x =++-+25x =+()22m n +-()()233x x +-,.21.(1);(2)(3)证明见解析.117678768+=⨯⨯⨯11(1)(2)+1n n n n +=⨯+⨯+,证明,得出,证明出是等腰直角三角形,得出,从而得出,即可得解.【详解】(1)证明:,,,,;(2)解:,而,为等腰直角三角形,过作的垂线交延长线于,,,而,,,在和中,,,,,又,,在中,,为等腰直角三角形,,CH BH 、()SAS BOC CEH ≌OCB EHC BC CH ∠=∠=,B C H V 45CBH ∠=︒45ADB CBH ∠=∠=︒22220a ab b c -+-= ()22a b c ∴-=000a b c >≤> ,,a b c ∴-=AB OC ∴=0b = AB OC =ABC ∴ A BF BF G ABF BCF ∠=∠ 90ABC ∠=︒90FBC FCB ∴∠+∠=︒90BFC ∴∠=︒ABG BCF △90ABF BCF G BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()AAS ABG BCF ∴ ≌AG BF ∴=BG CF =2CF BF = BF FG AG ∴==AFG 90FG AG G =∠=︒,AFG ∴ 45AFG ∠=︒;(3)①证明:,,,,又,,;②的度数为定值,,过作于,取,连接,,,,,,,即是等腰直角三角形,,,∴,∴可由平移所得,,,.135AFB ∴∠=︒()0E c b - ,()E c OE x c b x b OC CE ∴==-=+-=+OC c = CE b ∴=-()0B b ,OB b ∴=-CE OB \=BDE ∠135BDE ∠=︒E EH OE ^E EH OC =CH BH 、OB CE BOC CEH OC EH =∠=∠= ,,()SAS BOC CEH ∴ ≌OCB EHC BC CH ∴∠=∠=,90OCB ECH CHE ECH ∴∠+∠=∠+∠=︒90BCH ∴∠=︒B C H V 45CBH ∴∠=︒AB OC OC EH == ,AB EH =EH AB AE BH ∴∥45ADB CBH ∴∠=∠=︒135BDE ∴∠=︒24.(1);(2) ,证明见解析;(3)证明见解析.【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,等边三角形的性质;(1)方法一:证明得到,,根据三角形的外角性质和等腰三角形的判定证得,则,进而可得结论;方法二:先根据等腰三角形的性质和外角性质证得,再证明得到,进而可得结论;(2)在上取,连接,根据等边对等角得出,根据三角形的外角的中得出,进而得出,即可得证;(3)先证明 ,过作,交于点,证明,根据等角对等边得出,即可得出结论.【详解】(1)证明:方法一:∵平分,∴,在和中,,,,∴∴,,∵,∴,∴,∴,∴;方法二:延长到点E ,使得,连接,∴,则,∵,AC AB BD =+CD AB BD =+ABD AED ≌ BD ED =2AED ABC C ∠=∠=∠ED EC =BD EC =E C ∠=∠()AAS EAD CAD ≌AE AC =CD DE DB =AE AEB B ∠=∠CAE C ∠=∠EA EC =ACE BCD ≌()SAS D D H A E ∥AG H AEF HDF ≌△△GH HD =AD BAC ∠BAD CAD ∠=∠BAD EAD AD AD =BAD EAD ∠=∠AB AE =()SAS ABD AED ≌BD ED =2AED ABC C ∠=∠=∠AED C EDC ∠=∠+∠EDC C ∠=∠ED EC =BD EC =AC AB BD =+AB BE BD =DE E BDE ∠=∠2ABD E BDE E ∠=∠+∠=∠2ABC C ∠=∠∴,∵平分,∴,在和中,,,,∴,∴,∵,∴;(2)在上取,连接,∵于∴∴∵,∴,∴∴;(3)如图所示,∵,为等边三角形,∴,,∴∴,∴ ∴∴过作,交于点,E C ∠=∠AD BAC ∠BAD CAD ∠=∠EAD CAD EAD CAD ∠=∠E C ∠=∠AD AD =()AAS EAD CAD ≌AE AC =AE AB BE =+AC AB BD =+CD DE DB =AE AD BC ⊥DAE AB=AEB B∠=∠AEC C CAE ∠=∠+∠2B C∠=∠CAE C ∠=∠EA EC=CD CE ED AE DB AB DB =+=+=+CDE ABC 60ACB ECD ∠=∠=︒,CA CB CE CD ==ACB ECB ECD ECB∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌()SAS 120EAC DBC ∠=∠=︒60ACE AEC ∠+∠=︒D D H AE ∥AG H∴,∵是的中点,∴,又∴∴ ,,而,∴,又∵∴∴即 .EAF FHD ∠=∠F ED =EF FD AFE HFD∠=∠()ASA AEF HDF ≌AF HF =AE DH =AEF HDF∠=∠120GDF HDF GDH ∠=∠+∠=︒6060120AEF ACE FEC AEC ACE ∠+∠=∠+∠+∠=︒+︒=︒ACE GDH ∠=∠G ACE∠=∠G GDH∠=∠GH HD AE ==GF AE AF =+。
2023~2024学年上学期期末质量检测八年级数学注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效。
3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 一个正方体的体积扩大为原来的64倍,则它的棱长变为原来的( )A. 2倍B. 4倍C. 6倍D. 9倍【答案】B【解析】【分析】本题考查了正方体的体积和立方根的应用,熟练应用立方根和正方体的体积计算方法是解答本题的关键.根据正方体的体积公式计算并判断即可.【详解】解:设原正方体的边长为,则体积为,∴将体积扩大为原来的64倍,为,∴,∴它的棱长为原来的4倍,故选:B .2. 如图,将含角的三角板的两个顶点放在直尺的对边上,若,则的度数为( )A. B. C. D. 【答案】C【解析】【分析】首先利用平行线的性质得到,进而求解即可.a 3a 364a 4a =45︒120∠=︒2∠15︒20︒25︒30︒3120∠=∠=︒【详解】如图所示,∵直尺的两边平行,,∴,∴.故选:C .【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是的利用.3. 已知是二元一次方程组的解,则的值为( )A. 7B. 3C.D. 11【答案】A【解析】【分析】本题考查二元一次方程组的解及解二元一次方程组.把代入,可得,利用加减消元法解答.【详解】解:∵是二元一次方程组的解,∴,∴由得:.故选:A4. 如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西,35海里)来描述港口B 相对货船A 的位置,那么货船A 相对港口B 的位置可描述为()120∠=︒3120∠=∠=︒2452025∠=︒-︒=︒45︒21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩3m n -17-21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2821m n n m +=⎧⎨-=⎩①②21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2821m n n m +=⎧⎨-=⎩①②-①②37m n -=40︒A. (南偏西,35海里)B. (北偏西,35海里)C (北偏东,35海里) D. (北偏东,35海里)【答案】C【解析】【分析】以点B 为中心点,来描述点A 的方向及距离即可.【详解】解:由题意知货船A 相对港口B 的位置可描述为(北偏东,35海里),故选:C .【点睛】本题考查坐标确定位置,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.5. 贵阳贵安2021年第二届初中教师说课评比顺利结束,陈老师根据七位评委所给的分数,将最后一位参赛教师的得分制作了表格.对七位评委所给的分数,去掉一个最高分和一个最低分后.表中数据一定不发生变化的是( )平均数中位数众数方差86.2分85分84分 5.76A. 方差B. 众数C. 中位数D. 平均数【答案】C【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选C .【点睛】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.6. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单.50︒40︒40︒50︒40︒位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. B. C. D. 【答案】D【解析】【分析】设马每匹x 两,牛每头y 两,根据马四匹、牛六头,共价四十八两与马三匹、牛五头,共价三十八两列方程组即可.【详解】设马每匹x 两,牛每头y 两,由题意得,故选:D .【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.7. 已知正比例函数(k 为常数且),若y 的值随着x 值的增大而增大,则一次函数在平面直角坐标系中的图象大致是( )A. B. C. D.【答案】C【解析】【分析】根据正比例函数中,y 的值随着x 值的增大而增大,可得,从而可以判断一次函数图象经过第一、三、四象限.【详解】解:∵正比例函数中,y 的值随着x 值的增大而增大,∴,∴一次函数的图像经过第一、三、四象限,故选:C【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出.8. 在如图的网格中,小正方形的边长均为1,三点均在正方形格点上,则下列结论错误的是46383548x y x y +=⎧⎨+=⎩46483538y x y x +=⎧⎨+=⎩46485338x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩y kx =0k ≠y kx k =-y kx =0k >y kx k =-y kx =0k >y kx k =-0k >、、A B C( )A. B. C. D. 点到直线的距离是2【答案】C【解析】【分析】本题考查了勾股定理及其逆定理,三角形的面积公式,根据勾股定理求得进而根据勾股定理的逆定理,即可求解.【详解】解:∵,∴,∴,故A,B 选项正确;∴,故C 选项错误;设点到直线的距离是,则,∴,故D 选项正确故选:C .9. 下面是投影屏上出示的抢答题,则横线上符号代表的内容正确的是( )如图,.求证:.证明:延长交※与点F则▲(□相等,两直线平行)A. ※代表ABB. 代表C. ▲代表D. □代表同位角【答案】C【解析】【分析】本题主要考查了三角形外角的性质、平行线的判定等知识点,正确作出辅助线、构造三角形外角AB =90BAC ∠=︒10ABC S =△A BC ,,AC AB BC5AC AB BC ======222AB AC BC +=90BAC ∠=︒11522ABC S AC AB =⨯==△A BC d 152ABC S BC d =⨯=V 5225d ⨯==BEC B C ∠=∠+∠AB CD P BE e EFC C =∠+∠BEC B C∠=∠+∠ B ∴∠=AB CD ∴∥e FEC ∠EFC ∠是解答本题的关键.根据图形利用三角形外角的性质、等量代换、平行线的判定将解答补充完整即可解答.【详解】证明:延长交于点F ,则则(内错角相等,相等,两直线平行)则※代表,故A 选项不符合题意;⊙代表,故B 选项不符合题意;▲代表即,故C 选项符合题意;□代表内错角,故D 选项不符合题意.故选C .10. 在平面直角坐标系中,将图1所示的照如图2所示的方式依次进行轴对称变换,若点坐标是,则经过第2023次变换后所得的点的坐标是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.观察图形可知每四次对称为一个循环组依次循环,用2023除以4,然后根据商和余数的情况确定出变换后的点A 所在的象限,据此即可解答.【详解】解:∵点A 第一次关于x 轴对称后在第四象限,点A 第二次关于y 轴对称后在第三象限,点A 第三次关于x轴对称后在第二象限,BE DC BEC ∠=EFC C∠+∠BEC B C∠=∠+∠ B EFC∴∠=∠AB CD ∴∥DC BEC ∠EFC ∠EFC ∠ABC V A (),x y 2023A (),x y (),x y -(),x y -(),x y --点A 第四次关于y 轴对称后在第一象限,即点A 回到初始位置,∴每四次对称为一个循环组依次循环,∵,∴经过第2023次变换后所得的A 点与第三次变换的位置相同,在第二象限,坐标为,故选:B .二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数:___.(答案不唯一).【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2等,(答案不唯一).12. 如图,一次函数与的图象相交于点,则方程组的解是____.【答案】【解析】【分析】由交点坐标,先求出,再求出方程组的解即可.【详解】解:∵的图象经过,∴,解得,202345053÷=⋅⋅⋅(),x y -2π-y kx b =+2y x =+(),4P m 2y x y kx b =+⎧⎨=+⎩24x y =⎧⎨=⎩(),4m m 2y x =+(),4P m 42m =+2m =一次函数与的图象相交于点,方程组的解是,故答案为.【点睛】本题考查一次函数图象的交点与方程组的解的关系,解题的关键在于对知识的熟练掌握.13. 某校学生期末评价从德、智、体、美、劳五方面进行,五方面依次按确定成绩,小明同学本学期五方面得分如图所示(说明:由图可知第一方面“德”,得分为10分),则他的期末成绩为______分.【答案】9【解析】【分析】本题考查了求平均数,熟记加权平均数公式是解题的关键.根据加权平均数的计算公式计算即可得解.【详解】解:由题意可得,(分),故答案为:9.14. 如图在中,分别平分,交于O ,为外角的平分线,交的延长线于点E ,记,,则以下结论①;②;③ ;④,正确的是_____.(把所有正确的结论的序号写在横线上)【答案】①④##④①【解析】∴y kx b =+2y x =+()2,4P ∴2y x y kx b =+⎧⎨=+⎩24x y =⎧⎨=⎩24x y =⎧⎨=⎩2:3:2:2:110293829291923221⨯+⨯+⨯+⨯+⨯=++++ABC V BO CO ,ABC ACB ∠∠,CE ACD ∠BO 1BAC ∠=∠2BEC ∠=∠122∠=∠32BOC ∠=∠901BOC ∠=︒+∠902BOC ∠=︒+∠【分析】本题考查了角平分线的定义、三角形外角的性质,解题关键是理解并能灵活运用相关概念得到角之间的关系.先利用角平分线的定义得到,,,再利用三角形的外角的性质转化各角之间的关系即可求解.【详解】解:∵平分, 为外角的平分线,∴,,∴,故①正确;∵平分,∴,∴,∴,故④正确;∵不一定是,故②不正确;由于,∴,故③不正确;故答案为:①④.15. 如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.【答案】6【解析】【分析】根据题意,分析P 的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA 的值,过D 作DE ⊥AB 于E ,根据勾股定理求出AE ,即可求解.【详解】根据题意,当P 在BC 上时,三角形的面积增大,结合图2可得BC=4;当P 在CD 上时,三角形的面积不变,结合图2可得CD=3;当P 在AD 上时,三角形的面积变小,结合图2可得AD=5;过D 作DE ⊥AB 于E,2ABC EBC ∠=∠2ACD ECD ∠=∠2ACB ACO ∠=∠BO ABC ∠CE ACD ∠2ABC EBC ∠=∠2ACD ECD ∠=∠()1222ACD ABC ECD EBC =-=-=∠∠∠∠∠∠CO ACB ∠2ACB ACO ∠=∠()111809022OCE ACE ACO ACD ACB =+=+=⨯︒=︒∠∠∠∠∠290BOC ∠=∠+︒2∠45︒122∠=∠11902BOC ∠=∠+︒ABCD AB CD ∥AB BC ⊥B P B B C D A →→→A P x ABP ∆y y x AB∵AB ∥CD ,AB ⊥BC ,∴四边形DEBC 为矩形,∴EB=CD=3,DE=BC=4,∴∴AB=AE+EB=6.【点睛】此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.三、解答题(本大题共8个小题、满分75分)16. 解答下列各题(1)解方程组:;(2.【答案】(1) (2)【解析】【分析】本题主要考查了二元一次方程组的解法,二次根式的混合运算:(1)用加减消元法解方程组即可;(2)先计算乘除,再计算加减,即可求解.【小问1详解】解:,得,解得:,将代入①,得,解得:,3==59253x y x y +=⎧⎨-=⎩①②(21÷-+-41x y =⎧⎨=⎩5-①②+312x =4x =4x =459y +=1y =则原方程组的解是;小问2详解】解:原式17. (图1)是由10个边长均为1的小正方形组成的图形,我们沿图的虚线,将它剪开后,重新拼成一个大正方形.(1)在图(1)中,拼成的大正方形的面积为___________,边的长为___________;(2)现将图(1)水平放置在如图(2)所示的数轴上,使得大正方形的顶点与数轴上表示的点重合,若以点为圆心,边的长为半径画圆,与数轴交于点,求点表示的数.【答案】(1)10(2)或【解析】【分析】本题考查实数与数轴,解题的关键是:(1)根据10个边长均为1的小正方形剪开后,重新拼成一个大正方形可得正方形的面积,由正方形面积公式可得的长度;(2)根据数轴上的点表示的数的特点可得E 表示的数.【小问1详解】解:∵由10个边长均为1的小正方形剪开后,重新拼成一个大正方形,∴大正方形的面积为;∴,【41x y =⎧⎨=⎩12=-+-+212=+-5=AB BC ABCD ABCD AD B 1-B BC E E 1-1-ABCD ABCD AD ABCD ABCD 210110⨯=210AD =∴,故答案为:10;【小问2详解】∵,∴以点B 为圆心,边的长为半径画圆,与数轴交于点E ,点E 表示的数为或.18. 命题:直角三角形的两锐角互余.(1)将此命题写成“如果…,那么…”:______;(2)请判断此命题的真假.若为假命题,请说明理由;若为真命题,请根据所给图形写出已知、求证和证明过程.【答案】(1)如果一个三角形是直角三角形,那么它的两个锐角互余(2)该命题是真命题,详见解析【解析】【分析】本题考查的是直角三角形的性质,逆命题的概念:(1)根据逆命题的概念写出原命题的逆命题;(2)根据三角形内角和定理计算,即可证明.【小问1详解】解:如果一个三角形是直角三角形,那么它的两个锐角互余;故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余【小问2详解】解:该命题真命题已知:如图,在中,求证:证明:.是AD =BC AD ==BC 1-+1-ABC V 90B Ð=°90A C ∠+∠=︒180A B C ∠+∠+∠=︒180A C B∴∠+∠=︒-∠90B ∠=︒1809090A C ∴∠+∠=︒-︒=︒19. 近年来,网约车给人们的出行带来了便利,为了解网约车司机的收入情况,小飞和数学兴趣小组同学从甲、乙两家网约车公司分别随机抽取10名司机的月收入(单位:千元)进行统计,情况如下:根据以上信息,整理分析数据如表:平均数中位数众数方差甲公司66b 1.2乙公司6a 4c(1)填空:______,______,______;(2)小飞的叔叔决定从两家公司中选择一家做网约车司机,如果你是小飞,你建议他选哪家公司?简述理由.【答案】(1),6,(2)选甲公司,详见解析【解析】【分析】本题考查中位数、众数的定义、方差的计算以及利用方差等统计量作决策:(1)根据众数的定义可得到众数b ,观察乙网约车司机月收入人数情况统计图,可得中位数是4和5的平均数a ,根据方差的计算公式进行计算方差c 即可;(2)平均数相同时,比较中位数、众数、方差,从收入稳定性考虑,建议选甲网约车公司.【小问1详解】解:解:甲公司“6千元”对应的百分比为,∴“6千元”出现的次数最多,∴;根据题意得:乙公司月收入位于正中间的是4和5,∴;=a b =c =4.57.6110%20%10%20%40%----=6b =45 4.52a +==;故答案为:,6,;小问2详解】选甲公司,理由如下:因为平均数一样,中位数、众数甲公司大于乙公司,且甲公司方差小,更稳定所以选择甲公司.20. 某芒果种植基地,去年结余500万元,估计今年可结余980万元,并且今年收入比去年高,支出比去年低,去年的收入、支出各是多少万元?【答案】收入2120万元,支出1620万元【解析】【分析】本题主要考查了二元一次方程组的实际应用,设去年收入x 万元,支出y 万元,本题的等量关系是:去年的收入去年的支出万元.今年的收入今年的支出万元.然后根据这两个等量关系来列方程组,求出未知数的值即可得到答案.【详解】解:设去年收入x 万元,支出y 万元,根据题意,得解得,答:去年收入2120万元,支出1620万元.21. 在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离与行驶时间之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是_________;(2)已知货轮距B 码头的距离与行驶时间的图象表达式为,求客轮距B 码头的距离与时【()()()()222214655629621267.610d ⎡⎤=⨯-⨯+-⨯+-⨯+-=⎣⎦4.57.615%10%-500=-960=()()500115%110%980x y x y -=⎧⎨+--=⎩21201620x y =⎧⎨=⎩(km)y (min)x km 112y x =2(km)y间之间的函数表达式:(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意思.【答案】(1)80 (2)(3),点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头【解析】【分析】(1)根据函数图象可得;(2)根据图象过点,可设函数表达式为,把(40,0)代入求出k 即可;(3)联立方程组,求解即可.【小问1详解】根据图象得可知:A 、B 两个码头之间的距离是80千米,故答案为:80;【小问2详解】根据图象过点,可设函数表达式为,将点代入得,,解得.∴.【小问3详解】由题意得解得∴,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头.【点睛】本题考查一次函数的应用,解题的关键是熟练掌握待定系数法.22. 在一次函数的学习中,我们经历了“画出函数的图象——根据图象研究函数的性质——运用函数的性质解决问题”的学习过程,结合上面的学习过程,解决下面的问题:对于函数.(min)x 2280=-+y x (32,16)P 16km(0,80)D 280=+y kx (0,80)D 280=+y kx (40,0)E 40800+=k 2k =-2280=-+y x 1,2280.y x y x ⎧=⎪⎨⎪=-+⎩32,16.x y =⎧⎨=⎩(32,16)P 16km 2y x =-(1)请在给出的平面直角坐标系中,直接画出函数的图象;(2)小明同学通过图像得到了以下性质,其中正确的有______(填序号);①当时,随的增大而增大,当时,随的增大而减小;②此函数的图象关于轴对称.③若方程有解,则;(3)已知点,那么在函数的图象上是否存在一点,使得的面积为12.若存在,求出点坐标;若不存在,请说明理由.【答案】(1)详见解析(2)②③ (3)或【解析】【分析】本题考查了一次函数的图象和性质,三角形面积,熟练掌握一次函数的图象和性质是解题的关键.(1)列表,描点,连线画出函数图象即可;(2)根据图象可判断;(3)先求出,利用三角形面积求得点的纵坐标,进而即可求得点的坐标.【小问1详解】解:列表:01231001函数的图象如图所示:2y x =-0x <y x 0x >y x y 2x n -=2n ≥-()()2,54,5A B ---、2y x =-P ABP V P ()1,1-()1,1--6AB =P P x ⋯3-2-1-⋯y ⋯1-2-1-⋯2y x =-【小问2详解】解:①由函数图象可知,当时,随的增大而减小,当时,随的增大而增大,原说法错误;②由函数图象可知此函数的图象关于轴对称,原说法正确;③由函数图象可知,当,直线与函数有交点,即方程有解,原说法正确;故答案为:②③;【小问3详解】,,的面积为12,,即或(舍去)点的纵坐标为,点的坐标为或.23. 在图a 中,应用三角形外角的性质不难得到下列结论:∠BDC =∠A +∠ABD +∠ACD .我们可以应用这个结论解决同类图形的角度问题.0x <y x 0x >y x y 2n ≥y n =2y x =-2x n -=()()2,54,5A B --- 、6AB ∴=ABP V ()15122P AB y ∴⋅--=3512P y +=1P y ∴=-9P y =-P ∴1-P ∴()1,1-()1,1--(1)在图a 中,若∠1=20°,∠2=30°,∠BEC =100°,则∠BDC = ;(2)在图a 中,若BE 平分∠ABD ,CE 平分∠ACD ,BE 与CE 交于E 点,请写出∠BDC ,∠BEC 和∠BAC 之间的关系;并说明理由.(3)如图b ,若,试探索∠BDC ,∠BEC 和∠BAC 之间的关系.(直接写出)【答案】(1)150°(2)∠BDC +∠BAC =2∠BEC(3)2∠BDC +∠BAC =3∠BEC【解析】【分析】(1)根据题目给出的条件可得:;(2)根据题意得出∠BDC =∠BEC +∠1+∠2,∠BEC =∠BAC +∠ABE +∠ACE ,再根据BE 平分∠ABD ,CE 平分∠ACD ,得出∠ABE =∠1,∠ACE =∠2,然后进行化简即可得出结论;(3)先根据题意得出∠BDC =∠BEC +∠1+∠2,∠BEC =∠BAC +∠ABE +∠ACE ,再根据,,得出∠BEC =∠BAC +2∠1+2∠2,整理化简即可得出结论.小问1详解】解:∵∠1=20°,∠2=30°,∠BEC =100°,∴.故答案为:150°.【小问2详解】由题意可知,∠BDC =∠BEC +∠1+∠2,①∠BEC =∠BAC +∠ABE +∠ACE ,②∵BE 平分∠ABD ,CE 平分∠ACD ,∴∠ABE =∠1,∠ACE =∠2,①-②得∠BDC -∠BEC =∠BEC -∠BAC,【113ABD ∠=∠123ACD ∠=∠12150BDC BEC ∠=∠+∠+∠=︒113ABD ∠=∠123ACD ∠=∠12150BDC BEC ∠=∠+∠+∠=︒即∠BDC +∠BAC =2∠BEC .【小问3详解】由题意可知,∠BDC =∠BEC +∠1+∠2,③∠BEC =∠BAC +∠ABE +∠ACE ,④∵∠1=∠ABD ,∠2=∠ACD ,∴∠ABE =2∠1,∠ACE =2∠2.由④得∠BEC =∠BAC +2∠1+2∠2,⑤③×2-⑤得2∠BDC -∠BEC =2∠BEC -∠BAC ,即2∠BDC +∠BAC =3∠BEC .【点睛】本题主要考查了角平分线的定义,三角形外角的性质,理解题意,充分利用数形结合的思想,是解题的关键.1313。
2023年秋学期八年级期末学情调查数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B 铅笔,并请加黑加粗.第一部分选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 泰兴市创建文明城市,全市人民自觉遵守交通规则,文明出行,共建和谐下列交通标志是轴对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A ,B ,C 选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,D 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:D .2. 在实数(每两个1之间依次增加1个2)中,无理数有( )个.22,,0,3.12122122219A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】此题主要考查了无理数的定义:根据“无理数就是无限不循环小数,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像,等有这样规律的数”,即可求解.【详解】解:无理数有(每两个1之间依次增加1个2),共2个.故选:B3. 下列函数中,函数值随自变量增大而增大的是( ).A. B. C. D. 【答案】B【解析】【分析】本题考查了一次函数的性质即正比例函数的性质,一次函数的图象有两种情况:①当, y 的值随x 的值增大而增大;②当时, y 的值随x 的值增大而减小.正比例函数的图象有两种情况:①当,y 的值随x 的值增大而增大;②当,y 的值随x 的值增大而增小.据此,逐一判断即可.【详解】解:A 、,一次项系数为,函数值y 随自变量x 的值增大而减小,故不符合题意;B 、,比例系数为1,函数值y 随自变量x 的值增大而增大,故符合题意;C 、,一次项系数为,函数值y 随自变量x 的值增大而减小,故不符合题意;D 、,比例系数为,函数值y 随自变量x 的值增大而减小,故不符合题意;故选:B .4. 近似数6.16万精确到( ).A. 百分位B. 千分位C. 百位D. 万位【答案】C【解析】【分析】本题考查了近似数.根据近似数的精确度求解.详解】解:近似数6.16万精确到百位.故选:C5. 如图,已知小红的坐标为,小亮的坐标为,那么小华的坐标为( ).【,2ππ0.1010010001⋯,0,3.1212212221π y x 52y x=-y x =56y x =-+6y x =-()0y kx b k =+≠0k >0k <()0y kx k =≠0k >0k <52y x =-2-y x =56y x =-+5-6y x =-6-()2,1()1,1-A. B. C. D. 【答案】D【解析】【分析】此题主要考查了坐标与图形的变化,关键是正确理解题意,建立平面直角坐标系.根据小亮的坐标为建立平面直角坐标系,结合图形直接得到答案.详解】解:如图:小华东的坐标应该是.故选:D .6. 如图,根据尺规作图痕迹,判断点在数轴上表示的数是( ).A. B. C. D. 【答案】B【解析】【分析】本题考查了勾股定理,实数与数轴,熟练掌握勾股定理是解题的关键.由图可得的长度,即可得出点到原点的距离,即可得到答案.【详解】解:如图所示,【()2,1-()1,1--()1,1-()1,2-()1,1-()1,2-M1+,BC OC B点表示的数为,点表示的数为,,由图可得,点点到原点的距离和点到原点的距离相等,点到原点的距离为即点故选:B .第二部分非选择题(共132分)二、填空题(本大题共有10小题,每小题3分.共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)7. 16的平方根是___________.【答案】【解析】【分析】根据平方根定义即可求解.【详解】即:16的平方根是故填:【点睛】此题主要考查平方根,解题的关键是熟知平方根的定义.8. 点在第__象限.【答案】四【解析】【详解】根据各象限内点的坐标特征解答.【解答】解:点的横坐标大于0,纵坐标小于0,点在第四象限.的 A 1C 2-∴3AC =3BC AC ==2OC =∴B = M B ∴M M 4±4±4±(3,2)A -(3,2)A -∴(3,2)A -故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9. 用反证法证明:在,已知,求证:.应首先假设______.【答案】##【解析】【分析】根据反证法的步骤,先假设结论不成立,进行作答即可.【详解】解:用反证法证明:在,已知,求证:.应首先假设:;故答案为:.【点睛】本题考查反证法.熟练掌握反证法的步骤,是解题的关键.10. 如图.根据图象问题:当______时,.【答案】【解析】【分析】本题考查的是利用函数图象解不等式,熟练的利用数形结合的方法解题是关键,根据图象再直线的下方可得答案.【详解】解:根据函数图象可得:当时,;故答案为:11. 关于的二元一次方程组的解为,则一次函数的图像和一次函数的图像交点坐标是______.【答案】【解析】【分析】本题考查一次函数与二元一次方程组,掌握两条直线的交点的横纵坐标即为二元一次方程组的解是解题的关键.根据二元一次方程组的解即为两条直线的交点的横纵坐标,即可得出结果.ABC AB AC ≠B C ∠≠∠B C ∠=∠C B∠=∠ABC AB AC ≠B C ∠≠∠B C ∠=∠B C ∠=∠x 1y <-0>1y =-0x >1y <-0>x y 、23x y kx y b +=⎧⎨-=⎩11x y =⎧⎨=⎩23y x =-+y kx b =-()1,1【详解】解:∵关于的二元一次方程组的解为,即次方程组的解为,∴一次函数的图像和一次函数的图像交点坐标是;故答案为:.12. 如图,小明骑自行车从甲地到乙地,折线表示小明途中行程与所花时间之间的函数关系.出发后5小时,小明离甲地______千米.【答案】30【解析】【分析】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,即可解题,采用数形结合的思想是解此题的关键.【详解】解:由图象信息可知,出发后5小时,小明离甲地30千米,故答案为:30.13. 如图,在中,分别为的中点,若,则______.【答案】3【解析】【分析】根据三角形中位线定理得到,则,再根据直角三角形斜边上的中线等于斜边的一半得到的长.此题考查了三角形中位线定理、直角三角形斜边中线的性质等知识,熟练掌握x y 、23x y kx y b +=⎧⎨-=⎩11x y =⎧⎨=⎩23y x y kx b =-+⎧⎨=-⎩11x y =⎧⎨=⎩23y x =-+y kx b =-()1,1()1,1()s km ()h t Rt ABC △90,ACB D E F ∠=︒、、AB BC CA 、、3EF =CD =132EF AB ==6AB =CD相关定理是解题的关键.【详解】解:∵分别为的中点,∴,∴,∵在中,为的中点,∴,故答案为:314. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索的长为尺,根据题意,可列方程为__________.【答案】x 2−(x −3)2=82【解析】【分析】设绳索长为x 尺,根据勾股定理列出方程解答即可.【详解】解:设绳索长x 尺,根据题意得:x 2−(x −3)2=82,故答案为:x 2−(x −3)2=82.【点睛】本题考查了勾股定理的应用,找准等量关系,正确列出相应方程是解题的关键.15. 如图,四边形中,,于点,在右侧的平面内有一点的面积是,当的最小值是时,那么______.【答案】9【解析】为E F 、BC CA 、132EF AB ==6AB =Rt ABC △90ACB D ∠=︒,AB 132CD AB ==AC x ABCD AB CD ∥BD CD ⊥247D BD CD ==,,BD F BDF ,96FA FC +30AB =【分析】设的上的高为,先证明点在平行于,且到边的距离等于的直线上,延长交于点,并在射线上取,连接交直线于点,连接,过点作于,求得点、关于直线对称时,,再证四边形是平行四边形,得,,最后利用勾股定理即可得解.【详解】解:设的上的高为,∵的面积是,,∴,解得,∴点在平行于,且到边的距离等于的直线上,延长交于点,并在射线上取,连接交直线于点,连接,过点作于,∵,,∴,∴,∵,∴点、关于直线对称,∵当的最小值是,∴点、关于直线对称时,∵,,∴,∴,∵,∴四边形是平行四边形,∴,,∴,BDF BD h F BD BD 8MN DC MN M DC CM MG =AG MN F CF A AH CD ⊥H C G MN FA FC AG +=30=ABDH 24AHBD ==DH AB =BDF BD h BDF V 9624BD =124962h ⨯=8h =F BD BD 8MN DC MN M DC CM MG =AG MN F CF A AH CD ⊥H BD CD ⊥MN BD ∥90NMG BDC ∠∠==︒MN CG ⊥CM MG =C G MN FA FC +30C G MN 30FA FC AG +==AH CD ⊥BD CD ⊥AH BD ∥90H BDC ∠∠==︒AB CD ∥ABDH 24AH BD ==DH AB =HG =18=∵,,∴,∴.故答案为:【点睛】此题主要考查平行四边的判定及性质,勾股定理,轴对称的判定及性质,线段最短以及平行线的性质,解题的关键是根据题意作出辅助线进行求解.16. 如图,菱形的边长为17,点是对角线上的一点,且,连挍,在的左侧作为边的正方形,连接,则______.【解析】【分析】本题考查菱形和正方形的性质,勾股定理,三角形全等的判定及性质.连接,交于点O ,过点F 作于点H ,设,,则,由菱形的对角线互相垂直平分可得,,由勾股定理得在中,,在中,,从而,代入即可求得,得到,,由正方形的性质可证,得到,,进而根据勾股定理在中,求得的长.【详解】连接,交于点O ,过点F 作于点H ,∵,∴设,,∴,∵四边形是菱形,8DM h ==7CD =871MG CM ==-=9AB DH HG DM MG ==--=9ABCD E BD :3:7DE BE =AE AE AE ,10AEFG AE =BF BF =AC BD FH BC ⊥3DE k =7BE k =10BD k =AC BD ⊥5BO DO k ==Rt AOD 222AO AD OD =-Rt AOE △222AO AE OE =-2222AD OD AE OE -=-3x =6EO =8AO =()AAS EFH AEO ≌8EH AO ==6FH EO ==Rt BFH △BF AC BD FH BC ⊥:3:7DE BE =3DE k =7BE k =3710BD BE DE k k k =+=+=ABCD∴,,∴,∵,∴,∴在中,,在中,,∴,即,∴,∴,,,,∵,∴,∴,,∵在正方形中,,即,∴,∵在正方形中,,∴,∴,,∴∴在中,.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)17. (1;(2)解方程:.【答案】(1);(2)AC BD ⊥1110522BO DO BD k k ===⨯=532EO DO DE k k k =-=-=AC BD ⊥90AOD ∠=︒Rt AOD 222AO AD OD =-Rt AOE △222AO AE OE =-2222AD OD AE OE -=-()()2222175102x x -=-3x =39DE x ==26OE x ==1030BD x ==8AO ===FH BC ⊥90FHD FHB ∠=∠=︒FHE AOE ∠=∠90HFE HEF Ð+Ð=°AEFG 90AEF ∠=︒90AEO FEH ∠+∠=︒HFE AEO ∠=∠AEFG AE EF =()AAS EFH AEO ≌8EH AO ==6FH EO ==309813BH BD DE EH =--=--=Rt BFH △BF ===2228x =13-2x =±【解析】【分析】本题考查的是实数的混合运算,利用平方根的含义解方程,掌握解方程的步骤与方法是解本题的关键;(1)先计算立方根,算术平方根,算术平方根的平方,再计算加减运算即可;(2)把方程化为,再利用平方根的含义解方程即可.【详解】(1;(2)∵,∴,解得:.18. 妸图.在平面直角坐标系中,三个顶点的坐坐标分别为.(1)画出关于原点对称的,点的对应点分别是:(2)两出绕点顺时针旋转后,得到的,点的对应点分别是点;(3)的面积为______.【答案】(1)见解析(2)见解析(3)【解析】【分析】本题主要考查作旋转图形与中心对称图形;(1)找到三个顶点关于原点的对应点,然后顺次连接即可;24x =2238=---13=-228x =24x =2x =±ABC ()()()4,1,3,3,1,2A B C ABC O 111A B C △、、A B C 111A B C 、、ABC O 90 222A B C △、、A B C 222A B C 、、12OC C △2.5(2)将三个顶点分别绕原点逆时针旋转后得到其对应点,然后顺次连接即可;(3)根据长方形的面积减去三个三角形的面积即可求解.【小问1详解】解:如图:即为所求.【小问2详解】解:如图:即为所求.【小问3详解】O 90 111A B C △222A B C △解:连接,如图所示,∴故答案为:.19. 2023年3月22日是第三十一届“世界水日”,联合国呼吁全世界关注和重视水资源的重要性.小明同学发现水龙头关闭不严会造成滴水浪费.为了倡议全校同学节约用水,他做了如下试验:用一个足够大的量杯,放置在水龙头下观察量杯中水量的变化情况.已知量杯中原来装有水,内7个时间点量杯中的水量变化如下表所示,其中表示时间,表示量杯中的水量.时间0510********量杯中的水量1020304050607012,OC OC 1211123121213611 1.5 2.5222OC C S =⨯-⨯⨯-⨯⨯-⨯⨯=---= 2.510mL 30min t y /mint解决下列问题:(1)在平面直角坐标系中,描出上表中以各对对应值为坐标的点并连线;(2)结合表中数据写出墨杯中的水量关于时间的函数表达式______(不要求写自变量的取值范围);(3)在这种漏水状态下,若不及时关闭水龙头,估算照这样漏一天量杯中的水量约为多少.【答案】(1)见解析(2)(3)2890【解析】【分析】(1)本题考查画点和函数图象,根据表中数据画图即可.(2)本题考查用待定系数法求函数解析式,设墨杯中的水量关于时间的函数表达式为,将表中任意两点代入解析式求解,即可解题.(3)本题考查求函数值,将一天换算成分钟数,代入解析式求解,即可解题.【小问1详解】解:描出的坐标和连线,如下图所示:【小问2详解】解:设墨杯中的水量关于时间的函数表达式为,将,,以及,,代入,有,解得,水量关于时间的函数表达式为,/mLy y t mL 210y t =+y t y kt b =+210y t =+y t y kt b =+0=t 10y =5t =20y =y kt b =+10520b k b =⎧⎨+=⎩210k b =⎧⎨=⎩∴y t 210y t =+故答案为:.【小问3详解】解:1天,当时,().照这样漏一天量杯中的水量约为.20. 如图,在平面直角坐标系中,,.(1)求直线的函数表达式:(2)点在线段上,过点作轴交轴于点,过点作交轴于点,若,求点的坐标.【答案】(1)(2)【解析】【分析】(1)本题考查用待定系数法求一次函数解析式,根据一次函数过,设一次函数解析式为,再将代入解析式求解,即可解题.(2)本题考查一次函数的几何综合,以及平行四边形的性质和判定,根据题意证明四边形为平行四边形,得到,再将的长代入解析式,即可解题.【小问1详解】解:一次函数过,设直线的函数解析式为,将代入中,有,解得,直线的函数表达式为:.210y t =+24h 1440min ==1440t =21440102890y =⨯+=mL ∴2890mL ()2,0A ()0,4B AB D AB D CD y ∥x C C CE AB ∥y E 1.5BE =D 24y x =-+53,42D ⎛⎫⎪⎝⎭()0,4B 4y kx =+()2,0A BECD CD BE =CD ()0,4B ∴AB 4y kx =+()2,0A 4y kx =+240k +=2k =-∴AB 24y x =-+【小问2详解】解:轴, ,四边形为平行四边形,,,即的纵坐标为,将代入中,有,解得,的坐标为.21. 如图,平行四边形的对角线相交于点,延长至点,连接.现有以下信息:①;②;③.从三条信息中选择两条作为条件,另一条作为结论,组成一个真命题并说明理由.你选择的条件是______,结论是______(填写序号).理由:【答案】①②,③(或①③,②或②③,①)【解析】【分析】本题考查了矩形的判定及性质,平行四边形的判定及性质,等腰三角形的性质,熟练掌握平行四边形的判定及性质是解题的关键.若选条件:①②,结论③,根据矩形的判定及性质,根据平行四边形的性质可得,从而得,同法可证选条件:①③,结论②与选条件:②③,结论①的情形.【详解】解:①②,③(或①③,②或②③,①)若选条件:①②,结论③,,四边形为矩形,,,CD y ∥CE AB ∥∴BECD 1.5BE =∴ 1.5CD BE ==D 1.51.5y =24y x =-+ 1.524x =-+54x =∴D 53,42⎛⎫ ⎪⎝⎭ABCD AC BD 、O AB E CE 90ABC ∠=︒EC BD ∥AC EC =AC BD =BD CE =AC CE =90ABCD ABC ∠=︒ ,∴ABCD AC BD ∴=ABCD AB CD∴∥,∴四边形为平行四边形,,;若选条件:①③,结论②,,.,,,四边形BDCE 是平行四边形,;若选条件:②③,结论①,,∵,四边形BDCE 是平行四边形,,,,,四边形是矩形,,故答案为:①②,③(或①③,②或②③,①).22. 如图,在中,平分为的中点.求证:.小芳同学解题过程如下:解:为的中点,.第一步平分,EC BD ∥BECD BD CE ∴=AC CE ∴=90AC EC ABC =∠=︒ ,AB BE ∴=ABCD AB CD AB CD ∴= ,BE CD ∴=∴EC BD ∴∥ABCD AB CD ∴∥EC BD ∥∴BD EC ∴=AC EC = AC BD ∴=ABCD ∴ABCD 90ABC ∴∠= ABC AD ,BAC D ∠BC AB AC =D BC DB DC ∴=AD BAC ∠.第二步.第三步(1)小芳同学解题过程中,出现错误的是第______步;(2)写出正确的解题过程.【答案】(1)三(2)见解析【解析】【分析】本题考查角平分线的性质,全等三角形的判定和性质,等腰三角形的判定:(1)根据不能推导出,明显跳步,可得第三步错误;(2)过点D 作于点E ,于点F ,根据角平分线的性质可得,再证,可得,进而可证.【小问1详解】解:根据不能推导出,因此出现错误的是第三步,故答案为:三;【小问2详解】解:正确的解题过程如下:为的中点,.如图,过点D 作于点E ,于点F ,平分,,,BAD CAD ∴∠=∠AB AC ∴=BAD CAD ∠=∠AB AC =DE AB ⊥DF AC ⊥DE DF =Rt DEB △()Rt HL DFC ≌B C ∠=∠AB AC =BAD CAD ∠=∠AB AC =D BC DB DC ∴=DE AB ⊥DF AC ⊥AD BAC ∠DE AB ⊥DF AC ⊥,在和中,,,,.23. 如图,在正方形中,点是边上一点(不与点重合),过点作于点,交延长线于点.(1)求证:.(2)点从点向点运动过程中,设,,求与的函数表达式,并写出自变量的取值范围.【答案】(1)见解析(2)()【解析】【分析】本题考查正方形的性质,全等三角形的判定和性质,三角形外角的定义和性质,一次函数的应用:(1)通过导角证明,进而证明,即可得出;(2)由可得,由三角形外角的性质可得,进而可得.【小问1详解】证明:四边形是正方形,,,,于点,,∴DE DF =Rt DEB △Rt DFC △DE DF DB DC =⎧⎨=⎩∴Rt DEB △()Rt HL DFC ≌∴B C ∠=∠∴AB AC =ABCD F CD C D 、D DE BF ⊥G BC E CE CF =F D C DBF x ∠=︒DEC y ∠=︒y x x 45y x =+045x <<C D E C B F ∠=∠()ASA CDE CBF ≌CE CF =CDE CBF ≌DEC BFC ∠=∠45DB C BFC F BD x ∠+∠=︒+︒∠=45y x =+ ABCD ∴CD BC =90D C B D C E ∠=∠=︒∴90DEC CDE ∠+∠=︒ DE BF ⊥G ∴90EC C D BF +∠=︒∠,在和中,,,;【小问2详解】解:四边形是正方形,,,,,,即,点是边上一点(不与点重合),,,与的函数表达式为().24. (1)一次函数的图像上每个点的横坐标不变,纵坐标都增加1个单位长度后,得到的函数图像表达式是______.(2)①一次函数的图像上每个点的横坐标扩大2倍,纵坐标不变,得到的函数图像表达式是______.A . B . C .②一次函数的图像上每个点的横坐标扩大2倍,纵坐标不变,得到的函数图像表达式是,求的值.【答案】(1);(2)①B ; ②2【解析】【分析】本题主要考查一次函数的图像与性质,熟练掌握一次函数的性质是解题的关键.∴C D E C B F ∠=∠CDE CBF V 90CDE CBF CD CBDCE BCF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴()ASA CDE CBF ≌∴CE CF = ABCD ∴45BDC DBC ∠=∠=︒ ()ASA CDE CBF ≌∴DEC BFC ∠=∠ DBF BDC BFC ∠=+∠∠∴DBF BDC DEC ∠=+∠∠45y x =+ F CD C D 、∴0DBF DBC ︒<∠<∠∴045x <<∴y x 45y x =+045x <<21y x =+21y x =+41y x =+1y x =+12y x =+111y k x b =+222y k x b =+()11222k b b k +-22y x =+(1)由题意得:一次函数的图像上每个点的横坐标不变,纵坐标都增加1个单位长度后,即求将一次函数的图像向上平移1个单位的解析式即可;(2)①根据题意得:即将一次函数的一次项系数k的值扩大倍,纵坐标不变,即可求解;②根据一次函数的图像变化,找到与的关系,代入求解即可.【详解】解:(1)由题意得:即将一次函数的图像向上平移1个单位,,故答案为:;(2)①由题意得:即将一次函数的一次项系数k 的值扩大倍,,故选:B ;②由题意得:,.25. 八上数学课本69页,数学活动《折纸与证明》中告诉我们:折纸常常能为证明一个命题提供思路和方法,请用所学知识解决下列问题.(1)如图1,一个三角形的纸片中,,证明:.小龙同学通过折叠纸片,将折叠到上,点与点重合,展开后得到折痕,如图2,折痕交于点,连接.帮助小龙同学写出证明过程.(2)如图3,在平面直角坐标系中,点,点.直线交轴于点.21y x =+21y x =+1212,k k 12,b b ()11222k b b k +-21y x =+∴21122y x x =++=+22y x =+12∴12112y x x =⨯+=+12122,k k b b ==()()121222222222k k b b b b k k +∴-=+-=MC MB >MBC MCB ∠∠>MB MC B D ME ME BC E DE 1023,77B ⎛⎫- ⎪⎝⎭()2,5C BC y E①求点坐标;②直线过点,交轴于点,且,直线沿轴翻折恰好经过点,只用圆规在直线上求作点,使与直线所夹的锐角等于.(不写作法,保留作图痕迹)③直接写出(2)中点的坐标.【答案】(1)见解析;(2)①;②见解析;③,.【解析】【分析】(1)由折叠的性质得到,再根据三角形外角的性质即可证明;(2)①先利用待定系数法求出直线的解析式,令,求出y 的值,即可得到点E 的坐标;②以点E 为圆心,为半径画弧,交直线于点G ,点,点G ,点为所求;③先利用对称的性质求出点G 的坐标,再利用待定系数法求出直线的解析式为,根据,利用两点的距离求解即可.【详解】(1)证明:由折叠的性质得:,,,;(2)解:①设直线的解析式为,将,代入得:,解得:,直线的解析式为,令,则,E l C y M 45ECM ∠=︒l y B BM G EG BM ECM ∠G ()0,4E ()2,5-()1,2-MDE MBC ∠=∠BC 0x =EC BM G 'G 'BM 31y x =--EG EG '=MDE MBC ∠=∠ MDE MCB CED ∠=∠+∠∴MDE MCB ∠>∠MBC MCB ∴∠>∠BC ()0y kx b k =+≠1023,77B ⎛⎫- ⎪⎝⎭()2,5C ()0y kx b k =+≠23107752k b k b⎧=-+⎪⎨⎪=+⎩124k b ⎧=⎪⎨⎪=⎩∴BC 142y x =+0x =4y =;②如图所示,以点E 为圆心,为半径画弧,交直线于点G ,点,点G ,点为所求;直线沿轴翻折恰好经过点,直线与直线关于y 轴对称,点C 与点G 关于y 轴对称,,,;③由②知点C 与点G 关于y 轴对称,且,由①知,,,设直线的解析式为,将,代入得:,解得:,直线的解析式为,设,,,,即,()0,4E ∴EC BM G 'G ' l y B ∴l BM 45EGB ECM ∴∠=∠=︒EG EG '= 45EG B EGB '∴∠=∠=︒()2,5C ()0,4E ()2,5G ∴- 1023,77B ⎛⎫- ⎪⎝⎭BM ()0y k x b k '''=+≠1023,77B ⎛⎫- ⎪⎝⎭()2,5G -()0y k x b k '''=+≠23107752k b k b '''⎧=-++'⎪⎨⎪=-⎩31k b =-⎧⎨=-''⎩∴BM 31y x =--(),31G m m --'EG EG '= ∴=21030255m m ∴++=2320m m ++=解得:,或,,,综上,点G 的坐标为,.【点睛】本题考查了对称作图,对称的性质,一次函数综合问题,等腰三角形的性质,两点的距离,掌握对称的性质是解题的关键.26. 如图1,在四边形中,是等边三角形,点是直线上(异于点)的动点,点绕着点逆时针旋转至点处,连接.(1)______.(2)当点在线段上时,如图2,连接.①求证:;②线段上一定存在一个定点,满足,请说明理由.(3)当点在直线上时,②中的结论还成立吗?说明理由.【答案】(1)(2)①见解析;②见解析(3)不一定成立,理由见解析【解析】【分析】(1)根据等腰直角三角形与等边三角形的性质即可求解;(2)①由旋转的性质得到,结合,证明,即可得出结论;②延长交于点H ,由三角形全等的性质及等腰三角形、等边三角形的性质得到,利用勾股定理即可证明;(3)分当点E 在射线上时,点E 在射线上,点F 在内部时,点E 在射线上,点F 在外部时,三种情况,依照(2)中②的证明过程证明即可.在1m =-2m =- ()2,5G -()1,2G ∴'-()2,5-()1,2-ABCD ,90,DA DC ADC ABC ∠== △E AB A B 、E D 90︒F CF DAB ∠=︒E AB AF AE CF =ABH )222AF HB AE -=+E AB 105,DE DF ADE CDF =∠=∠DA DC =()SAS AED CFD ≌FC AB AH HB =AB BA ABC BA ABC【小问1详解】解:是等边三角形,,,,故答案为:105;【小问2详解】①证明:由旋转的性质得到,,,在与中,,,;②解:如图1,延长交于点H ,,,,,,,是等边三角形,,,90,DA DC ADC ABC ∠== △()1180452DAC DCA ADC ∴∠=∠=︒-∠=︒60ABC BCA CAB ∠=∠=∠=︒105DAB DAC CAB ∴∠=∠+∠=︒DE DF = 90ADE CDE CDF CDE ∠+∠=∠+∠=︒ADE CDF \Ð=ÐAED △CFD △DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS AED CFD ≌∴AE CF =FC AB DAE DCF ≌ 105DCF DAE ∴∠=∠=︒90,ADC DA DC ∠=︒= 45DCA ∴∠=︒150FCA ∴∠=︒30ACH ∴∠=︒ ABC 60CAB ∴∠=︒,,在中,,在中,,;【小问3详解】解:不一定成立,理由如下:如图2,当点E 在射线上时,同理得:;如图3,点E 在射线上,点F 在内部时,同理得:;如图4,点E 在射线上,点F 在外部时,同理得:.90AHC ∴∠=︒AH HB ∴=Rt CHB△CH =Rt AHF △222AF AH FH -=())2222AF HB FC CH AE ∴-=+=+AB )222AF HB AE -=+BA ABC)222AF HB AE -=-BA ABC()222AF HB AE -=【点睛】本题考查了三角形综合问题,涉及全等三角形的判定与性质,等腰三角形的性质,等边三角形的性质,勾股定理,旋转的性质,构造辅助线证明三角形全等是解题的关键.。
A .正数B .负数C .有理数2.如图,直线,则的度数为(A .B 3.若直线(是常数,A .B 4.下列计算正确的是(,45,20AB CD ABE D ∠=∠=︒︒∥E ∠20︒y kx =k 2-35︒45︒A.B.7.《九章算术》是中国古代重要的数学著作,其中盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会A .该函数的最大值为7C .当时,对应的函数值第二部分二、填空题(本题共5小题,每小题14.同一地点从高空中自由下落的物体,物体的高度有关. 若物体从离地面为间为(单位:),且1x =t s t三、解答题(本题共过程)16.(1)计算:(2)解二元一次方程组:18.用二元一次方程组解应用题:根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨乙地降价5元. 已知销售单价调整前甲地比乙地少整前甲、乙两地该商品的销售单价.19.如图,在四边形中,(1)试说明:(2)若,平分252+ABCD AD E ECD ∠=∠60E ∠=︒CE(1)在“摄影”测试中,七位评委给小涵打出的分数如下:(2)求的值;(3)学校决定根据总评成绩择优选拔12名小记者,试分析小涵能否入选,并说明理由.21.如图1,已知向以的速度匀速运动到点. 图2是点化的关系图象.n ,,ABD CBD AB AD CB =V V ≌1cm/s B(1)__________;(2)求的值.22.要制作200个两种规格的顶部无盖木盒,体无盖木盒,种规格是长、宽、高各为有200张规格为的木板材,对该种木板材有甲、割、拼接等板材损耗忽略不计.(1)设制作种木盒个,则制作种木盒__________个;若使用甲种方式切割的木板材则使用乙种方式切割的木板材__________张;(2)若200张木板材恰好能做成200个两种规格的无盖木盒,请分别求出数和使用甲、乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元. 根据市场调研,种木盒的销售单价定为元,种木盒的销售单价定为元,在(2)的条件下,请直接写出这批木盒的销售利润(用含的式子表BD =a ,A B B 20cm,20cm,10cm 40cm 40cm ⨯A x B ,A B ,A B A a B 120a ⎛⎫- ⎪w a(2)如图2,在等腰直角三角形点在直线下方,把【问题应用】若,求【问题迁移】D BC 42,32BC BD ==7.D【分析】直接利用每人出九钱,会多出答案.,四边形是正方形,,,∴90DGH ∠=︒ ABCD 6AD AB ∴==90A ∠=45ADB ABD ∴∠=∠=︒45GHD GDN ∴∠=∠=︒17.【分析】本题主要考查了平行线的性质,三角形的内角和,解题的关键是掌握两直线平行,内错角相等,三角形的内角和为180度;根据三角形的内角和,得出,,再根据平行线的性质得出,最后根据即可求解.【详解】解:∵,∴,∵,∴,∵,∴,∴.18.调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元【分析】本题主要考查了二元一次方程组的实际应用,设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,根据“甲地上涨,乙地降价5元. 已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元”列出方程组求解即可.【详解】解:设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.19.(1)见解析(2)【分析】本题考查了平行线的判定与性质,角平分线,三角形内角和定理.熟练掌握平行线的判定与性质,角平分线,三角形内角和定理是解题的关键.(1)由,可得,则,,进而结论得证;(2)由平分,可得,则,根据,计算求解即可.15CED ∠=︒60ACB ∠=︒45DEF ∠=︒60CEF ACB ∠=∠=︒CED CEF DEF ∠=∠-∠30,90∠=︒∠=︒A B 60ACB ∠=︒EF BC ∥60CEF ACB ∠=∠=︒90,45EDF F ∠=︒∠=︒45DEF ∠=︒15CED CEF DEF ∠=∠-∠=︒10%()10110%15x y x y +=⎧⎨++=-⎩4050x y =⎧⎨=⎩=60B ∠︒AD BC ∥B EAD ∠=∠EAD D ∠=∠AE CD ∥CE BCD ∠BCE ECD ∠=∠60ECD BCE E ∠=∠=︒∠=180B BCE E ∠=︒∠-∠-22.(1),(2)故制作种木盒乙种方式切割的木板材(3)()200x -A 50850w a =+【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,折叠的性质,熟练掌握相关性质定理,正确画出辅助线,构造直角三角形是解题的关键.。
2023—2024学年最新人教新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图形是轴对称图形的是()A.B.C.D.2、北京2022年冬奥会上的“雪花”图案向世界展现了一起向未来的美好愿景.单个“雪花”的质量约为0.00000024千克.将0.00000024用科学记数法表示正确的是()A.﹣2.4×108B.2.4×10﹣7C.﹣2.4×107D.2.4×10﹣83、下列长度的三根小木棒能构成三角形的是()A.7cm,4cm,2cm B.5cm,5cm,6cmC.3cm,4cm,8cm D.2cm,3cm,5cm4、如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.不变D.扩大6倍5、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形6、若(x+a)(x﹣6)的积中不含有x的一次项,则a的值为()A.0B.6C.﹣6D.﹣6或07、如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是()A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm9、已知,则分式的值为()A.8B.C.D.410、如图,已知在等边△ABC中,AD⊥BC,AB=8,若点P在线段AD上运动,当AP+BP有最小值时,最小值为()A.B.C.10D.12第7题图第8题图第10题图二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个正多边形的每个内角为135°,则这个正多边形的边数为.13、在平面直角坐标系中,点A(a﹣2,2a+3)到y轴的距离为4,则a的值为.14、已知a m=2,a n=3(m,n为正整数),则a3m+n=.15、若关于x的分式方程+2的解为正数,则m的取值范围是.16、如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.最新人教新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、先化简,再求值:,其中x=2.19、已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.20、如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1B1C1(3)求△ABC的面积.21、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.22、甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?23、如图,在等腰Rt△ABC中,∠C=90°,BC=AC=8,点F是AB边上的中点,点D、E分别在线段AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中.(1)求证:△DFE是等腰三角形;(2)求证:∠DFE=90°;(3)在点D、E运动的过程中,四边形CDFE的面积是否为定值,如果是,请求出这个定值,如果不是,请说明理由.24、我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+e2﹣ab﹣bc﹣ac+2t的最小值.25、如图,在平面直角坐标系中,已知点A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD,CE平分∠OCD.(1)A点的坐标为;∠OAB的度数为.(2)如图1,若点C在第四象限,试判断OC与OD的数量关系与位置关系,并说明理由.(3)如图2,连接CD,CE平分∠OCD,若点C的坐标为(4,3),连接AC 交BD于点E,AC与OD交于点F.①求D点的坐标;②试判断DE与CF的数量关系,并说明理由.。
八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。
深圳实验学校2023-2024第一学期期末考试初二年级数学试卷考试时间:90分钟 试卷满分:100分一.选择题(每题3分,共30分)1. 下列几个数中,属于无理数的数是( ) A. 0.4583B.37C. 3.97D.π−2. 下列二次根式中,最简二次根式是( )A.B.C.D.3. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185180 方差 3.63.67.481根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A. 甲B. 乙C. 丙D. 丁4. 下列命题中,假命题的是( ) A. 面积相等的两个三角形全等 B. 等腰三角形的顶角平分线垂直于底边C. 在同一平面内,垂直于同一条直线的两条直线平行D. 三角形的一个外角大于任何一个与它不相邻的内角5. 如图,用10块形状、大小完全相同的小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为cm x 和cm y ,则依题意可列方程组为( ).A. 22253x y y x +==B. 2253x y x y +==C. 2253x y x y +==D. 2253x y y x +==6. 如图,台风过境后,一根垂直于地面的大树在离地面6m 处撕裂折断,大树顶部落在离大树底部8m 处,则大树折断之前的高度是( ).A 10mB. 14mC. 16mD. 18m7. 对于一次函数132y x =−+,下列结论正确的是( ) A. 函数图象不经过第四象限B. 函数图象与x 轴的交点坐标是()0,3C. 函数的图象向下平移3个单位长度得12y x =−的图象 D. 若1(A x ,1)y ,2(B x ,2)y 两点在该函数图象上,且12x x <,则12y y < 8. 若关于x 的不等式组21521x x a −≥ <−的整数解共有四个,则a 的取值范围是( )A. 3.54a <≤B. 3.54a ≤<C. 3.54a <<D. 3.54a ≤≤9. 如图,P 为ABC 内一点,过点P 线段MN 分别交AB 、BC 于点M 、N ,且M 、N 分别在PA 、PC 的中垂线上.若80ABC ∠=°,则APC ∠的度数为( )A. 120°B. 125°C. 130°D. 135°10. 如图,在ABC 中,90ACB ∠=°,30CAB ∠=°,=AC D 为AB 上一动点(不与点A 重合),AED △为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( ).的的的A. B. 6C. D. 9二.填空题(每题3分,共15分)11. 比较大小:3(填“>”“<”或“=”)12. 已知()115P a −,和()221P b −,关于x 轴对称,则()2022a b +的值为______.13. 如图,直线1l :1y x =+与直线2l :y kx b =+相交于点()1,P m ,则关于x ,y 的方程组1y x y kx b =+ =+的解为______.14. 如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若4FG =,8ED =,求EB DC +=______.15. 如图所示,点A 、B 分别是坐标轴上的点,且OA OB =,AC x ⊥轴,点D 在x 轴负半轴上,AC OD =,连接OC 、BD 相交于点E ,若四边形ACED 的面积为56,OE 长为1,则点A 的坐标为_______.三.解答题(共7大题,共55分)16. 计算: (1− (2)(25×−17. 解方程组和不等式组,并把不等式组的解集在数轴上表示出来: (1)321022x y x y −=+=(2)解不等式组()2142115x x x −≤−<+18. 如图,已知ABC 的顶点分别为()2,2A −,()4,5B −,()5,1C −.(1)作出ABC 关于x 轴对称的图形111A B C △.(2)点P 在x 轴上运动,当AP CP +的值最小时,直接写出点P 的坐标. (3)求ABC 的面积.19. 某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的m 的值为_________; (2)求本次抽样调查获取的样本数据的中位数;(3)若该校八年级学生有480人,估计参加社会实践活动时间大于7天的学生人数.20. 某公司决定为优秀员工购买A ,B 两种奖品,已知购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同. (1)求A ,B 两种奖品每个的价格;(2)商家推出了促销活动,A 种奖品打九折.若该公司打算购买A ,B 两种奖品共30个,且B 种奖品的个数不多于A 种奖品个数的一半,则该公司最少花费多少钱?21. 如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽度AB =______米.(2)当他在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=°,求乙房间的宽AB ; (3)当他在丙房间时,测得 2.8MA =米,且75MPA ∠=°,45NPB ∠=°.求丙房间的宽AB . 22. 如图1,已知函数132yx =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q .①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.深圳实验学校2023-2024第一学期期末考试初二年级数学试卷考试时间:90分钟试卷满分:100分一.选择题(每题3分,共30分)1. 下列几个数中,属于无理数的数是()A. 0.4583B. 37C. 3.97D. π−【答案】D【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选项.【详解】解:A.0.4583是有限小数,属于有理数,故本选项不合题意;B.37是分数,属于有理数,故本选项不合题意;C.3.97 是循环小数,属于有理数,故本选项不合题意;D. π−是无理数,故本选项符合题意,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002(…相邻两个2中间依次多1个0),等有这样规律的数.2. 下列二次根式中,最简二次根式是()A. B. C. D.【答案】A【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.4. 下列命题中,假命题的是()A. 面积相等的两个三角形全等B. 等腰三角形的顶角平分线垂直于底边C. 在同一平面内,垂直于同一条直线的两条直线平行D. 三角形的一个外角大于任何一个与它不相邻的内角【答案】A【解析】【分析】分别根据全等三角形判定,等腰三角形的定义,平行线的判定,三角形外角的定义判断即可.【详解】A.面积相等的两个三角形不一定全等,故原选项错误;B.等腰三角形的顶角平分线垂直于底边,故原选项正确;的C .在同一平面内,垂直于同一条直线的两条直线平行,故原选项正确;D .三角形的一个外角大于任何一个与它不相邻的内角,故原选项正确; 故选A .【点睛】本题考查了全等三角形的判定,等腰三角形的定义,平行线的判定,三角形外角的定义,熟练掌握各知识点是解题的关键.5. 如图,用10块形状、大小完全相同小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为cm x 和cm y ,则依题意可列方程组为( )A. 22253x y y x +==B. 2253x y x y +==C. 2253x y x y +==D. 2253x y y x +==【答案】B 【解析】【分析】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是看懂图示,分别表示出长方形的长和宽.根据图示可得:长方形的左右的边可以表示为2x y +或25,故225x y +=,长方形的上下边可以表示为2x ,或3x y +,故23x y x =+,整理得3x y =,联立两个方程即可. 【详解】解:根据图示可得:2253x y x y+==故选:B .6. 如图,台风过境后,一根垂直于地面的大树在离地面6m 处撕裂折断,大树顶部落在离大树底部8m 处,则大树折断之前的高度是( ).A. 10mB. 14mC. 16mD. 18m【答案】C 【解析】的【分析】大树未折断部分,折断部分,和地面正好构成直角三角形,应用勾股定理求出线段AC 的长度,再加上未折断的AB 即可求出树的高度.【详解】解:如图:树的总高度为:+AB AC ,在Rt ABC ∆中,根据勾股定理得:222AB BC AC +=,∴22268AC +=,∴10AC =,∴61016AB AC +=+=.故选:C .【点睛】本题考查勾股定理的应用,解题的关键是求出折断部分的长度,注意一定要加上未折断部分的长度,这是易错点.7. 对于一次函数132y x =−+,下列结论正确的是( ) A. 函数的图象不经过第四象限B. 函数的图象与x 轴的交点坐标是()0,3C. 函数的图象向下平移3个单位长度得12y x =−的图象 D. 若1(A x ,1)y ,2(B x ,2)y 两点在该函数图象上,且12x x <,则12y y < 【答案】C 【解析】【分析】根据一次函数的性质,一次函数图象上点的坐标特征,平移的规律来判断即可.【详解】解:A 、由132y x =−+可知102k =−<,30=>b , ∴直线过一,二,四象限,故不合题意;B 、当0x =时,1332y x =−+=, ∴函数的图象与y 轴的交点坐标是(0,3),故不合题意;C 、直线132y x =−+向下平移3个单位长度得113322y x x =−+−=−,故符合题意; D 、102k =−< , y ∴随x 的增大而减小,∴若12x x <,则12y y >,故不合题意.故选:C .【点睛】本题考查的是一次函数的图象与性质,解题的关键是根据k 、b 的符号判断直线过第几象限,会求直线与坐标轴的交点.8. 若关于x 的不等式组21521x x a −≥ <−的整数解共有四个,则a 的取值范围是( ) A. 3.54a <≤B. 3.54a ≤<C. 3.54a <<D. 3.54a ≤≤ 【答案】A【解析】【分析】先求出不等式组的解集321x a ≤<−,再由不等式组的整数解共有四个,可得6217a <−≤,即可求解.熟练掌握一元一次不等式组的解法是解题的关键.【详解】解:21521x x a −≥ <− ①②,解不等式①得:3x ≥,∴不等式组的解集为321x a ≤<−,∵不等式组的整数解共有四个,∴6217a <−≤,解得:3.54a <≤.故选:A9. 如图,P 为ABC 内一点,过点P 的线段MN 分别交AB 、BC 于点M 、N ,且M 、N 分别在PA 、PC的中垂线上.若80ABC ∠=°,则APC ∠的度数为( )A. 120°B. 125°C. 130°D. 135°【答案】C【解析】 【分析】根据线段的垂直平分线的性质得到,MA MP NP NC ==,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【详解】解:∵80ABC ∠=°, ∴100BMN BNM ∠∠=°+,∵M 、N 分别在PA 、PC 的中垂线上,∴,MA MPNP NC ==, ∴12MPA MAP BMN ∠=∠=∠,12NPC NCP BNM ∠=∠=∠, ∴1100502MPA NPC ∠+∠°=×=°, ∴18050130APC ∠=−=°°°,故选C . 【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10. 如图,在ABC 中,90ACB ∠=°,30CAB ∠=°,=AC D 为AB 上一动点(不与点A 重合),AED △为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( )A. B. 6C. D. 9【答案】B【解析】 【分析】连接DG ,AG ,设AG 交DE 于点H ,先判定AG 为线段DE 的垂直平分线,再判定()BAC BAG AAS ′≅ ,然后由全等三角形的性质可得答案.【详解】:如图,连接DG ,AG ,设AG 交DE 于点H ,DE DF ⊥ ,G 为EF 的中点,DG GE ∴=,∴点G 在线段DE 的垂直平分线上,AED 为等边三角形,AD AE ∴=,∴点A 在线段DEAG ∴为线段DE 的垂直平分线,AG DE ∴⊥,1302DAG DAE ∠=∠=°, ∴点G 在射线AH 上,当BG AH ⊥时,BG 的值最小,如图所示,设点G ′为垂足,90ACB ∠=° ,30CAB ∠=°,ACB AG B ′∴∠=∠,CAB BAG ′∠=∠,则在BAC 和BAG ′△中,ACB AG B CAB BAG AB AB ∠=∠ ∠=∠=′ ′, ()BAC BAG AAS ′∴≅ .BG BC ′∴=,∵90ACB ∠=°,30CAB ∠=°,=AC ,∴12BC AB =,222BC AB +=,∴222(2)BC BC +=,解得:6BC =,∴6BGBC ′== 故选:B .【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键.二.填空题(每题3分,共15分)11. 比较大小:3(填“>”“<”或“=”)【答案】<【解析】【分析】此题主要考查了实数的大小比较,将3,然后比较被开方数即可比较大小.【详解】解:3=<故答案为:<. 12. 已知()115P a −,和()221P b −,关于x 轴对称,则()2022a b +的值为______.【答案】1【解析】 【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:∵()115P a −,和()221P b −,关于x 轴对称, ∴12,510a b −=+−=, 解得3,4a b ==−,∴()2022a b +()2022341=−=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.13. 如图,直线1l :1y x =+与直线2l :y kx b =+相交于点()1,P m ,则关于x ,y 的方程组1y x y kx b =+ =+的解为______.【答案】12x y == 【解析】 【分析】本题考查了二元一次方程组与一次函数的关系,首先利用待定系数法求出b 的值,进而得到P 点坐标即可,解题的关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.【详解】解:∵直线1y x =+经过点()1,P m ,∴11m =+,解得2m =,∴()1,2P ,∴关于x 的方程组1y x y kx b =+ =+ 的解为12x y = = , 故答案为:12x y = =. 14. 如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若4FG =,8ED =,求EB DC +=______.【答案】12【解析】【分析】根据角平分线和平行线的性质可得EBG EGB ∠=∠,DFC DCF ∠=∠,根据等腰三角形的性质可得EG BE =,DF DC =,即可求解.【详解】解:由题意可得:BG 平分ABC ∠,CF 平分ACB ∠∴ABG CBG ∠=∠,DCF BCF ∠=∠又∵ED BC ∥∴EGB CBG ∠=∠,DFC BCF ∠=∠ ∴EBG EGB ∠=∠,DFC DCF ∠=∠ ∴EG BE =,DF DC =∴12EB DC EG DF ED FG +=+=+=故答案为:12【点睛】此题考查了等腰三角形的性质,平行线的性质,解题的关键是熟练掌握相关基本性质. 15. 如图所示,点A 、B 分别是坐标轴上的点,且OA OB =,AC x ⊥轴,点D 在x 轴负半轴上,AC OD =,连接OC 、BD 相交于点E ,若四边形ACED 的面积为56,OE 长为1,则点A 的坐标为_______.【答案】【解析】【分析】首先根据全等三角形的判定定理SAS ,即可证得OAC BOD △≌△,可得C ODB ∠=∠,OA BO =,OAC BOD S S =△△,可证得56BOE ACED S S ==△四边形,再根据直角三角形的性质可证得90DEO BEO ∠=∠=°,根据三角形的面积公式,即可求得53BE =,最后根据勾股定理可求得OB ,据此即可解答.【详解】解:AC x ⊥ ,90OAC BOD ∴∠=∠=°在OAC 与BOD 中,OA OB OAC BOD AC OD = ∠=∠ =()SAS OAC BOD ∴△≌△,C ODB ∴∠=∠,OA BO =,OAC BOD S S =△△,OAC ODE BOD ODE S S S S ∴−=−△△△△,56BOE ACED S S ∴==△四边形, 90AOC C ∠+∠=° ,90ODB AOC ∴∠+∠=°,90DEO BEO ∴∠=∠=°,1151226BOE S OE BE BE ∴=⋅=××=△, 53BE ∴=,BO ∴===OA ∴ ∴点A的坐标为,故答案为:.【点睛】本题考查了全等三角形的判定及性质,直角三角形的性质,勾股定理,证得90BEO ∠=°是解决本题的关键.三.解答题(共7大题,共55分)16. 计算:(1− (2)(25×− 【答案】(1)(2)1【解析】【分析】(1)本题考查的是实数的运算,先根据实数的乘除法则进行计算,再进行实数的加减即可;各种运算律的灵活应用是解决此题的关键;(2)先利用完全平方公式计算,然利用平方差计算即可.小问1详解】−=−=【小问2详解】(25×−(225++×−((55=+×−(225=−2524=−1=.17. 解方程组和不等式组,并把不等式组的解集在数轴上表示出来:(1)321022x yx y−=+=(2)解不等式组()2142115xxx−≤−<+【【答案】(1)22x y = =−(2)23x −<≤【解析】【分析】本题主要考查二元一次方程组及一元一次不等式组的解法,熟练掌握二元一次方程组及一元一次不等式组的解法是解题的关键;(1)根据加减消元可进行求解方程组;(2)根据一元一次不等式组的解法可进行求解.【小问1详解】解:321022x y x y −= +=①②, 2×②得:424x y +=③, ①+③得:714x =,解得:2x =,把2x =代入②得:42y +=, 解得:=2y −,∴原方程组的解为:22x y = =−; 【小问2详解】解:()2142115x x x −≤ −<+①② 解不等式①,得,3x ≤解不等式②,得2x >−把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为23x −<≤.18. 如图,已知ABC 的顶点分别为()2,2A −,()4,5B −,()5,1C −.(1)作出ABC 关于x 轴对称的图形111A B C △.(2)点P 在x 轴上运动,当AP CP +的值最小时,直接写出点P 的坐标. (3)求ABC 的面积.【答案】(1)见解析 (2)()4,0P −(3) 5.5ABC S =【解析】【分析】(1)根据题意,先画出点A 、B 、C 关于x 轴的对称点,再一次连接即可; (2)连接1CA ,与x 轴相交于点P ,点P 即为所求,再用待定系数法求解直线1CA 的函数表达式,最后即可求出点P 的坐标;(3)用割补法即可求解.【小问1详解】解:如图,111A B C △即为所求.【小问2详解】根据轴对称的性质及两点之间线段最短可知连接1CA ,与x 轴相交于点P ,点P 即为所求;设直线1CA 的函数解析式为:()0y kx b k =+≠, 把()5,1C −,()12,2A −−代入得:1522k b k b =−+ −=−+,解得: 14k b =− =− , ∴直线1CA 的函数解析式为:4y x =−−, 把0y =代入得:04x =−−,解得:4x =−,∴()4,0P −.【小问3详解】11134132314 5.5222ABC S =×−××−××−××= . 【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义与性质.19. 某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的m 的值为_________;(2)求本次抽样调查获取的样本数据的中位数;(3)若该校八年级学生有480人,估计参加社会实践活动时间大于7天的学生人数.【答案】(1)40,20(2)6 (3)96人【解析】【分析】(1)根据5天的人数和所占的百分比求出抽样调查总人数,用6天的人数除以总人数即可求出m 的值;(2)根据中位数计算公式进行解答即可;(3)用八年级的人数乘以参加社会实践活动时间大于7天的学生人数所占的百分比即可.的【小问1详解】解:本次接受随机抽样调查学生人数为:14÷35%=40(人),m %=840×100%=20%,则m =20; 故答案为:40,20;【小问2详解】解:∵ 本次抽样调查了40个学生,∴ 中位数是第20、21个数的平均数,∴ 中位数是(6+6)÷2=6 ,【小问3详解】解:根据题意得:480×(10%+10%)=96(人).答:参加社会实践活动时间大于7天的学生人数约是96人.【点睛】本题考查了条形统计图的综合运用,用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. 某公司决定为优秀员工购买A ,B 两种奖品,已知购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同.(1)求A ,B 两种奖品每个的价格;(2)商家推出了促销活动,A .若该公司打算购买A ,B 两种奖品共30个,且B 种奖品的个数不多于A 种奖品个数的一半,则该公司最少花费多少钱?【答案】(1)每个A 种奖品的价格为100元,每个B 种奖品的价格为80元(2)2600元【解析】【分析】(1)设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,根据购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同列出方程组求解即可;(2)设购买A 种奖品a 个,则购买B 种奖品()30a −个,根据B 种奖品的个数不多于A 种奖品个数的一半,列出不等式求出a 的范围,设购买奖品的总花费为w 元,根据题意列出w 关于a 的一次函数,利用一次函数的性质求解即可.【小问1详解】解:设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,的根据题意,得:3214045x y x y −= =, 解得:10080x y = =, 答:每个A 种奖品的价格为100元,每个B 种奖品的价格为80元;【小问2详解】解:设购买A 种奖品a 个,则购买B 种奖品()30a −个, 根据题意,得:1302a a −≤, 解得:20a ≥.设购买奖品的总花费为w 元,根据题意,得:()1000.98030102400w a a a ×+−+, 100> ,w ∴随着a 的增大而增大.∴当20a =时,w 取得最小值,102024002600min w =×+=.答:该公司最少花费2600元.【点睛】本题主要考查了一次函数的实际应用,二元一次方程组的实际应用,一元一次不等式的实际应21. 如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽度AB =______米.(2)当他在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=°,求乙房间的宽AB ; (3)当他在丙房间时,测得 2.8MA =米,且75MPA ∠=°,45NPB ∠=°.求丙房间的宽AB .【答案】(1)3.2;(2)3.1;(3)丙房间的宽AB 是2.8米.【解析】【分析】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM PN =以及MPN ∠的度数得到PMN 为等边三角形是解题的关键.(1)根据勾股定理即可得到结论;(2)证明AMP BPN ≌ ,从而得到 2.4MA PB ==米,0.7PA NB ==米, 即可求出AB PA PB =+;(3) 根据PM PN =以及MPN ∠的度数得到PMN 为等边三角形利用相应的三角函数表示出MN ,MP 的长,可得到房间宽AB 和AM 长相等.【小问1详解】解:在Rt AMP 中,∵90A ∠=°, 1.6MA =米, 1.2AP =米,∴2PM ,∵2PB PM ==,∴甲房间的宽度 3.2AB AP PB =+=米,【小问2详解】解:∵90MPN ∠=°,∴90APM BPN ∠+∠=°,∵90APM AMP ∠+∠=°,∴AMP BPN ∠=∠,在 AMP 与BPN △中,90AMP BPN MAP PBN MP PN ∠=∠ ∠=∠=° =, ∴AMP BPN ≌ ,∴ 2.4MA PB ==,∴0.7PA ,∴.01.43.72AB PA PB =+=+=米.【小问3详解】解:过N 点作MA 垂线,垂足点D ,连接NM ,设AB x =,且AB ND x ==.∵梯子的倾斜角BPN ∠为45°,∴BNP △为等腰直角三角形,PNM △为等边三角形()180457560°−°−°=°,梯子长度相同,15MND ∠=°,∵75APM ∠=°,∴15AMP ∠=°,∴DNM AMP ∠=∠,∵PNM △为等边三角形,∴NM PM =,∴()AAS AMP DNM ≌,∴AM DN =,∴ 2.8AB DN AM ===AB 是2.8米.22. 如图1,已知函数132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q . ①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.【答案】(1)直线BC 的函数解析式为132y x =−+;(2)①Q的坐标为3−或(,3+;②P 的坐标为3(2−,9)4或3(2,15)4 【解析】【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)①先表示出PQ ,最后用三角形面积公式即可得出结论;②分点M 在y 轴左侧和右侧,由对称得出BAC ACB ∠=∠,90BMP BMC ∠+∠=°,所以,当90MBC ∠=°即可,利用勾股定理建立方程即可22945(6)x x ++=−,即可求解.【详解】解:(1)对于132y x =+, 由0x =得:3y =,∴B (0,3).由0y =得:1302x +=,解得6x =−, ∴A (-6,0),∵ 点C 与点A 关于y 轴对称.∴C (6,0),设直线BC 的函数解析式为y kx =+, ∴360b k b = += ,解得123k b =− = , ∴直线BC 的函数解析式为132y x =−+;(2)①设点(,0)M m ,则点1(3)2P m m +,,点1(3)2Q m m , , 过点B 作BD PQ ⊥与点D ,则113(3)22PQ m m m =−+−+=,||BD m =, 则PQB ∆的面积2117·222PQ BD m ==,解得m =,故点Q 的坐标为,3−或(,3; ②如图2,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=° ,90BMC BCA ∴∠+∠=°,180()90MBC BMC BCA ∴∠=°−∠+∠=°, 222BM BC MC ∴+=,设(0)M x ,,则1(3)2P x x +,, 222223BM OM OB x =∴=++,MC 2=(6-x)2,222226345BC OC OB =+=+=, 22945(6)x x ∴++=−,解得32x =−, 3(2P ∴−,9)4, 当点M 在y 轴的右侧时, 同理可得3(2P ,15)4,综上,点P的坐标为3(2−,9)4或3(2,15)4.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,直角三角形的判定,勾股定理,坐标轴上点的特点,分类讨论是解本题的关键.。
八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分1.在实数0,π,,﹣,中,是无理数的有()A.1个B.2个C.3个D.4个2.下列说法不正确的是()A.1的平方根是±1 B.1的立方根是1C.2是的平方根D.﹣是﹣3的立方根3.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0)D.(1,﹣2)5.如图,在直线l上有三个正方形A,B,C,若正方形A,C的面积分别是8,6,则正方形B的面积为()A.10 B.12 C.14 D.186.如图所示是小明在某条道路统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.这次调查小明统计了25辆车B.众数是8C.中位数是53 D.众数是527.一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A.B.C.D.8.如图,将一块三角板的直角顶点放在直尺的一边上,若∠2=25°,则∠1的度数为()A.55°B.60°C.65°D.75°9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.10.现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A.B.C. D.二、填空题:本答题共4小题,每小题5分,共20分11.将长度分别为1cm,2cm,cm的三条小木棒首尾相连成一个三角形,该三角形是三角形.12.已知a,b为两个连续整数,且,则a+b=.13.如图所示,数轴上的A点表示的数是.14.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+85.其中说法正确的有(把所有正确结论的序号都填在横线上)三、本大题共2小题,每小题8分,共16分15.计算:(﹣2)×﹣6.16.解方程组:.四、本大题共2小题,每小题8分,共16分17.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.18.如图,CD平分∠ACB,DE∥BC,∠AED=52°,求∠EDC的度数.五、本大题共2小题,每小题10分,共20分19.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数;(2)若AC=4,BC=2,求BD.20.如图,直线y=与x轴交于点A,与直线y=2x交于点B.(1)求点B的坐标;(2)求△AOB的面积.六、本题满分12分21.八(1)班组织了一次汉字听写比赛,甲、乙两队各10人,其比赛成绩如下表(10分制):甲队7 8 9 10 10 10 10 9 9 8乙队7 7 8 9 10 10 9 10 10 10(1)甲队成绩的中位数是分,乙队成绩的众数是分.(2)计算甲队的平均成绩和方差.(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是队.七、本题满分12分22.某市因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机120 80乙型挖掘机100 60(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?八、本题满分14分23.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分1.在实数0,π,,﹣,中,是无理数的有()A.1个B.2个C.3个D.4个【考点】无理数.【专题】计算题.【分析】有理数包括整数,分数,无理数包括无限不循环小数,只有π、是无限不循环小数,是无理数.【解答】解:0为整数,是有理数,π为无理数,是分数是有理数,﹣=﹣2,是整数是有理数,是无理数,故共有2个无理数.故选:B.【点评】题目考查了无理数的定义,无理数是无限不循环小数,学生理解这个知识点,即可以求出此类题目.2.下列说法不正确的是()A.1的平方根是±1 B.1的立方根是1C.2是的平方根D.﹣是﹣3的立方根【考点】立方根;平方根.【分析】分别结合平方根以及立方根的定义分析得出答案.【解答】解:A、1的平方根是±1,正确,不合题意;B、1的立方根是1,正确,不合题意;C、2是4的算术平方根,故此选项错误,符合题意;D、﹣是﹣3的立方根,正确,不合题意.故选:C.【点评】此题主要考查了立方根与平方根,正确把握相关定义是解题关键.3.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.4.下列点不在正比例函数y=﹣2x的图象上的是()A.(5,﹣10)B.(2,﹣1)C.(0,0)D.(1,﹣2)【考点】一次函数图象上点的坐标特征.【分析】分别把各点代入正比例函数的解析式进行检验即可.【解答】解:A、∵当x=5时,y=﹣10,∴此点在函数图象上,故本选项错误;B、∵当x=2时,y=﹣4≠﹣1,∴此点不在函数图象上,故本选项正确;C、∵当x=0时,y=0,∴此点在函数图象上,故本选项错误;D、∵当x=1时,y=﹣2,∴此点在函数图象上,故本选项错误.故选B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.如图,在直线l上有三个正方形A,B,C,若正方形A,C的面积分别是8,6,则正方形B的面积为()A.10 B.12 C.14 D.18【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】运用正方形边长相等,再根据同角的余角相等可得∠EDF=∠HFG,然后证明△EDF≌△HFG,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:如图,由于A、B、C都是正方形,所以DF=FH,∠DFH=90°;∵∠DFE+∠HF G=∠EDF+∠DFE=90°,即∠EDF=∠HFG,在△DEF和△HGF中,,∴△ACB≌△DCE(AAS),∴DE=FG,EF=HG;在Rt△ABC中,由勾股定理得:DF2=DE2+EF2=DE2+HG2,即S B=S A+S C=8+6=14,故选:C.【点评】此题主要考查全等三角形的判定和性质,和勾股定理,关键是证明△DEF≌△HGF.6.如图所示是小明在某条道路统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.这次调查小明统计了25辆车B.众数是8C.中位数是53 D.众数是52【考点】条形统计图;中位数;众数.【分析】先根据图形确定一定车速的车的数量,再根据中位数和众数的定义求解.【解答】解:小明统计了2+5+8+6+4+2=27辆车,∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52.∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52.故选:D.【点评】此题考查条形图,掌握中位数、众数的意义和求法是解决问题的关键.7.一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),据此可知方程组的解为()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解,因此联立两函数所得方程组的解,即为两函数图象的交点坐标.【解答】解:∵一次函数y=x+1和一次函数y=2x﹣2的图象的交点坐标是(3,4),∴x=3,y=4就同时满足两个函数解析式,则是二元一次方程组即的解.故选A.【点评】此题主要考查了二元一次方程组和一次函数的关系,关键是掌握方程组的解就是两函数图象的交点.8.如图,将一块三角板的直角顶点放在直尺的一边上,若∠2=25°,则∠1的度数为()A.55°B.60°C.65°D.75°【考点】平行线的性质.【分析】根据余角的性质得到∠3=65°,根据平行线的性质得到结论.【解答】解:如图,∵∠2+∠3=90°,∴∠3=65°,∵AB∥CD,∴∠1=∠3=65°.故选C.【点评】本题考查了平行线的性质,直角三角形的性质,余角的性质,熟记平行线的性质是解题的关键.9.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【专题】数形结合.【分析】根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点评】此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.10.现用190张铁皮制作一批盒子,每张铁皮可做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个完整的盒子.问用多少张白铁皮制盒身、多少张白铁皮制盒底,可以使盒身和盒底正好配套.设用x张铁皮做盒身,y张铁皮做盒底,可以使盒身与盒底正好配套,则可列方程是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】由题意可知:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解即可.【解答】解:设x张铁皮制盒身,y张铁皮制盒底,由题意得.故选:B.【点评】此题考查从实际问题中抽象出二元一次方程组,找出题目蕴含的数量关系是正确列出方程组的关键.二、填空题:本答题共4小题,每小题5分,共20分11.将长度分别为1cm,2cm,cm的三条小木棒首尾相连成一个三角形,该三角形是直角三角形三角形.【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:∵12+22=()2,∴三角形是直角三角形.故答案为:直角三角形.【点评】此题主要考查了勾股定理逆定理,已知三角形三边的长,只要利用勾股定理的逆定理即可判断是否是直角三角形.12.已知a,b为两个连续整数,且,则a+b=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.【点评】此题考查无理数的估算,利用平方估算出根号下的数值的取值,进一步得出无理数的取值范围,是解决这一类问题的常用方法.13.如图所示,数轴上的A点表示的数是﹣1.【考点】实数与数轴.【分析】根据数轴可以得到BD、DC的长度,根据勾股定理可以得到BC的长度,从而可以得到BA 的长度,进而可以得到点A在数轴上表示的数.【解答】解:如下图所示,BD=3,CD=1,则BC=,∴BA=BC=,点A表示的数是:,故答案为:.【点评】本题考查实数与数轴、勾股定理,解题的关键是明确题意,利用数形结合的思想解答问题.14.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+85.其中说法正确的有①④(把所有正确结论的序号都填在横线上)【考点】一次函数的应用.【分析】设桌子高度为xcm,每本字典的厚度为ycm根据题意列方程组求得x、y的值,再逐一判断即可.【解答】解:设桌子高度为xcm,每本字典的厚度为ycm,根据题意,,解得:,则每本字典的厚度为5cm,故①正确;桌子的高度为85cm,故②错误;把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:85+11×5=140cm,故③错误;若有x本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+85,故④正确;故答案为:①④.【点评】本题主要考查二元一次方程组和一次函数的应用能力,根据题意列方程组求得桌子高度和每本字典厚度是解题关键.三、本大题共2小题,每小题8分,共16分15.计算:(﹣2)×﹣6.【考点】实数的运算.【分析】首先根据乘法分配律去括号,然后化简二次根式计算.【解答】解:原式==3﹣6﹣3=﹣6.【点评】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.16.解方程组:.【考点】解二元一次方程组.【分析】先把方程组中的方程化为不含分母的方程,再用加减消元法或代入消元法求解即可.【解答】解:原方程组可化为,①+②得,9x=9,解得x=1,把x=1代入①得,5﹣3y=﹣3,解得y=,故方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.四、本大题共2小题,每小题8分,共16分17.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.【考点】坐标与图形性质.【专题】计算题.【分析】(1)由AB∥x轴,可以知道A、B两点纵坐标相等,解关于m的一元一次方程,求出m 的值;(2)由(1)求得m值求出点A、B坐标,由A、B两点横坐标相减的绝对值即为AB的长度.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.【点评】题目考查了平面直角坐标系中图形性质,题目较为简单.学生在解决此类问题时一定要灵活运用点的特征.18.如图,CD平分∠ACB,DE∥BC,∠AED=52°,求∠EDC的度数.【考点】平行线的性质.【分析】根据平行线的性质求出∠ACB,根据角平分线定义求出即可.【解答】解:∵DE∥BC,∠AED=52°,∴∠ACB=∠AED=52°,∵CD平分∠ACB,∴∠ECD=∠ACB=26°,∴∠EDC=26°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.五、本大题共2小题,每小题10分,共20分19.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数;(2)若AC=4,BC=2,求BD.【考点】翻折变换(折叠问题).【分析】(1)由翻折的性质可知∠A=∠DBA=25°,由三角形外角的性质可知∠CBD=50°;(2)设BD=x,由翻折的性质可知DA=x,从而求得CD=4﹣x,最后在△BCD中由勾股定理可求得BD的长.【解答】解:(1)由翻折的性质:∠A=∠DBA=25°.∠BDC=∠A+∠ABD=25°+25°=50°.(2)设BD=x.由翻折的性质可知DA=BD=x,则CD=4﹣x.在Rt△BCD中,由勾股定理得;BD2=CD2+BC2,即x2=(4﹣x)2+22.解得:x=2.5.即BD=2.5.【点评】本题主要考查的是翻折的性质,依据勾股定理列出关于x的方程是解题的关键.20.如图,直线y=与x轴交于点A,与直线y=2x交于点B.(1)求点B的坐标;(2)求△AOB的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两个方程进行解答即可;(2)根据三角形的面积公式计算即可.【解答】解:(1)联立两个方程可得:,解得:,所以点B的坐标为(1,2);(2)把y=0代入y=中,可得:x=﹣3,所以△AOB的面积=.【点评】本题主要考查了两条直线相交的问题,关键是根据两条直线相交时交点为方程组的解进行解答.六、本题满分12分21.八(1)班组织了一次汉字听写比赛,甲、乙两队各10人,其比赛成绩如下表(10分制):甲队7 8 9 10 10 10 10 9 9 8乙队7 7 8 9 10 10 9 10 10 10(1)甲队成绩的中位数是9分,乙队成绩的众数是10分.(2)计算甲队的平均成绩和方差.(3)已知乙队成绩的方差是1.4,则成绩较为整齐的是甲队.【考点】方差;加权平均数;中位数;众数.【分析】(1)利用中位数的定义以及众数的定义分别求出即可;(2)首先求出平均数进而利用方差公式得出即可;(3)根据方差的意义即可得出答案.【解答】解:(1)把这组数据从小到大排列7,8,8,9,9,9,10,10,10,10,甲队成绩的中位数是=9;∵在乙队中,10出现了5次,出现的次数最多,∴乙队成绩的众数是10;故答案为:9,10;(2)甲队的平均成绩是:(7+8+9+10+10+10+10+9+9+8)=9,方差是:[(7﹣9)2+2×(8﹣9)2+3×(9﹣9)2+4×(10﹣9)2]=1.(3)∵乙队成绩的方差是1.4,甲队成绩的方差是1,∴成绩较为整齐的是甲队.故答案为:甲.【点评】本题考查了中位数、方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.七、本题满分12分22.某市因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机120 80乙型挖掘机100 60(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设甲、乙两种型号的挖掘机各需x台、y台,根据甲、乙两种型号的挖掘机共8台和每小时挖掘土石方540m3,列出方程求解即可;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.【解答】解:设甲、乙两种型号的挖掘机各需x台、y台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需3台、5台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:80m+60n=540,化简得:4m+3n=27.∴n=9﹣m,∴方程的解为或.当m=3,n=5时,支付租金:120×3+100×5=860元>850元,超出限额;当m=6,n=1时,支付租金:120×6+100×1=820元<850元,符合要求.答:有一种租车方案,即租用6辆甲型挖掘机和1辆乙型挖掘机.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.八、本题满分14分23.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了0.5h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.【考点】一次函数的应用.【专题】数形结合;待定系数法.【分析】(1)根据待定系数法,可得y甲的解析式,根据函数值为200千米时,可得相应自变量的值,根据自变量的差,可得答案;(2)根据待定系数法,可得y乙的函数解析式;(3)分类讨论,0≤x≤2.5,y甲减y乙等于40千米,2.5≤x≤5时,y乙减y甲等于40千米,可得答案.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,400),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣80x+400,当y=200时,x=2.5(h),2.5﹣2=0.5(h),故答案为:0.5;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x(2.5≤x≤5);(3)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于40千米,即400﹣80x﹣100x=40,解得x=2;2.5≤x≤5时,y乙减y甲等于40千米,即2.5≤x≤5时,80x﹣(﹣80x+400)=40,解得x=,综上所述:x=2或x=.【点评】本题考查了一次函数的应用,待定系数法是求函数解析式的关键.。
八年级(上)期末数学试卷及答案一、选择题(每小题3分,共24分)下列各小題均有四个答案.其中只有一个是正确的,将正确答案的代号字母填入題后括号内.1.若分式有意义,则x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≠02.下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a6C.(﹣3a2)2=6a4D.(﹣3a2)2=9a4 3.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125° D.135°4.分式+可化简为()A.B.1 C.﹣1 D.5.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSS B.SAS C.ASA D.HL6.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a(a﹣b)=a2﹣ab7.关于未知数x的方程=x﹣2的解是x=3,则a的值是()A.5 B.﹣5 C.1 D.﹣18.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(共7小题,每小题3分,满分21分)9.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为米.10.计算:(﹣3xy)÷=.11.分式拆分:=﹣.12.如图,在四边形ABCD中,∠A=90°,∠BDC=90°,AD=2,∠ADB=∠C,则点D到BC边的距离等于.13.观察等式:①0×2+1=1,(2)1×3+1=4,③2×4+1=9,④3×5+1=16,…,则第n个式子为.14.若(x﹣2)(x+m)=x2+nx+2,则(m﹣n)mn=.15.如图,在平面直角坐标系xOy中,已知点A(0,3),点B在x轴的正半轴上,且∠ABO=30°.点C是线段OB上的动点,线段AC的垂直平分线与线段AB 交于点D,则线段AD的取值范围是.三、解答题(共8小题,满分75分)16.计算:(1)(a+b)(a2﹣ab+b2)(2)(0.25x2y﹣x3y2﹣x4y3)÷(﹣0.5x2y)17.分解因式:(1)x+xy+xy2(2)(m+n)3﹣4(m+n)18.解分式方程:(1)=(2)﹣1=.19.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.20.某次列车平均提速50km/h,用相同的时间,列车提速前行驶100km,提速后比提速前多行驶40km,求提速前列车的平均速度?21.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.22.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六12345678910111213141516171819202122232425262728293031(1)计算:(12+92)﹣(22+82)=,﹣=,自己任选一个有4个数的方框进行计算(2)通过计算你发现什么规律,并说明理由.23.由于某商品的进价降低了,商家决定对该商品分两次下调销售价格.现有两种方案:方案1:第1次降价的百分率为a,第2次降价的百分率均为b方案2:第1次和第2次降价的百分率均为(1)当a≠b时,哪种方案降价幅度最多?(2)当a=b时,令a=b=x,已知第1次和第2次降价后商品销售价格分别为A、B.①填空:原销售价格可分别表示为、②已知B=A,求两次降价的百分率x.八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小題均有四个答案.其中只有一个是正确的,将正确答案的代号字母填入題后括号内.1.若分式有意义,则x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x≠0【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选C.2.下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a6C.(﹣3a2)2=6a4D.(﹣3a2)2=9a4【考点】幂的乘方与积的乘方.【分析】根据积的乘方等于每一个因式分别乘方,再把所得的幂相乘,可得答案.【解答】解:A、(﹣a3)2=a6,故A选项错误;B、(﹣a3)2=a6,故B选项错误;C、(﹣3a2)2=9a4,故C选项错误;D、(﹣3a2)2=9a4,故D选项正确;故选:D.3.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125° D.135°【考点】多边形内角与外角.【分析】由四边形内角和定理求出∠ABC+∠BCD=130°,由角平分线的定义求出∠OBC+∠OCB=65°,再由三角形内角和定理即可得出结果.【解答】解:∵在四边形ABCD中,∠A=140°,∠D=90°,∴∠ABC+∠BCD=360°﹣90°﹣140°=130°,∵OB平分∠ABC,OC平分∠BCD,∴∠OBC=∠ABC,∠OCB=∠BCD,∴∠OBC+∠OCB=65°,∴∠BOC=180°﹣65°=115°;故选:B.4.分式+可化简为()A.B.1 C.﹣1 D.【考点】分式的加减法.【分析】变形后变成同分母的分式,根据同分母的分式加减法则,分母不变,分子相加减,进行计算即可.【解答】解:原式=﹣=1,故选B.5.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSS B.SAS C.ASA D.HL【考点】全等三角形的判定.【分析】根据平行线的性质得∠BAC=∠DCA,再加上公共边,则可利用“SAS”判断△ABC≌△CDA.【解答】解:∵AB∥CD,∴∠BAC=∠DCA,在△ABC与△CDA中,,∴△ABC≌△CDA(SAS).故选B.6.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a(a﹣b)=a2﹣ab【考点】平方差公式的几何背景.【分析】根据正方形和梯形的面积公式,观察图形发现这两个图形阴影部分的面积=a2﹣b2=(a+b)(a﹣b).【解答】解:阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.7.关于未知数x的方程=x﹣2的解是x=3,则a的值是()A.5 B.﹣5 C.1 D.﹣1【考点】分式方程的解.【分析】把x=3代入方程即可求出a的值.【解答】解:把x=3代入方程得:=1,解得:a=﹣1,经检验a=﹣1时,分母不为0,则a的值是﹣1.故选D.8.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】因式分解的应用.【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【解答】解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b ﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.二、填空题(共7小题,每小题3分,满分21分)9.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为 1.22×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000122=1.22×10﹣6.故答案为:1.22×10﹣6.10.计算:(﹣3xy)÷=﹣.【考点】分式的乘除法.【分析】直接利用分式的除法运算法则化简求出答案.【解答】解:(﹣3xy)÷=﹣3xy×=﹣.故答案为:﹣.11.分式拆分:=﹣.【考点】分式的加减法.【分析】设所求式子为A,则A=﹣,再通分,把分子相加减即可.【解答】解:设所求式子为A,则A=﹣=﹣==.故答案为:.12.如图,在四边形ABCD中,∠A=90°,∠BDC=90°,AD=2,∠ADB=∠C,则点D到BC边的距离等于2.【考点】角平分线的性质.【分析】过D作DE⊥BC于E,根据三角形内角和定理求出∠ABD=∠DBC,根据角平分线性质得出即可.【解答】解:过D作DE⊥BC于E,则点D到BC边的距离是DE的长度,∵∠A=90°,∠BDC=90°,∠ADB=∠C,∠A+∠ADB+∠ABD=180°,∠DBC+∠C+∠BDC=180°,∴∠ABD=∠DBC,∵∠A=90°,DE⊥BC,AD=2,∴AD=DE=2,故答案为:2.13.观察等式:①0×2+1=1,(2)1×3+1=4,③2×4+1=9,④3×5+1=16,…,则第n个式子为(n﹣1)(n+1)+1=n2.【考点】规律型:数字的变化类.【分析】根据已知式子得出各式之间是连续的自然数平方,进而得出答案.【解答】解:因:①0×2+1=1,(2)1×3+1=4,③2×4+1=9,④3×5+1=16;所以第n个式子表达式为:(n﹣1)(n+1)+1=n2.故答案为:(n﹣1)(n+1)+1=n214.若(x﹣2)(x+m)=x2+nx+2,则(m﹣n)mn=8.【考点】多项式乘多项式.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出m与n的值,即可确定出所求式子的值.【解答】解:已知等式整理得:x2+(m﹣2)x﹣2m=x2+nx+2,可得,解得:,则(m﹣n)mn=(﹣1+3)﹣1×(﹣3)=23=8.故答案为:8.15.如图,在平面直角坐标系xOy中,已知点A(0,3),点B在x轴的正半轴上,且∠ABO=30°.点C是线段OB上的动点,线段AC的垂直平分线与线段AB 交于点D,则线段AD的取值范围是2≤AD≤3.【考点】线段垂直平分线的性质;坐标与图形性质.【分析】根据线段垂直平分线的性质得到DA=DC,分点C与点B重合、DC∥OA 两种情况解答即可.【解答】解:连接DC,∵线段AC的垂直平分线与线段AB交于点D,∴DA=DC,∵A(0,3),∠ABO=30°,∴AB=2OA=6,当点C与点B重合时,AD=AB=3,当DC∥OA时,AD=CD=BD,则AD=2,∴线段AD的取值范围是:2≤AD≤3,故答案为:2≤AD≤3.三、解答题(共8小题,满分75分)16.计算:(1)(a+b)(a2﹣ab+b2)(2)(0.25x2y﹣x3y2﹣x4y3)÷(﹣0.5x2y)【考点】整式的除法;多项式乘多项式.【分析】(1)直接利用单项式乘以多项式运算法则求出答案;(2)直接利用整式的除法运算法则求出答案.【解答】解:(1)原式=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3;(2)原式=﹣+xy+x2y2.17.分解因式:(1)x+xy+xy2(2)(m+n)3﹣4(m+n)【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=x(1+4y+4y2)=x(1+2y)2;(2)原式=(m+n)[(m+n)2﹣4]=(m+n)(m+n+2)(m+n﹣2).18.解分式方程:(1)=(2)﹣1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,经检验x=﹣3是原方程的根;(2)去分母得:x2+4x﹣x2﹣2x+8=12,解得:x=2,经检验x=2是增根,分式方程无解.19.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,把a、b的值代入进行计算即可.【解答】解:原式=÷=•=,当a=+1,b=﹣1时,原式==1.20.某次列车平均提速50km/h,用相同的时间,列车提速前行驶100km,提速后比提速前多行驶40km,求提速前列车的平均速度?【考点】分式方程的应用.【分析】设提速前列车的平均速度为xkm/h,根据提速后,列车用相同时间比提速前多行驶40km,列方程求解.【解答】解:设提速前列车的平均速度为xkm/h,由题意得,,解得:x=125,经检验,x=100是原分式方程的解,且符合题意.答:提速前列车的平均速度为125km/h.21.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.【考点】全等三角形的判定与性质.【分析】利用等腰直角三角形的性质和全等三角形的判定定理可得△BAE≌△DAC,由全等三角形的性质可得BE=DC,∠BEA=∠DCA,设AE与CD相交于点F,易得∠BEA+∠DFE=90°.即CD⊥BE.【解答】证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.22.在日历上,我们发现某些数会满足一定的規律,比如2016年1月份的日历,我们设计这样的算法:任意选择其中的2×2方框,将方框中4个位置上的数先平方,然后交叉求和,再相减请你按照这个算法完成下列计算,并回答以下问题[2016年1月份的日历]日一二三四五六12 3456789 10111213141516 17181920212223 24252627282930 31(1)计算:(12+92)﹣(22+82)=14,﹣=14,自己任选一个有4个数的方框进行计算14(2)通过计算你发现什么规律,并说明理由.【考点】整式的混合运算.【分析】(1)先算乘法,再合并即可;(2)设最小的数字为n,则其余三个分别为n+8,n+1,n+7,根据题意得出算式[n2+(n+8)2]﹣[(n+1)2+(n+7)2],求出即可.【解答】解:(1)(12+92)﹣(22+82)=1+81﹣4﹣64=14,﹣=100+324﹣121﹣289=14,(32+112)﹣(42+102)=9+121﹣16﹣100=14,故答案为:14;(2)计算结果等于14,理由是:设最小的数字为n,则其余三个分别为n+8,n+1,n+7,所以[n2+(n+8)2]﹣[(n+1)2+(n+7)2]=n2+n2+16n+64﹣n2﹣2n﹣1﹣n2﹣14n﹣49=14.23.由于某商品的进价降低了,商家决定对该商品分两次下调销售价格.现有两种方案:方案1:第1次降价的百分率为a,第2次降价的百分率均为b方案2:第1次和第2次降价的百分率均为(1)当a≠b时,哪种方案降价幅度最多?(2)当a=b时,令a=b=x,已知第1次和第2次降价后商品销售价格分别为A、B.①填空:原销售价格可分别表示为、②已知B=A,求两次降价的百分率x.【考点】分式方程的应用.【分析】(1)直接根据题意表示出两种商品的价格,再利用两式的差得出大小关系;(2)①利用A销售价格÷(1﹣下降百分率)=原价,B销售价格÷(1﹣下降百分率)2=原价进而得出答案;②根据原价不变得出等式,进而解分式方程得出答案.【解答】解:设该商品原来的销售价格为m.(1)方案1:两次降价后的价格为:m(1﹣a)(1﹣b);方案2:两次降价后的价格为:m(1﹣)2.因为m(1﹣a)(1﹣b)﹣m(1﹣)2=﹣(a﹣b)2<0,所以方案1降价幅度最多.(2)①第1次降价后商品销售价格为:A=原价(1﹣x),则原价格为:,第2次降价后商品销售价格为:B=原价(1﹣x)2,则原价格为:,故答案为:,.②由题意可得:=,由B=A,解得,x1=0.2,x2=1(不合题意舍去),经检验,x=0.2是原方程的根,答:两次均降了20%.2017年2月18日。
八年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a22.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)24.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=.15.a+2﹣=.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是.17.因式分解:(x﹣1)(x+4)+4.18.解分式方程:.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a2【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a2•a=a3.故选:C.2.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.【考点】L1:多边形;K4:三角形的稳定性.【分析】根据三角形的稳定性进行解答.【解答】解:含有三角形结构的支架不容易变形.故选:B.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2【考点】6F:负整数指数幂;1E:有理数的乘方;6E:零指数幂.【分析】结合负整数指数幂、有理数的乘方以及零指数幂的概念和运算法则进行求解即可.【解答】解:A、﹣31=﹣3,本选项正确;B、(﹣3)0=1≠﹣3,本选项错误;C、3﹣1=≠﹣3,本选项错误;D、(﹣3)2=9≠﹣3,本选项错误.故选A.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变【考点】65:分式的基本性质.【分析】根据题意将10x与10y代入原式后化简即可求出答案.【解答】解:由题意可知:==故选(D)5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、正方形是轴对称图形,不合题意;B、等腰直角三角形是轴对称图形,不合题意;C、等边三角形是轴对称图形,不合题意;平行四边形不是轴对称图形,符合题意;D、含30°的直角三角形不是轴对称图形,符合题意;故选:D.6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac【考点】51:因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°【考点】KH:等腰三角形的性质.【分析】由等腰三角形中有一个角等于40°,可分别从①若40°为顶角与②若40°为底角去分析求解即可求得答案.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角的度数为:40°或100°.故选:C.8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO【考点】KB:全等三角形的判定.【分析】根据ASA可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAA不能推出两三角形全等.【解答】解:A、∵在△AOB和△DOC中∴△AOB≌△DOC(ASA),正确,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;C、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;D、根据三个角对应相等的两个三角形不全等,错误,故本选项正确;故选D.9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°【考点】PB:翻折变换(折叠问题);K7:三角形内角和定理.【分析】连接AF交DE于G,由翻折的性质可知点G是AF的中点,故此DG是△ABF的中位线,于是得到DG∥BF,由平行线的性质可求得∠ADE=50°.【解答】解:如图所示:连接AF交DE于G.∵由翻折的性质可知:AG=FG.∴点G是AF的中点.又∵D是AB的中点,∴DG是△ABF的中位线.∴DG∥FB.∴∠ADE=∠B=∠EDF=50°.故选B.10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:A二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为x≠1.【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于6cm.【考点】KJ:等腰三角形的判定与性质.【分析】根据题意,可得∠AOC=∠BOC,又因为CD∥OB,求得∠C=∠AOC,则CD=OD可求.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC;又∵CD∥OB,∴∠C=BOC,∴∠C=∠AOC;∴CD=OD=6cm.故答案为:6cm.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=135.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.15.a+2﹣=.【考点】6B:分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:a+2﹣=+=.故答案为:.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是0<BC<10.【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的性质和三角形的三边关系即可得到结论.【解答】解:∵AB的垂直平分线DE交AB于点D,∴AE=BE,∴AE+CE=AC=10,∴0<BC<10,故答案为:0<BC<10.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:(x﹣1)(x+4)+4.【考点】53:因式分解﹣提公因式法.【分析】首先去括号,进而合并同类项,再利用提取公因式法分解因式得出答案.【解答】解:原式=x2+3x﹣4+4=x2+3x=x(x+3).18.解分式方程:.【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣2),得3(x﹣2)=x,解得x=3.检验:把x=3代入x(x﹣2)=3≠0.∴原方程的解为:x=3.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ABD和∠△CDB中,,∴△ABD≌△CDB,∴AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后选取合适的值代入化简后的式子即可解答本题,注意x不能取0或1.【解答】解:(﹣)+======,当x=2时,原式==3.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.【考点】P7:作图﹣轴对称变换;PA:轴对称﹣最短路线问题.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用对称点求最短路线的性质得出答案.【解答】解:(1)如图所示:△A1B1C1为所求作的三角形;(2)如图,点P的坐标为:(0,1).22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义求出∠ACB,再利用三角形的内角和等于180°列式计算即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:(1)∵CD平分∠ACB,∠BCD=31°,∴∠ACD=∠BCD=31°,∴∠ACB=62°,∵在△ABC中,∠A=72°,∠ACB=62°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣72°﹣62°=46°;(2)在△BCD中,由三角形的外角性质得,∠ADC=∠B+∠BCD=46°+31°=77°.五、解答题(三)(共3个小题,每小题9分,满分27分)23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.【考点】B7:分式方程的应用.【分析】设货车原来的速度为x km/h,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可【解答】解:设货车原来的速度为x km/h,根据题意得:﹣=,解得:x=75.经检验:x=75是原方程的解.答:货车原来的速度是75 km/h.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.【考点】K7:三角形内角和定理.【分析】(1)根据三角形内角和定理和角平分线的定义计算求解;(2)在AC上截取AG=AE,则EF=FG;根据ASA证明△FCD≌△FCG,得DF=FG,故判断EF=FD.【解答】解:(1)∵△ABC中,∠ACB=90°,∠B=60°∴∠BAC=30°,∵AD、CE分别是∠BAC、∠BCA的平分线∴∠FAC=∠BAC=15°,∠FCA=∠ACB=45°∴∠AFC=180°﹣∠FAC﹣∠FCA=120°,∴∠EFD=∠AFC=120°;(2)FE与FD之间的数量关系为FE=FD;证明:在AC上截取AG=AE,连接FG,∵AD是∠BAC的平分线,∴∠1=∠2又∵AF为公共边在△EAF和△GAF中∵,∴△AEF≌△AGF∴FE=FG,∠AFE=∠AFG=60°,∴∠CFG=60°,又∵FC为公共边,∠DCF=∠FCG=45°在△FDC和△FGC中∵,∴△CFG≌△CFD,∴FG=FD∴FE=FD.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.【考点】KD:全等三角形的判定与性质;KM:等边三角形的判定与性质.【分析】(1)根据等边三角形的性质,可证明△ABE≌△DBC,可求得∠BAE=∠BDC,则可证得∠ABD=∠DMA=60°;(2)由等边三角形的性质,结合(1)中的结论可证明△ABP≌△DBQ,可得BP=BQ,则可证得结论.【解答】证明:(1)∵△ABD、△BCE均为等边三角形,∴AB=DB,EB=CB,∠ABD=∠EBC=60°,∴∠ABD+∠DBE=∠EBC+∠DBE,即∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC (SAS),∴∠BAE=∠BDC,在△ABP和△DMP中,∠BAE=∠BDC,∠APB=∠DPM,∴∠DMA=∠ABD=60°;(2)∵△ABD、△BCE均为等边三角形,∴AB=DB,∠ABD=∠EBC=60°,∵点A、B、C在一条直线上,∴∠DBE=60°,即∠ABD=∠DBE,由(1)得∠BAE=∠BDC,在△ABP和△DBQ中∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形.。
,则下列不等式中正确的是(A .B .5.在平面直角坐标系中,若A .0B .16.下列命题中,真命题是( )A .1的平方根是它本身B .两条直线被第三条直线所截,同位角相等C .三角形的外角大于任何一个内角54︒36︒(3,1A m +-A .9.如图,是正方体的一个顶点,一只蚂蚁在正方体的表面上爬行,从点A .57︒A 9cmA .20B .C .40二.填空题(每小题3分,共15分)11.的立方根是.12.请写出一个图象平行于直线,且过第一、二、四象限的一次函数的表达式.15.如图,在直角三角形(不与B 、C 重合),连接,将三.解答题(本大题共16.(1)计算:2058-5y x =-ABC AD 273-(1)用直尺和圆规作(2)判断点O 在的垂直平分线上吗?说明理由;(3)结合(1)(2),你还有何发现(证明过程中出现的结论除外)?请写出一条新的结论.18.已知,如图,方格纸中每个小方格都是边长为(1)请根据点A ,B 的坐标在方格纸中建立平面直角坐标系,并直接写出点(2)依次连接A ,B ,C ,得到,请判断(3)在y 轴上找一点F ,使的面积等于19.综合与实践【问题情境】数学活动课,老师带领同学们开展动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各(单位:cm ),宽(单位:cm )的数据后,分别计算长宽比,整理数据如下:BC AC ABC ABF △x(1)证明:;(2)21.随着自媒体的盛行,网购及直播带货成为一种趋势,水果做营销宣传,采用线上及线下两种销售方式,总收入如下表(总收入=销售重量BAC DEF ∠=∠70,50BAC DFE ∠=︒∠=(1)若点A 与点关于x 轴对称,直接写出点(2)运用一次函数的知识,求出C 点坐标;(3)设桌边上有三个球袋,位置分别在点反弹出的白球撞击后,能否落入球袋中(假定名称并说明理由.(1)如图1,连接,当时,的形状是 .(2)当点G 落在正方形内部时,过G 作,分别交于E 于点M ,连接交于点N (如图2).判断的形状,并说明理由.A 'RQ R 、DG 15BCH ∠=︒CDG EF AD ∥AB DC 、CM EF MGN【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.8.D【分析】本题主要考查了平行线的性质,解题时注意:两直线平行时,同位角相等,内错角相等,同旁内角互补.根据光在水中是平行的线,由平行线的性质即可求解.【详解】解:如图,,,,,,∵,,,,,,故选∶D .9.B【分析】本题考查了勾股定理,平面展开最短路线问题,将正方体的左侧面与前面展开,1122y k x b y k x b -=⎧⎨-=⎩21x y ⎧⎨⎩==,3102AC BD ∠=︒ ∥3102MAC ∴∠=∠=︒∥ AB CD 2180MAC ∴∠+∠=︒∴278∠=︒12129∠∠︒+=∴151∠=︒∴AE BF ∥∴151FBM ∠=∠=︒EF AB ∥∴451FBM ∠=∠=︒-∵正方体的棱长为,∴,,∴,故选:B .【点睛】本题考查动点问题的函数图象,条件,利用数形结合的思想解答.6cm 639cm AC =+=3cm BC =22310cm AB AC BC =+=11.-2【分析】根据立方根的定义进行求解即可得.【详解】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.12.(答案不唯一)【分析】设一次函数表达式为:,由图象平行于直线可得,由图象经过第一、二、四象限,可得,由此即可得到答案.【详解】解:设一次函数表达式为:,图象平行于直线,,图象经过第一、二、四象限,,,故答案为:(答案不唯一).【点睛】本题考查了一次函数的性质,一次函数(为常数,)是一条直线,当时,图象经过一、三象限,随的增大而增大,当时,图象经过二、四象限,随的增大而减小,当时,图象交于轴的正半轴,当时,图象过原点,当时,图象交于轴的负半轴.13.11【分析】此题考查了加减消元法,把a 看作已知数表示出方程组的解,代入求出a 的值即可,利用了消元的思想,消元的方法有:代入消元法与加减消元法,掌握加减消元法是解题的关键.【详解】解:,①+③得:,解得:,∵,∴,51y x =-+y kx b =+5y x =-5k =-0b >y kx b =+ 5y x =-5k ∴=- ∴0b >51y x ∴=-+51y x =-+y kx b =+k b 、0k ≠0k >y x 0k <y x 0b >y 0b =0b <y 9x y +=26252x y a x y a -=-⎧⎨+=⎩①②3336x y a +=-2x y a +=-9x y +=29a -=,,,6AE AC ∴==BE AB =CD DE ∴=222DE BE BD +=(2)解:点O 在如图,连接,∵是线段的垂直平分线,∴,∵AC OC OD BC OB OC =CD BD =90ACB ODB ∠=∠=(3)解:设点,根据题意得:,解得:或,∴点F 的坐标为或.故答案为:或.【点睛】本题主要考查了坐标与图形,勾股定理与网格问题,勾股定理的逆定理,三角形面积的计算,解题的关键是数形结合,熟练掌握勾股定理和逆定理.19.(1)3.7,1.92,2.0()0,F m 11515222m ⨯⨯-=⨯⨯3m =1m =-()03,()0,1-()0,3()0,1-10片荔枝树叶的长宽比中出现次数最多的是2.0,10片荔枝树叶的长宽比的众数为2.0,故答案为:3.7,1.92,2.0;(2)解:,芒果树叶的形状差别小,故甲同学的说法不合理,荔枝树叶的长宽比的平均数是1.92,中位数是1.95,众数是2.0,乙同学的说法合理,故答案为:乙;(3)解:一片长,宽的树叶,长宽比接近2,这片树叶更可能来自荔枝树.【点睛】本题考查了统计图中中位数、众数、平均数、方差的意义,看懂统计图表,正确的计算是解决问题的关键.20.(1)见解析;(2)【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和得出∠3+∠CAE=∠DEF ,再根据∠1=∠3整理即可得证;(2)根据三角形的一个外角等于与它不相邻的两个内角的和得出∠2+∠BCF=∠DFE ,再根据∠2=∠3即可得∠ACB=∠DFE ,然后利用三角形的内角和等于180°求解即可.【详解】(1)证明:在△ACE 中,∠DEF=∠3+∠CAE ,∵∠1=∠3,∴∠DEF=∠1+∠CAE=∠BAC ,即∠BAC=∠DEF ;(2)解:在△BCF 中,∠DFE=∠2+∠BCF ,∵∠2=∠3,∴∠DFE=∠3+∠BCF ,即∠DFE=∠ACB ,∵∠BAC=70°,∠DFE=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠ACB=180°-70°-50°=60°.【点睛】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质,并准确识图,找出图中各角度之间的关系是解题的关键.∴0.03560.0556< ∴ ∴ 10cm 5.1cm ∴60︒【详解】(1)解:关于x 轴的对称点坐标为,故答案为:;(2)解:设直线的解析式为,将,代入,得:,解得,∴直线的解析式为,当时,,∴点C 的坐标为;(3)解:能落入球袋S 中,理由如下:把代入直线的解析式得:,解得,∴在直线上,∴能落入球袋S 中.23.(1)等边三角形(2)等腰三角形,理由见解析(3)3或【分析】本题考查了正方形的性质和翻折的性质、全等三角形的判定和性质,正确理解题意和灵活运用所学的知识是解题的关键.(1)根据翻折可得:, 得到,,即可求解;(2)先证明,得到,再根据平行证明,即可求解;(3)分两种情况讨论:当点H 在线段上时或当点H 在线段的延长线上时分别进行讨论求解即可.()40,60A A '()40,60-()40,60-BA 'y kx b =+A '()40,60-()70,30B 40607030k b k b +=-⎧⎨+=⎩3180k b =⎧⎨=-⎩BA '3180y x =-0y =60x =()60,0120y =BA '3180120x -=100x =()100120S ,BA '7.5BCH GCH ≌30BCG ∠=︒GC DC =()Rt Rt HL CGM CDM ≌GMC DMC ∠=∠MNG DMC ∠=∠BA BA【详解】(1)解:∵把沿着翻折,得到,∴,∴,,∴,∴,∵,∴,∴是等边三角形.故答案为:等边三角形;(2)解:的形状是等腰三角形,理由:∵把沿着翻折,得到,∴,∴,∵,∴,在和中,,∴,∴,∵,∴,∴.∴,∴的形状是等腰三角形;(3)解:设,①当点H 在线段上时,连接,如图,BC H V CH GCH △BCH GCH ≌15BCH GCH ∠=∠=︒BC GC =30BCG ∠=︒9060GCD GCB ∠=︒-∠=︒BC DC =GC DC =CDG MGN BC H V CH GCH △BCH GCH ≌BC GC =BC DC =GC DC =Rt CGM △Rt CDM △GC DC CM CM =⎧⎨=⎩()Rt Rt HL CGM CDM ≌GMC DMC ∠=∠EF AD ∥MNG DMC ∠=∠MNG GMC ∠=∠GM GN =MGN AM x =BA DM由(2)知:,,∴,∵正方形的边长为6,∴,∵,∴,∴,∴.∵,∴,解得:,∴;②当点H 在线段的延长线上时,连接,如图,由(2)知:,,∴,∵正方形的边长为6,∴,∵,∴,Rt Rt CGM CDM ≌BCH GCH ≌MG MD BH HG ==,ABCD 6MG MD x ==-4AH =2BH =2HG BH ==628HM x x =-+=-222AH AM HM +=()22248x x +=-3x =3AM =BA DM Rt Rt CGM CDM ≌BCH GCH ≌MG MD BH HG ==,ABCD 6MG MD x ==-4AH =10BH =∴,∴.∵,∴,解得:.∴.综上,的长为3或.10HG BH ==()10616HM HG MG x x ===--=-222AH AM HM +=()222416x x +-=7.5x =7.5AM =AM 7.5。
2023-2024学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1. 若正比例函数的图象经过点,则k 的值为( )A. B. C. 2 D. 3【答案】A【解析】【分析】本题主要考查了正比例函数图象上的点,将点的坐标代入函数关系式,即可求出答案.【详解】因为正比例函数的图象经过点,所以,解得.故选:A .2. 下列四个数中,最小的数是( )A. ﹣πB. ﹣2C.D. 【答案】D【解析】【分析】本题主要考查了实数的大小比较,先确定各数的值,再比较得出答案.,,可知,所以故选:D .3. 在某校八年级举办的数学“讲题比赛”中,有9名选手进入决赛,他们的成绩各不相同,其中一名选手想知道自己能否进入前5名,除了知道自己的成绩外,他还需要了解这9名选手成绩的( )A. 平均数B. 中位数C. 方差D. 极差【答案】B【解析】【分析】本题考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟知这些概念的解题的关键.9名选手的中位数是第5名的成绩,想要知道自己的成绩是否能进入前5名,只需知道自己的成绩和全部成绩的中位数即可解答.【详解】解:由于总共有9个人,且他们的决赛成绩各不相同,第5名的成绩是中位数,要判断是否进入y kx =(3,2)2332y kx =(3,2)32k =23k =3=-4=-234π-<-<-<-前5名,故应知道9名学生成绩的中位数.故选:B .4. 在平面直角坐标系中,画出一次函数的图象,其中正确的是( )A. B.C. D.【答案】C【解析】【分析】本题主要考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质,一次函数,当直线经过一、三象限,当直线经过二、四象限,当直线与y 轴正半轴有交点,直线与y 轴负半轴有交点.根据一次函数的性质进行判断即可.【详解】解:∵中,,∴函数图象经过一、三、四象限,且与x 轴的交点坐标为,与y 轴的交点为.故选:C .5. 若点P 在第二象限内,且到x 轴的距离为6,到y 轴的距离为2,那么点P 的坐标是( )A. B. C. D. 【答案】B【解析】【分析】此题考查了坐标系中点坐标特点,点到对坐标轴的距离,正确掌握点到x 轴的距离是点纵坐标的绝对值,到y 轴的距离是点横坐标的绝对值是解题的关键.【详解】∵点P 在第二象限内,∴点P 的横坐标为负数,纵坐标为正数,∵点P 到x 轴的距离为6,到y 轴的距离为2,xOy 1y x =-()0y kx b k =+≠0k >0k <0b >0b <1y x =-10k =>10b =-<()1,0()0,1-()2,6()2,6-()6,2--()6,2-∴点P 纵坐标为6,横坐标为,∴点P 的坐标是,故选:B .6. 下列说法是真命题的是( )A. 若,则点一定在第一象限内B. 作线段C. 三角形的一个外角等于和它不相邻的两个内角的和D. 立方根等于本身的数是0和1【答案】C【解析】【分析】此题考查真命题:正确的命题是真命题,正确掌握象限内坐标特点,命题的定义,三角形外角性质,立方根的性质是解题的关键,据此依次判断即可.【详解】A.若,则或,故点在第一象限或第三象限,故不符合题意;B.作线段是作图,没有做出判断,不是命题,故不符合题意;C.三角形的一个外角等于和它不相邻的两个内角的和,正确,是真命题,故符合题意;D.立方根等于本身的数是0和,不是真命题,故不符合题意;故选:C .7. 如图,在数轴上,点O 是原点,点A 表示的数是2,在数轴上方以为边作长方形,以点C 为圆心,的长为半径画弧,在原点右侧交该数轴于点P ,则点P 表示的数是( )A. 1B. C. D. 【答案】D【解析】【分析】此题考查勾股定理,根据长方形的性质得到,由此,利用勾股定理求出长度即可.【详解】连接,2-()2,6-0mn >(),H m n AB CD=0mn >0,0m n >>0,0m n <<(),H m n AB CD =1±OA 1OABC AB =,CB 321,2OC AB BC OA ====2CP =OP CP∵长方形,,∴,∴,∴,∴点P故选:D .8. 我国明代《算法统宗》书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x 尺,绳索长y 尺,根据题意可列方程组为( )A. B. C. D. 【答案】A【解析】【分析】设竿长x 尺,绳索长y 尺,根据第一次用绳索去量竿,绳索比竿长5尺,第二次将绳索对折去量竿,就比竿短5尺,则可得方程组.【详解】解:由题意可得:,故选:A .【点睛】本题考查了二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意前后两次绳和杆的数量关系.二、填空题(本大题共5个小题,每小题4分,共20分)9. 比较大小:.(选填“>”、“=”、“<”)【答案】>【解析】OABC 1,2AB OA ==1,2OC AB BC OA ====2CP =OP ===552x y y x +=⎧⎪⎨-=⎪⎩525x y x y +=⎧⎨-=⎩552x y y x =+⎧⎪⎨-=⎪⎩552x y x y+=⎧⎨-=⎩552x y y x +=⎧⎪⎨-=⎪⎩【分析】将两数分别平方进行比较即可【详解】解:,,∵12>11,∴.故答案为:>.【点睛】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.两个正无理数比较,被开方数大的比被开方数小的大;一个有理数与一个开方开不尽的数比较,常通过比较它们的平方(或立方)的大小来比较或都化成带根号的数比较被开方数的大小.10. 点关于原点的对称点的坐标是 _____.【答案】【解析】【分析】此题考查关于原点对称的点的坐标特征:横纵坐标都互为相反数,熟记此特点是解题的关键.【详解】点关于原点的对称点的坐标是,故答案为:11. 如图,已知,,则的度数为 _____.【答案】【解析】【分析】由,可得,再由两直线平行,同旁内角互补,即可求出的度数,本题考查了平行线的性质和判定,解题的关键是:熟练掌握相关定理.【详解】,(内错角相等,两直线平行),(两直线平行,同旁内角互补),,,故答案为:.(212=211=()53A -,()53-,()5,3A -()53-,()53-,12∠=∠72A ∠=︒ADC ∠108︒12∠=∠AB CD ∥ADC ∠12∠=∠ AB CD ∴∥180A ADC ∴∠+∠=︒72A ∠=︒ 180********ADC A ∴∠=︒-∠=︒-︒=︒108︒12. 若直线与的交点的坐标为,则方程的解为 _____.【答案】【解析】【分析】本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质,由交点坐标就是该方程的解可得答案.【详解】关于x 的方程的解,即直线与的交点横坐标,所以方程的解为,故答案为.13. 如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是 _____m .【答案】2.5【解析】【分析】设绳索AD 的长为x m ,则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,再由勾股定理得出方程,解方程即可.【详解】解:∵BF ⊥EF ,AE ⊥EF ,BC ⊥AE ,由平行线间距离处处相等可得:CE =BF =1m ,∴CD =CE -DE =1-0.5=0.5(m ),而设绳索AD 的长为x m , 则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,在Rt △ABC 中,由勾股定理得:AC 2+BC 2=AB 2,即(x -0.5)2+1.52=x 2, 解得:x =2.5(m ),即绳索AD 的长是2.5m ,故答案为:2.5.5y ax =+2y x b =+()2,352ax x b +=+2x =52ax x b +=+5y ax =+2y x b =+2x =2x =90,CEF EFB FBC BCE ACB ∴∠=∠=∠=∠=∠=︒,,BC EF CE BF ∴ 1.5,BC =【点睛】本题主要考查了勾股定理的应用,正确理解题意,由勾股定理得出方程是解题的关键.三、解答题(本大题共5个小题,共48分)14. (1)计算:(2)解方程组:.【答案】(1)10;(2)【解析】【分析】本题主要考查了二次根式混合运算,解二元一次方程组,解题的关键是熟练掌握运算法则,准确计算.(1)根据二次根式混合运算法则进行计算即可;(2)用加减消元法解二元一次方程组即可.【详解】解:(1);(2)把①代入②得:,整理得:,得:,解得:,得:,解得:,6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②82xy=⎧⎨=⎩==122=-10=6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②272x y++=10x y+=③①+③216x=8x=③-①24y=2y=∴方程组的解为:.15. 如图,在平面直角坐标系中,已知点P 的坐标为,点P 关于y 轴的对称点为,现将先向右平移1个单位长度,再向下平移3个单位长度,得到点.(1)请在图中画出点,,连接,,,则点的坐标为 ,点的坐标为 ;(2)试判断的形状,并说明理由.【答案】(1)图见解析;;(2)是等腰直角三角形;理由见解析【解析】【分析】本题主要考查了轴对称作图,平移作图,勾股定理及其逆定理,解题的关键是数形结合,熟练掌握平移和轴对称的性质.(1)根据轴对称的性质和平移特点作出点,,然后再连接,,,写出点,的坐标即可;(2)根据勾股定理和逆定理进行解答即可.【小问1详解】解:如图,点,即为所求作的点,,.82x y =⎧⎨=⎩xOy ()12-,1P 1P 2P 1P 2P 12PP 1OP2OP 1P 2P 12POP △()1,2()2,1-12POP △1P 2P 12PP 1OP2OP 1P 2P 1P 2P ()11,2P ()22,1P -故答案为:;.【小问2详解】解:是等腰直角三角形,理由如下:∵,,又∵,∴是等腰直角三角形.16. 在杭州第十九届亚运会射击比赛中,中国射击队以16金9银4铜排在射击金牌榜和奖牌榜首位,并刷新三项世界纪录.某射击队要从甲、乙两名射击运动员中挑选一人参加一项比赛,在最近的10次射击选拔赛中,他们的成绩(单位:环)如下.甲运动员10次射击成绩如图:乙运动员10次射击成绩如表:成绩/环678910出现次数12223分析上述数据,得到下表:平均数众数方差甲运动员10次射击成绩a ()1,2()2,1-12POP△12OP OP ===12PP ==2221212OP OP PP +=12POP △8.40.84乙运动员10次射击成绩b c 根据以上信息,回答下列问题:(1)填空: , , ;(2)若从甲、乙两名运动员中选取一名参加比赛,你认为选择谁更合适?请说明理由.【答案】(1)9;;10(2)选择甲更合适;理由见解析【解析】【分析】本题主要考查了平均数、众数的定义,解题的关键是熟练掌握定义.(1)根据平均数、众数的定义进行求解即可;(2)根据平均数、众数和方差进行解答即可.【小问1详解】解:平均数为:,甲运动员10次射击成绩出现次数最多的是9环,乙运动员10次射击成绩出现次数最多的是10环,∴甲运动员的射击成绩的众数是,乙运动员的射击成绩的众数是.故答案为:9;;10.【小问2详解】解:从甲、乙两名运动员中选取一名参加比赛,选择甲更合适;因为甲、乙运动员射击成绩的平均数相同,但甲成绩的方差比乙成绩的方差较小,甲的成绩比较稳定,所以选择甲更合适.17. 如图,直线l :交x 轴于点,将直线l 向下平移4个单位长度,得到的直线分别交x 轴,y 轴于点B ,C .(1)求a 的值及B ,C 两点的坐标;(2)点M 为线段上一点,连接并延长,交直线l 于点N ,若是等腰三角形,求点M 的坐标. 1.84=a b =c =8.467282921038.410b +⨯+⨯+⨯+⨯==9a =10c =8.43y ax =+()6,0A AB CM AMN【答案】(1), (2)点M 的坐标为或或【解析】【分析】(1)将点代入,求出a 的值得到直线l 的解析式,及平移后的直线解析式,再求出与坐标轴交点即可;(2)分三种情况讨论:若时,时,时,分别求出点M 的坐标.【小问1详解】将点代入,得,∴,∴直线l 的解析式为,将直线l 向下平移4个单位长度,得到的直线为,当时,;当时,,∴;【小问2详解】当时,则,∵∴,∴,∴,∵,∴,12a =-()()2,0,0,1B C --()2,0)2,03,04⎛⎫- ⎪⎝⎭()6,0A 3y ax =+MN AN =AM AN =AM MN =()6,0A 3y ax =+630a +=12a =-132y x =-+1134122y x x =-+-=--0x =1y =-0y =2x =-()()2,0,0,1B C --MN AN =AMN MAN ∠=∠AN BC∥MAN MBC ∠=∠MBC BM С∠=∠BC СМ=CO BM ⊥2ОМОВ==∴;当时,则,∵,∴,∵,∴,∴,∵,∴∴,∴;当时,则,∵,∴,,∴,∴,∴,即,∴,∴综上,点M 的坐标为或或.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴的交点,等腰三角形的性质,平行线()2,0M AM AN =AMN ANM ∠=∠AN BC ∥ANM ВCM ∠=∠AMN BMC ∠=∠ВCM BM С∠=∠BC BM =()()2,0,0,1B C --BC ==2OM =-)2,0M -AM MN =MAN ANM ∠=∠AN BC ∥MAN МВС∠=∠MC ВMNA ∠=∠MBC MC В∠=∠CM BM =222CM OM OC =+()22221OM OM -=+34OM =3,04M ⎛⎫- ⎪⎝⎭()2,0)2,03,04⎛⎫- ⎪⎝⎭的性质,勾股定理的应用等,分类讨论是解题的关键.18. 在四边形中,,,点E 是边上一点,连接,将沿直线翻折得到,射线交边于点G .(1)如图1,求证:;(2)当时.(i )如图2,若四边形面积为24,且当点G 与D 重合时,,求的长;(ⅱ)在边上取一点H ,连接,使得,若的面积是的面积的2倍,求的长.【答案】(1)见解析(2)(i );(ⅱ)【解析】【分析】(1)根据折叠得出,根据平行线性质得出,证明,根据等腰三角形的判定得出;(2)(i )根据四边形的面积为24得出,求出,设,则,,根据勾股定理得出,即,求出即可得出答案.(ⅱ)证明,得出,根据面积是的面积的2倍,,,得出,设,则,分两种情况:当点H 在点E 的左侧时,当点H 在点E 的右侧时,画出图形,求出结果即可.【小问1详解】证明:根据折叠可知,,∵,∴,∴,的的的ABCD AD BC ∥90B Ð=°BC AE ABE AE AFE △EF AD AG EG =4AB =ABCD BC FG =AD BC AH AH AG =AFG AEH △BE 203AD =BE =AEG AEB ∠=∠GAE AEB ∠=∠GAE AEG ∠=∠AG EG =ABCD 2ABCD AD BC S AB +=⨯四边形12AD BC +=AD x =12BC x =-12FG BC x ==-222AD AF FG =+()222412x x =+-203x =()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =AEG AEB ∠=∠AD BC ∥GAE AEB ∠=∠GAE AEG ∠=∠∴;【小问2详解】解:(i )∵,∴,∵,∴,即,∴,设,则,∴,根据折叠可知,,,∴,在中,根据勾股定理得:,即,解得:,∴.(ⅱ)根据题意得:,,,由(1)得:,∵,∴,在和中,∴,∴,∵的面积是的面积的2倍,,,∴,设,则,AG EG =90B Ð=°AB BC ⊥AD BC ∥2ABCD AD BC S AB +=⨯四边形4242AD BC +⨯=12AD BC +=AD x =12BC x =-12FG BC x ==-4AF AB ==90AFE B ∠=∠=︒1809090AFD =︒-︒=︒∠Rt AGF △222AD AF FG =+()222412x x =+-203x =203AD =AF AB =AB BC ⊥AF EG ⊥AG EG =AH AG =AH EG =Rt ABH △Rt AFG △AB AF AH AG =⎧⎨=⎩()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =当点H 在点E 的左侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,解得:∴当点H 在点E 的右侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,2BH FG a ==3BE BH HE a =+=3BE EF a ==5AG EG EF FG a ==+=222AG AF FG =+()()222542a a =+a =3BE a ==2BH FG a ==BE BH EH a =-=BE EF a ==3AG EG EF FG a ==+=222AG AF FG =+()()222342a a =+解得:,负值舍去,∴综上分析可知,当的面积是的面积的2倍时,【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,三角形全等的判定和性质,平行线的性质,折叠的性质,解题的关键是熟练掌握相关的判定和性质,注意分类讨论.一、填空题(本大题共5个小题,每小题4分,共20分)19. 若,则代数式的值的平方根为 _____.【答案】【解析】【分析】利用完全平方公式分解,代入x 的值计算得到的值,再根据平方根定义求出答案.【详解】∵∴,∴代数式的值的平方根为,故答案为.20. 如图,在平面直角坐标系中,点M ,N 在直线上,过点M ,N 分别向x 轴,y 轴作垂线,交两坐标轴于点A ,B ,C ,D ,若,,则k 的值为 _____.【答案】【解析】【分析】本题主要考查了求一次函数解析,解题的关键是熟练掌握一次函数性质,设点M 的坐标为,a =BE a ==AFG AEH△BE =3x =269x x -+()22693x x x -+=-269x x -+3x =+()22693x x x -+=-()2233=+=269x x -+xOy y kx b =+1AB = 1.5CD =1.5-(),M M x y则点N 的坐标为,把M ,N 的坐标代替直线,求出k 的值即可.【详解】解:设点M 的坐标为,则点N 的坐标为,∵点M ,N 在直线上,∴,得:,故答案为:.21. 已知关于x ,y 的方程组的解中的x ,y 的值分别为等腰直角三角形的一条直角边和斜边的长,则_____.【答案】【解析】【分析】本题考查勾股定理、解二元一次方程组等知识,解题关键是理解题意,灵活运用所学知识解决问题.求出方程组的解,利用勾股定理构建方程即可解决问题.【详解】解:由,解得 ,∵,∴n 为直角边长,为斜边长,由题意:,解得:(舍去)故答案为:.22. 如图,在中,,平分交边于点D ,.在边上取一点E ,连接,将线段平移后得到线段,连接,则线段的长的最小值是 _____.()1, 1.5M M x y +-y kx b =+(),M M x y ()1, 1.5M M x y +-y kx b =+()1 1.5M M M M kx b y k x b y +=⎧⎪⎨++=-⎪⎩①②②-① 1.5k =-1.5-2321x y n y x +=+⎧⎨-=⎩n =11+2321x y n y x +=+⎧⎨-=⎩1x n y n =⎧⎨=+⎩1n n <+1n +()2221n n n +=+1n =+1-1+ABC AB =60ABC BD ∠=︒,ABC ∠AC 23AD CD =BC DE DE BF AF AF【答案】【解析】【分析】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,求出的值,可得结论.【详解】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,∵平分,,,∴,∴,∵,∴,∵∴,∵,,∴,485DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF AG FT ,DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF BD ABC ∠DM BC ⊥DN AB ⊥DM DN =1212ABD BCD AB DN S AD S CD BC DM ⋅⋅==⋅⋅ 23AD CD =23=AB BC AB =BC =AG BC ⊥60ABG ∠=︒30BAG ∠=︒∴,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵∴的最小值为,故答案为【点睛】本题考查平移性质,角平分线的性质定理,勾股定理,直角三角形30度角的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最值问题.23. 在平面直角坐标系中,给出如下定义:对于以为底边的等腰及外一点C ,若,直线中,其中一条经过点O ,另一条与的腰垂直,则称点C 是的“关联点”.如图,已知点,,,则点就是的“关联点”.若点是的“关联点”,则线段的长是 _____.12BG AB ==6AG ==111222ABC S BC AG AB DN BC DM =⋅=⋅+⋅ 185DM DN ===,DE BF DE BF =∥DEB EBF ∠=∠BE EB =()SAS BED EBF ≌,DM BE FT BE ⊥⊥185FT DM ==1848655AF AG GF AG FT ≤+≤+=+=AF 485485xOy AB AOB AOB 1OA =CA CB ,AOB AOB ()10A '-,B '()11C '-,C 'A OB ''△()03E ,POQ △PQ【解析】【分析】此题考查了勾股定理,过点Q 作轴于点A ,利用勾股定理求出,利用面积法求出的长,勾股定理求出,得到,再根据勾股定理求出线段的长.【详解】如图,过点Q 作轴于点A ,∵是的“关联点”, ,,∴,∴∵,∴,∴,∴,∴..二、解答题(本大题共3个小题,共30分)24. 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华QA y ⊥QE AQ AO AP PQ QA y ⊥()03E ,POQ △1OP OQ ==EQ OQ ⊥90OQE ∠=︒QE ===1122OQE S QE OQ OE AQ =⋅=⋅ QE OQ AQ OE ⋅===13OA ===14133AP AO OP =+=+=PQ ===带了90千克的行李,交了行李费10元.(1)写出y 与x 之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?【答案】(1)行李费y (元)关于行李质量x (千克)的一次函数关系式为;y=x -5;(2)旅客最多可免费携带30千克的行李.【解析】【分析】(1)首先设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b .根据李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元,代入联立成方程组,解得k 、b 的值.(2)根据(1)中的函数表达式,要想让旅客免费携带行李,即满足y ≤0,求得x 的最大值.【详解】(1)设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b由题意得,解得k =,b =-5∴该一次函数关系式为y =x -5(2)∵x -5≤0,解得:x ≤30∴旅客最多可免费携带30千克的行李.【点睛】考点:一次函数的应用.25. 如图,在平面直角坐标系中,直线l :与x 轴交于点A ,点B 在x 轴的负半轴上,且.(1)求直线l 的函数表达式;(2)点P 是直线l 上一点,连接,将线段绕点B 顺时针旋转得到.16560{1090k b k b =+=+161616xOy y x m =-+122OB OA ==BP BP 90︒BQ(ⅰ)当点Q 落在y 轴上时,连接,求点P 的坐标及四边形的面积;(ⅱ)作直线,,两条直线在第一象限内相交于点C ,记四边形的面积为,的面积为,若,求点Q 的坐标.【答案】(1) (2)(i )点P 的坐标为,四边形的面积是18;(ii )【解析】【分析】(1)根据,得到点A 的坐标,代入直线解析式即可得到直线l 的函数表达式;(2)(i )设,过P 作轴于点D ,证明,根据全等三角形的性质可得P 、Q 的坐标,即可求解;(ii )设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,证明,根据全等三角形的性质可得Q 的坐标,可得,则,可得,利用待定系数法求出直线的解析式,则,再利用待定系数法求出直线的解析式,联立解析式得出,由此得到点Q 的坐标.【小问1详解】解:∵,∴,∴,将点代入,得,∴,∴直线l 函数表达式;【小问2详解】(ⅰ)设,过P 作轴于点D ,的AQ APBQ BP AQ APBQ 1S ABC 2S 2113S S =4y x =-+()2,2APBQ 424,55⎛⎫-- ⎪⎝⎭122OB OA ==(),4P p p -+PD x ⊥()AAS PDB BOQ ≌(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌118S =26S =2CF =AQ ()6,2C BC 145n =122OB OA ==4OA =()()2,04,0B A -,()4,0A y x m =-+40m -+=4m =4y x =-+(),4P p p -+PD x ⊥∵,∴B 点的坐标为,∴,∵,∴,,∴,∵,∴,∴,,∴,∴点P 的坐标为,点Q 的坐标为,∴;(ⅱ)设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,同理得,∴,,122OB OA ==()2,0-2,6OB AB ==90BOQ PDB QBP ∠=∠=∠=︒90BQO QBO ∠+∠=︒90PBD QBO ∠+∠=︒BQO PBD ∠=∠PB BQ =()AAS PDB BOQ ≌24PD BO p ===-+2OQ DB p ==+2p =()2,2()0,4-ЅАРВAQB APBQ S S =+ 四边形1162+641822=⨯⨯⨯⨯=(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌4PD BE n ==-+2EQ DB n ==+∴,∴,∴,∴,∴,设直线的解析式为,∴,解得,∴直线的解析式为,∴,设直线的解析式为,∴,解得,∴直线的解析式为,联立,得,∴,∴,∴点Q 的坐标为242OE OB BE n n =-=+-=-()2,2Q n n -+--()()111·4222S AB n AB n =-++⋅+()()1164621822n n =⨯-++⨯+=21116632S S CF ==⨯⋅=2CF =AQ y kx a =+()4022k a n k a n +=⎧⎨-++=--⎩14k a =⎧⎨=-⎩AQ 4y x =-()6,2C BC y sx t =+6220s t s t +=⎧⎨-+=⎩1412s t ⎧=⎪⎪⎨⎪=⎪⎩BC 1142y x =+41142y x y x =-+⎧⎪⎨=+⎪⎩14565x y ⎧=⎪⎪⎨⎪=⎪⎩146,55P ⎛⎫ ⎪⎝⎭145n =424,55⎛⎫-- ⎪⎝⎭【点睛】本题属于一次函数综合题,考查了全等三角形的判定和性质,待定系数法求函数的解析式等知识,解题的关键是正确作辅助线构造全等三角形解决问题.26. 【阅读理解】定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.该定理可以通过以下方法进行证明.已知:如图1,在中,点,分别是边,的中点,连接.求证:,.证明:建立如图2所示的平面直角坐标系,其中点与原点重合,点在轴正半轴上,则点.设,,点,分别是,的中点,点的坐标为①,点的坐标为②.点和点的③坐标相同,轴.即.又由点和的坐标可得的长为④..请完善以上证明过程,并按照番号顺序将相应内容填写在下列横线上:① ;② ;③ ;④ .【联系拓展】如图3,在中,,是线段上的动点(点不与,重合),将射线绕点顺时针旋转得到射线,过作于点,点是线段的中点,连接.(1)若,,的长;(2)请探究线段与之间满足的数量关系.111A B C △1D 1E 11A B 11A C 11D E 1111D E B C ∥111112D E B C =xOy 1B O 1C x 1()0,0B 1(,)A m n 1(,0)C c 1D 1E 11A B 11A C ∴1D 1E 1D 1E 11D E x ∴∥1111D E B C ∥1D 1E 11D E ∴111111122D E OC B C ==ABC B C α∠=∠=D BC D B C DA D αDE A AE DE ⊥E F CD EF DE AB ∥BD CF =AC =DE EF BD【答案】[阅读理解] ①;②;③纵;④;[联系拓展](1)见解析;(2)【解析】【分析】本题考查了几何图形的变换,三角形全等的判定和性质,三角形的中位线,中点坐标公式,关键是构造三角形的中位线.[阅读理解]点,分别是,的中点,根据中点坐标公式可求中点坐标,完成填空.[联系拓展](1)连结,是等边三角形,证明,,三点共线,是的中位线,可求的长是的一半.(2)在射线上截取,连结,.是的中位线,,再证,,可得与的关系.【详解】解:[阅读理解]①是的中点,,,.②,,是中点,.③点和点的纵坐标相同.④.的(,22m n (,)22+m c n 2c 12EF BD =1D 1E 11A B 11A C AF ADF △A E F DE ABF △DEAC DE EM DE =CM AM EF CDM V 12EF CM =ABD ACM ≌BD CM =EF BD 1D 11A B 1(,)A m n 1()0,0B 1(,)22m n D 1(,)A m n 1(,0)C c 1E 11A C 1(,)22m c n E +1D 1E 11222m c m c D E +=-=故答案为:①;②;③纵;④.[联系拓展](1)是的中点,,,,,.,,,,,,,是等边三角形,,,,,,三点在同一直线上,为的中点.为的中点,是的中位线,.,,(2)在射线上截取,连结,.(,)22m n (,)22+m c n 2c F CD BD CF =BD DF CF ∴==B C ∠=∠ AB AC ∴=(SAS)ABD ACF ∴ ≌AD AF∴=DE AB ∴∥B EDF ∴∠=∠BAD ADE ∠=∠B ADE α∠=∠= B EDF BAD ADE ∴∠=∠=∠=∠BD AD ∴=BD AD AF DF CF ∴====ADF ∴ EDF ADE ∠=∠ DE AF ∴⊥DE AE ⊥ A ∴E F E AF D BF DE ∴ABF △12DE AB ∴=12DE AC ∴=AC = DE ∴=DE EM DE =CM AM,分别是,的中点,是的中位线,,,,,.,,,,,,.,.E F DM DC EF ∴CDM V 12EF CM ∴=AE DE ⊥ DE EM =AD AM ∴=ADM AMD α∴∠=∠=1802DAM α∴∠=︒-1802BAC α∠=︒- DAM BAC ∠=∠BAD CAM ∴∠=∠AB AC = AD AM =(SAS)ABD ACM ∴△≌△BD CM ∴=12EF BD ∴=。
.....若一个三角形,两边长分别是5和,则第三边长可能是(.4.567A .B .7.下列计算正确的是( )A D ∠=∠BE =A .B 10.绿化队原来用漫灌方式浇绿地,则现在比原来每天节约用水吨数是(三、解答题(共5小题,共52明、证明过程、计算步骤或作出图形.2CD DE =(1)求证:;(2)若,19.(1)化简:(2)解方程:20.如图,在下列正方形网格中,(1)在图(1)中画图:①画边上的中线(2)在图(2)中画图:①画边上的高21.“数形结合”是数学上一种重要的数学思想,在整式乘法中,我们常用图形而积来解释一些公式.如图(1),通过观察大长方形而积,可得:(1)如图(2),通过观察大正方形的面积,可以得到一个乘法公式,直接写出此公式;AE FC =25C ∠=︒110EAB ∠=︒522m m ⎛+- -⎝11422x x x-=---AB CD AB CE28.已知,实数m ,n ,t 满足.(1)求m ,n ,t 的值;(2)如图,在平面直角坐标系中,A ,B 都是y 轴正半轴上的点,221216100|2|0m n m n t +--++-=①如图(1),若点A 与B 重合,,求B 点的坐标;②如图(2),若点A 与B 不重合,,,直接写出的面积.参考答案与解析1.D 【分析】本题考查了轴对称图形的识别,根据轴对称图形的定义进行判断作答即可.【详解】解:由题意知,是轴对称图形,故选:D .2.D【分析】本题考查了三角形三边关系,设三角形的第三边长为,根据三角形三边关系可得,由此即可得出答案,熟练掌握三角形的任意两边之和大于第三边,两边之差小于第三边,即可得出答案.【详解】解:设三角形的第三边长为,由三角形三边关系可得:,即,第三边长可能是,故选:D .3.A【分析】本题考查了科学记数法,根据科学记数法的定义解答,科学记数法的表示形式为的形式,其中为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟悉科学记数法概念是解题的关键.【详解】解:,故选:A .4.CCD m =AD n =BC t =CBD △x 616x <<x 115115x -<<+616x <<∴710n a ⨯110,a n ≤<∣∣1>1<0.000085810-=⨯在中,, ABC AB AC =AD BC ∴⊥B C ∠=∠故答案为:﹣2.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.【分析】本题考查了点关于轴对称,根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,熟记关于轴对称的点的坐标是解题的关键.【详解】解:∵点关于轴对称,∴该对称点的坐标是,故答案为:.13.【分析】根据多边形的内角和公式以及外角和,列方程求解,即可得到答案.【详解】解:由题意得:,解得:,故答案为:.【点睛】本题考查了多边形的内角和公式以及外角和特征,掌握多边形外角和等于360°,正确列方程是解题关键.14.或6【分析】运用完全平方式的结构特征进行求解,完全平方公式.【详解】解:,,故答案为:或6.【点睛】此题考查了完全平方式概念的应用能力,关键是能准确理解并运用以上知识.15.5【分析】本题主要考查整式乘法运算,代入求值,掌握整式乘法运算的法则是解题的关键.运用整式乘法运算将展开,把代入即可.【详解】解:,∵,()23-,x x x ()23P ,x ()3-2,()3-2,10()21803604n -︒=︒⨯⋅10n =106-()2222a b a ab b ±=±+()22293x mx x mx ++=++± 6m ∴=±6-(3)(2)a a +-21a a +=()22(3)(2)66a a a a a a +-=--=-+21a a +=∴原式,故答案为:5.16.##110度【分析】本题考查线段垂直平分线的性质,连接,根据中垂线的性质,得到,进而得到,再根据,进行求解即可.掌握中垂线上的点到线段两端点的距离相等,是解题的关键.【详解】解:连接,∵边,的垂直平分线交于点D ,∴,∴,∵,,∴,即:,∴;故答案为:.17.(1);(2)【分析】(1)本题考查整式的运算,根据积的乘方,幂的乘方,单项式乘单项式,单项式除以单项式的法则,进行计算即可;(2)本题考查因式分解.先提公因式,再利用平方差公式法,进行因式分解即可.掌握因式分解的方法,是解题的关键.【详解】解:(1)原式;(2).18.(1)见解析615=-=110︒AD ,AD BD AD CD ==,BAD ABD CAD ACD ∠=∠∠=∠360BAD ABD CAD ACD BDC ∠+∠+∠+∠+∠=︒AD AB AC ,AD BD AD CD ==,BAD ABD CAD ACD ∠=∠∠=∠360BAD ABD CAD ACD BDC ∠+∠+∠+∠+∠=︒140BDC ∠=︒()2220BAD CAD ∠+∠=︒2220BAC ∠=︒=110BAC ∠︒110︒2xy ()()11a b b +-53421892x y x y xy =÷=()()()22111ab a a b a b b -=-=+-去括号得:,移项得:,合并同类项得:,系数化为1得:,当时,,原分式方程无解.20.(1)①见解析②见解析(2)①见解析②见解析【分析】本题主要考查复杂作图:(1)①找出格点T ,使四边形是矩形,连接,交于点D ,则为边上的中线;②找出格点K ,L ,连接,交于点P ,则点P 即为所求,使;(2)①取格点G ,H ,连接交于点E ,则为边上的高;②取格点D ,F ,连接,交于点Q ,则【详解】(1)解:①如图所求,线段为边上的中线;②点P 即为所求,使;(2)如图,为边上的高;②如图,1148x x =-+-+4811x x -=--36x =2x =2x =20x -=∴ATBC CT AB CD AB ,,,,AK DL CK DK BL APD BPC ∠=∠CG AB CE AB DF AB AQ CE=CD AB APD BPC ∠=∠CE AB AQ CE=关于m 的方程无解,故答案为:或1.【点睛】本题主要考查分式方程的解,理解分式方程无解产生的原因是解题的关键.24. 【分析】本题考查了幂的乘方,积的乘方等知识,①直接根据新定义即可求解设,②,,根据新运算定义用表示得方程即可求解,理解并运用新运算的定义是解题的关键.【详解】解:①依题意可得,∴,∴,设,,②依题意可知:,,∴,∴∴,故答案为:,.25.①②③④【分析】本题考查的是全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,多边形的内角和定理的应用,作出合适的辅助线是解本题的关键;如图,设,证明,可得①符合题意;连接,求解,证明,可得②符合题意;过作交于,截取,而,证明,可得③符合题意;作,连接,证明,可得,,再证明,可得④符合题意;从而可得答案.【详解】解:如图,设,2-4200510m =520n =,m n ()()5,105,20+216c =4c =()2,164=510m =520n =()5,10m =()5,20n =()()5,105,20m n +=+()5,x m n=+5m nx +=55m n=⨯1020=⨯200=4200ACE x ∠=CAE ABD ≌△△GB 30DGB ∠=︒22DCG x ACE ∠==∠G GI AE ∥CE I FH FA =60DFC ∠=︒CAH GIF ≌BJ GH =GJ BHG GJB ≌BH GJ =GHB BJG ∠=∠120260BGJ x D x D ∠=︒--∠=︒-=∠ACE x ∠=∴,∵,∴,∴,∴连接,∵,∴,,120CAE ABD ∠=︒=∠AE BD =CAE ABD ≌△△EAF BAD ACE x ∠=∠=∠=AEC ∠DFC AEF EAF D BAD ∠=∠+∠=∠+∠GB CA CG CB ==CAG CGA ∠=∠CGB CBG ∠=∠∵是角平分线.∴,又∵∴AD DM DN =12·ACD S AC DN = ABD S △1:(2ABD ACD S S AB DM =⋅△△::S S DB DC =∵在中,,∴,∴是角平分线,即:又∵,,∴,∴,ABC CA CB =ACB ∠36CAB CBA ∠=∠=︒AD BAC ∠AE AC =AD AD =(SAS)AED ACD ≌DE CD =108AED ACB ∠=∠=∵,∴,又∵,∴,∴,∴是定直线,∴当Q 在点时, ACB PCQ α∠=∠=ACP BCQ ∠=∠AC BC =CP CQ =(SAS)BQC APC ≌CBQ CAP ∠=∠BQ D Q Q C DQ Q C DQ '''''+=+≤Q 'CQ +∵,∴,∵180BCD DAO ∠+∠=︒∠BCO OAD ∠=∠9090OBC BCO ∠=︒-∠=︒。
2023-2024学年吉林省第二实验(高新、远洋)学校八年级(上)期末数学试卷一、选择题:本题共7小题,每小题3分,共21分.在每小题给出的选项中,只有一项是符合题目要求的.1. 下列各数中,是无理数的是( )A. B. C. D. 【答案】D【解析】【分析】根据无理数的三种形式:开方开不尽的数,无限不循环小数,含有π的数,逐一判断即可;本题主要考查无理数,解题的关键是掌握无理数和有理数的概念.【详解】解:A .是小数,属于有理数,不符合题意;B .是整数,属于有理数,不符合题意;C .是分数,属于有理数,不符合题意; D . 是无限不循环小数,属于无理数,符合题意.故选:D .2. 25的平方根是( )A. 5B. -5C.D. 【答案】C【解析】【分析】如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题.【详解】解:∵(±5)2=25∴25的平方根±5.故选C .【点睛】本题主要考查了平方根定义,关键是注意一个正数有两个平方根.3. 下列计算正确的是( )A. B. C. D. 【答案】A【解析】3.142273.143=2275±268·a a a=()235a a =824a a a ÷=()326ab ab =【分析】由同底数幂的乘法、幂的乘方、同底数幂的除法、幂的乘方判断分析即可.【详解】A 、,计算正确,本选项符合题意;B 、,计算错误,本选项不符合题意;C 、,计算错误,本选项不符合题意;D 、,计算错误,本选项不符合题意;故选:A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,同底数幂的除法,掌握以上运算法则是解题的关键.4. 四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形是( )A. AB //DC ,AD //BCB. AB =DC ,AD =BCC. AO =CO ,BO =DOD. AB //DC ,AD =BC【答案】D【解析】【详解】解:A 、由“AB //DC ,AD //BC ”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB //DC ,AD =BC ”可知,四边形ABCD 一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .5. 图中的四边形均为正方形,三角形为直角三角形,最大的正方形的边长为7cm ,则图中A 、B 两个正方形的面积之和为( )的的268·a a a =()236a a =()235a a =826a a a ÷=824a a a ÷=()3236ab a b =()326ab ab =A. 28cm 2B. 42cm 2C. 49cm 2D. 63cm 2【答案】C【解析】【分析】根据正方形的面积公式,运用勾股定理,发现:2个小正方形的面积和等于最大正方形的面积.【详解】由图形可知2个小正方形的面积和等于最大正方形的面积,故正方形A ,B 的面积之和=49cm 2.故选:C .【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方.6. 关于一次函数,下列说法正确的是( )A. 它的图象过点B. 它的图象经过第一、二、三象限C. 随的增大而增大D. 当时,总有【答案】D【解析】【分析】A 、利用一次函数图象上点的坐标特征可得出点(1,-2)不在一次函数y=1-2x 的图象上,A 不符合题意;B 、由k ,b 的值,利用一次函数图象与系数的关系可得出一次函数y=1-2x 的图象经过第一、二、四象限,B 不符合题意;C 、由k=-2<0,利用一次函数的性质可得出y 随x 的增大而减小,C 不符合题意;D 、利用一次函数图象上点的坐标特征以及一次函数的性质,可得出当x >0时,总有y <1,D 符合题意.此题得解.【详解】解:、当时,,点不在一次函数的图象上,不符合题意;、,,一次函数的图象经过第一、二、四象限,不符合题意;、,随的增大而减小,不符合题意;12y x =-(1,2)-y x 0x >1y <A 1x =121y x =-=-∴(1,2)-12y x =-A B 20k =-< 10b =>∴12y x =-B C 20k =-< y ∴x C、当时,,当时,总有,符合题意.故选.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四个选项的正误是解题的关键.7. 如图,的顶点的坐标为,顶点的坐标为,点在轴上,若直线与的边有交点,则的取值范围为( )A. B. C. D. 【答案】D【解析】【分析】当直线y=-2x+b 分别经过点A 、B 时,即可求得点b 的最大值和最小值.【详解】解:把代入,得.解得.把入,得.解得.所以的取值范围为.故选.【点睛】考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征.根据题意得到当直线y=-2x+b 分别经过点A 、B 可求得点b 的最大值和最小值是解题的关键.二、填空题:本题共6小题,每小题3分,共18分.8. 的立方根是__________.【答案】-2【解析】【分析】根据立方根的定义进行求解即可得.【详解】解:∵(﹣2)3=﹣8,D 0x =121y x =-=∴0x >1y <D D Rt ABC ∆A (3,4)B (1,0)-C x 2y x b =-+Rt ABC ∆b 210b -<<04b <<14b - (210)b -……(3,4)A 2y x b =-+423b =-⨯+10b =(1,0)B -2y x b =-+02(1)b =-⨯-+2b =-b 210b -……D 8-∴﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.9 分解因式:=________.【答案】【解析】【分析】利用提公因式法,将各项的公因式a 提出,将各项剩下的商式写在一起,作为因式.【详解】解: 原式,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10. 比较大小:___5(选填“”、“ ”、“ ” ).【答案】<【解析】【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵,,而24<25,∴5.故答案为:<.【点睛】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.11. 在平面直角坐标系中,点A (2,﹣3)关于y 轴对称的点的坐标为_____.【答案】(﹣2,﹣3).【解析】【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点A (2,﹣3)关于y 轴对称的点的坐标为(﹣2,﹣3),故答案为:(﹣2,﹣3).【点睛】此题主要考查了关于y 轴对称的点的坐标,关键是掌握点的坐标的变化规律..25a a -(5)a a -(5)a a =-(5)a a ->=<=5=12. 如图所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h 是指距d 的函数.下表是测得的指距与身高的一组数据:指距厘米20212223身高厘米160169178187某人身高为196厘米,一般情况下他的指距应是______厘米.【答案】24【解析】【分析】本题主要考查了一次函数的应用,解题的关键是首先根据表格数据得到d 与h 是一次函数关系,然后可设此函数解析式为,利用待定系数法即可求出此函数解析式.【详解】解:由表格可知随着指距的增加,身高增加相同的长度,故设此函数解析式为,依题意有,解得,故h 与d 之间的关系式为:,把代入可得:,解得:,故答案为:24.13. 如图,在平面直角坐标系中,四边形OABC 是平行四边形,O (0,0),A (1,-2),B (3,1)则C 点坐标为___________./d /h h kd b =+h kd b =+2016021169k b k b +=⎧⎨+=⎩920k b =⎧⎨=-⎩920h d =-196h =196920d =-24d =【答案】(2,3)【解析】【详解】试题分析:连接OB 、AC ,根据O 、B 的坐标易求点P 的坐标,再根据平行四边形的性质:对角线互相平分即可求出点C 的坐标.解:连接OB 、AC∵四边形OABC 是平行四边形,∴AP=CP ,OP=BP ,∵O (0,0),B (3,1),∴点P 的坐标(1.5,0.5),∵A (1,-2),∴C 点的坐标(2,3),故答案为(2,3).考点:平行四边形的性质;坐标与图形的性质.三、解答题:本题共10小题,共78分.解答应写出文字说明,证明过程或演算步骤.14. 计算:.【答案】6【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质等分别化简得出答案.【详解】==2022031(1)(5)()22π---++--2022031(1)(5)(22π---++--1182-+-6【点睛】本题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.15. 先化简,再求值:,其中.【答案】,【解析】【分析】本题主要考查了整式的混合运算—化简求值.先根据完全平方公式和平方差公式计算,再把代入化简后的结果,即可求解.【详解】解:原式,当时,原式.16. 解分式方程:(1);(2).【答案】(1)分式方程无解(2)【解析】【分析】(1)方程两边同乘变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可;(2)方程两边同乘变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【小问1详解】解:去分母得:,解得:,检验:把代入得:,∴是原方程的增根,∴分式方程无解;【小问2详解】解:,()()()2211212x x x ++-+120x =42x +482120x =()2244114x x x =+++-2244114x x x =+++-42x =+120x =41202482=⨯+=2 1.512112x x x-+=--1111x x x +-=-=1x -21x -()1x x -2 1.512112x x x-+=--221 1.5x x -+-=-0.5x =0.5x =210x -=0.5x =1111x x x+-=-去分母得:,解得:,检验:把代入得:,∴是原分式方程的解.【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的方法,准确计算,注意解分式方程要进行检验.17. 已知:图①、图②均为的正方形网格,线段AB 的端点均在格点上.(1)线段AB 的长为______________.(2)分别在图①、图②中按要求以AB 为腰画等腰,使点C 也在格点上.要求:在图①中画一个等腰锐角三角形.在图②中画一个等腰直角三角形.【答案】(1;(2)见解析【解析】【分析】(1)根据勾股定理即可求出AB的长;(2)①根据等腰三角形的对称性即可做出等腰锐角三角形;②根据等腰三角形的性质和全等的性质即可得到等腰直角三角形.【详解】解:(1)(2)如图所示:(1)(1)(1)x x x x x +--=-=1x -=1x -()10x x -≠=1x -44⨯ABC V ABC V ABC V ABC V ABC V AB ==证明:如图①∵AB 和AC 关于直线AD 对称,∴AB=AC ,∴等腰锐角三角形;如图②,∵BE=AF=3,∠E=∠F ,EA=CF ,∴△BEA ≌AFC ,∴BA=AC ,∠EAB=∠FCA ,∵∠FAC+∠FCA=90°,∴∠FAC+∠EAB=90°,∴∠BAC=90°,∴为等腰直角三角形..【点睛】此题考查了等腰三角形的轴对称,全等三角形的判断与性质,熟知相关定理是解题关键.18. 如图,的对角线,相交于点,过点且与,分别相交于点,.求证:.【答案】见解析【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质,解题的关键是掌握平行四边形的性质.由四边形是平行四边形,可得,,继而可证得,即可证得结论.【详解】证明:四边形是平行四边形,ABC V ABC V ABCD Y AC BD O EF O AD BC E F OE OF =ABCD OA OC =AD BC ∥()ASA AOE COF V V ≌ ABCD,,,在和中,,≌,.19. 星期天,小明与妈妈到离家的洞庭湖博物馆参观.小明从家骑自行车先走,后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.【答案】妈妈开车的平均速度是48km/h .【解析】【分析】设妈妈开车的平均速度为x km/h ,根据小明行驶的时间比妈妈多用1小时列出方程,求解并检验可得结论.【详解】解:设妈妈开车的平均速度为x km/h,则小明的速度为km/h ,根据题意得, 解得,经检验,是原方程的根,答:妈妈开车的平均速度是48km/h .【点睛】此题主要考查了分式方程的应用,找出等量关系“小明用时-1=妈妈用时”是解答此题的关键.20. 海滨公园是珠海市市民放风筝的最佳场所,某校八年级(1)班的小华和小轩学习了“勾股定理”之后,为了测得风筝的垂直高度,他们进行了如下操作:①测得水平距离的长为12米;②根据手中剩余线的长度计算出风筝线的长为20米;③牵线放风筝的小明的身高为1.62米.OA OC ∴=AD BC ∥OAE OCF ∴∠=∠OAE △OCF △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩AOE ∴V ()ASA COF V OE OF ∴=16km 1h 4x 161614x x -=48x =48x =CE BD BC(1)求风筝的垂直高度;(2)如果小明想风筝沿方向下降11米,则他应该往回收线多少米?【答案】(1)17.62米(2)7米【解析】【分析】(1)利用勾股定理求出长,再加上的长度,即可求出的高度;(2)根据勾股定理即可得到结论.【小问1详解】解:在中,由勾股定理得,,所以,(负值舍去),所以,(米),答:风筝的高度为17.62米;【小问2详解】解:由题意得,米,∴米,∴(米),∴(米),的CE CD CD DE CE Rt CDB V 22222==2012=256CD BC BD --16CD ===16 1.62=17.62CE CD DE ++CE =11CM 5DM====13BM =2013=7BC BM --∴他应该往回收线7米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.21. 甲、乙两车分别从A ,B 两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (千米)与甲车出发时间x (小时)的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (千米)与甲车出发时间x (小时)的函数关系式(写出自变量x 的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?【答案】(1)a=90,m=1.5,n=3.5.(2)y 与x 关系式为(3)乙车行驶了1小时或3小时【解析】【详解】试题分析:(1)∵甲车途径C 地时休息一小时,∴2.5﹣m=1.∴m=1.5.∵乙车的速度为:,即,解得a=90.甲车的速度为:,解得n=3.5.∴a=90,m=1.5,n=3.5.(2)分休息前,休息时,休息后三个阶段,利用待定系数法求一次函数解析式解答.(3)求出甲车的速度,然后分①相遇前两人的路程之和加上相距的120千米等于总路程列出方程求解即可;②相遇后,两人行驶的路程之和等于总路程加120千米,列出方程求解即可. 解:(1)a=90,m=1.5,n=3.5.(2)设甲车的y 与x 的函数关系式为y=kx+b (k≠0),的()()()120x 3000x<1.5y {1201.5x<2.5120x 4202.5x 3.5-+≤=≤-+≤≤a 120m 2=a 601.5=300300120n 1 1.5-=-①休息前,0≤x <1.5,函数图象经过点(0,300)和(1.5,120),∴,解得.∴y=﹣120x+300,②休息时,1.5≤x <2.5,y=120.③休息后,2.5≤x≤3.5,函数图象经过(2.5,120)和(3.5,0),所以,,解得.∴y=﹣120x+420.综上所述,y 与x 的关系式为.(3)设两车相距120千米时,乙车行驶了x 小时,甲车的速度为:(300﹣120)÷1.5=120千米/时.①若相遇前,则120x+60x=300﹣120,解得x=1.②若相遇后,则120(x ﹣1)+60x=300+120,解得x=3.∴两车相距120千米时,乙车行驶了1小时或3小时.22. 如图,△ABC 是等边三角形,点D 是边BC 上的一点,以AD 为边作等边△ADE ,过点C 作CF ∥DE 交AB 于点F .(1)若点D 是BC 边的中点(如图①),求证:EF =CD ;(2)在(1)的条件下直接写出△AEF 和△ABC 的面积比;(3)若点D 是BC 边上的任意一点(除B 、C 外如图②),那么(1)中的结论是否仍然成立?若成立,给出证明;若不成立,说明理由.【答案】(1)证明见解析(2)1:4(3)成立.【解析】【详解】(1)∵△ABC 是等边三角形,D 是BC的中点,1.5k b 120{b 300+==k 120{b 300=-=2.5k b 120{3.5k b 0+=+=k 120{b 420=-=()()()120x 3000x<1.5y {1201.5x<2.5120x 4202.5x 3.5-+≤=≤-+≤≤∴AD ⊥BC ,且∠BAD =∠BAC =30°,∵△AED 是等边三角形,∴AD =AE ,∠ADE =60°,∴∠EDB =90°-∠ADE =90°-60°=30°,∵ED ∥CF ,∴∠FCB =∠EDB =30°,∵∠ACB =60°,∴∠ACF =∠ACB -∠FCB =30°,∴∠ACF =∠BAD =30°,在△ABD 和△CAF 中,,∴△ABD ≌△CAF (ASA ),∴AD =CF ,∵AD =ED ,∴ED =CF ,又∵ED ∥CF ,∴四边形EDCF 是平行四边形,∴EF =CD .(2)△AEF 和△ABC 的面积比为:1:4(3)成立.理由如下:∵ED ∥FC ,∴∠EDB =∠FCB ,∵∠AFC =∠B +∠BCF =60°+∠BCF ,∠BDA =∠ADE +∠EDB =60°+∠EDB∴∠AFC =∠BDA ,在△ABD 和△CAF 中,∴△ABD ≌△CAF (AAS ),∴AD =FC ,12{BAD ACFAB CA FAC B∠=∠=∠=∠{BDA AFCB FAC AB CA∠=∠∠=∠=∵AD =ED ,∴ED =CF ,又∵ED ∥CF ,∴四边形EDCF 是平行四边形,∴EF =DC .点睛:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握.此题涉及到的知识点较多,综合性较强,难度较大.23. 在平面直角坐标系中,函数(m 为常数)的图象与y 轴交于点A ,点B 的坐标为.(1)当时,点A 的坐标为______;(2)当点A 、B 到直线距离相等时,求m 的值;(3)过点B 作x 轴的垂线交函数(m 为常数)的图象于点C ,以O 、A 、B 、C 为顶点构造四边形M .①当四边形M 为平行四边形时,求m 的值;②设,当点D 在四边形M 的内部时,直接写出m 的取值范围.【答案】(1)(2)或; (3)①或;②;【解析】【分析】(1)求出直线轴交点,把代入,则点A 的坐标为可求;(2)分别求出点A 、B 到直线距离,列方程求解即可;(3)①表示点C 坐标得点在点上方,求得,根据平行四边形性质得到,则,求出m 的值即可;②用表示的解析式,分别求出当横坐标为时,直线、上对应点的纵坐标,由在四边形M 的内部,构造不等式组求解即可.22y x m =++(),31m m -2m =1y =22y x m =++,12m D m ⎛⎫-+ ⎪⎝⎭()0,432m =141m =5-1335m -<<y 2m =1y =C B 3BC =3OA =23m +=m OB 2m OB 22y x m =++,12m D m ⎛⎫-+ ⎪⎝⎭【小问1详解】解:当时,,∴点A 的坐标为,当时,∴点A 的坐标为;故答案为:;【小问2详解】解:由(1)点A 的坐标为,则到直线的距离为:,则到直线的距离为:,∴,解得,或故答案为:或【小问3详解】①由已知,点坐标为,∵点B 的坐标为,∴点在点上方,,∵以O 、A 、B 、C 为顶点构造四边形为平行四边形,∴,∴,∴或;②设直线的解析式为,把点B 的坐标为代入得,,解得,,0x =2y m =+()0,2m +2m =()0,4()0,4()0,2m +A 1y =211m m +-=+B 1y =31132m m --=-132m m +=-32m =143214C (),32m m +(),31m m -C B 3BC =M 3OA =23m +=1m =5-OB ()0y kx k =≠(),31m m -31m km -=31m k m-=∴,当时,代入直线的解析式得,,代入直线解析式,得,,当,当点D 在四边形M 的内部时,,解得,;【点睛】本题是一次函数的综合问题,涉及到平行四边形的性质和待定系数法,解答关键是应用数形结合思想解答问题.31m y x m -=2m x =OB 313122m m m y m --=⋅=22y x m =++22222m y m m =⨯++=+,12m D m ⎛⎫-+ ⎪⎝⎭1223112m m m m -+<+⎧⎪⎨--+>⎪⎩1335m -<<。
2023-2024学年上海市宝山区八年级(上)期末数学试卷一、选择题.(本大题共6题,每题3分,满分18分)1.在下列二次根式中,属于最简二次根式的是()A. B.C. D.【答案】C【解析】【分析】本题考查最简二次根式,掌握化简最简二次根式的方法是解题的关键.根据最简二次根式的定义进行解题即可【详解】解:A =,不符合题意;B =C 是最简二次根式,符合题意;D 222=,不符合题意;故选:C .2.下列方程中,关于x 的一元二次方程的是()A.()50x x -= B.230ax -= C.212x x -= D.321x x -=【答案】A【解析】【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程的定义逐项分析判断即可求解.一元二次方程定义:“只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程”.【详解】解:A .方程()50x x -=是一元二次方程,故本选项符合题意;B .当0a =时,230ax -=不是一元二次方程,故本选项不符合题意;C .方程212x x-=是分式方程,不是一元二次方程,故本选项不符合题意;D .方程321x x -=,未知数的最高次数是3,不是一元二次方程,故本选项不符合题意.故选:A .3.随着互联网购物急速增加,快递业逐渐成为我国发展最快的行业之一,某快递店十月份揽件5000件、十月、十一月、十二月合计揽件20000件,如果该快递店十一月、十二月月揽件量的增长率都是x ,那么由题意可得方程()A.25000120000()x =+B.25000500015000120000()()x x ++=++C.50005000320000x +⨯= D.50005000220000x +⨯=【答案】B【解析】【分析】设该快递店十一月、十二月揽件量的增长率都是x ,关系式为:三个月总揽件数=十月揽件数+十一月揽件数+十月揽件数⨯(1+揽件平均增长率)2,把相关数值代入即可.本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.【详解】设该快递店十一月、十二月揽件量的增长率都是x ,由题意可得方程:25000500015000120000()()x x ++=++.故选:B .4.直角三角形的两条直角边分别为1和,那么它斜边上的中线长是()A.12 B. C.3 D.32【答案】D【解析】【分析】本题考查了勾股定理,直角三角形的性质,再根熟记“直角三角形斜边上的中线等于斜边的一半”是解题的关键.根据勾股定理求出斜边长,据“直角三角形斜边上的中线等于斜边的一半”求解即可.【详解】解: 直角三角形的两条直角边分别为1和∴斜边长3==,∴它斜边上的中线长是13322⨯=,故选:D .5.已知反比例函数()0k y k x =≠的图象有一支在第四象限,点(P m 在正比例函数y kx =-的图象上,那么点P 在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】本题考查的是反比例函数的性质及一次函数图象上点的坐标特征,熟知函数图象与系数的关系是解题的关键.先根据反比例函数(0)k y k x =≠的图象有一支在第四象限判断出k 的符号,再由一次函数图象上点的坐标特征解答即可.【详解】解: 反比例函数(0)k y k x=≠的图象有一支在第四象限,0k ∴<,0k ∴->,∴正比例函数y kx =-的图象经过一、三象限,点(P m 在正比例函数y kx =-的图象上,∴点P 在第一象限.故选:A .6.下列命题中,逆命题是假命题的是()A.两直线平行,内错角相等B.直角三角形的两个锐角互余C.关于某个点成中心对称的两个三角形全等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】称、线段垂直平分线的判定定理判断即可.本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.【详解】A 、两直线平行,内错角相等,逆命题是内错角相等,两直线平行,是真命题,不符合题意;B 、直角三角形的两个锐角互余,逆命题是有两个锐角互余的三角形是直角三角形,是真命题,不符合题意;C 、关于某个点成中心对称的两个三角形全等,逆命题是两个全等三角形关于某个点成中心对称,是假命题,符合题意;D 、线段垂直平分线上的任意一点到这条线段两个端点的距离相等,逆命题是到线段两个端点的距离相等的点在这条线段垂直平分线上,是真命题,不符合题意;故选:C .二、填空题(本大题共12题,每小题2分,满分24分)7.______.【答案】2【解析】【分析】根据二次根式的乘法法则计算即可.;故答案为2.【点睛】本题考查了二次根式的乘法,属于基础题目,熟练掌握运算法则是关键.8.函数y =__.【答案】1x ≥【解析】【分析】根据二次根式的意义,被开方数大于或等于0,可以求出x 的范围.【详解】解:根据题意得:10x -≥,解得:1x ≥.故答案为:1x ≥.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.已知()23f x x =+,那么()1f -=_____.【答案】1【解析】【分析】本题考查求函数值,理解题中函数关系式是解答的关键.将=1x -代入该函数解析式进行计算可得此题结果.【详解】解: ()23f x x =+,∴()21113f -==-+,故答案为:1.10.如果关于x 的方程x 2﹣4x +m =0有两个相等的实数根,那么m 的值是____.【答案】4.【分析】一元二次方程有两个相等的实根,即根的判别式△=b 2-4ac=0,即可求m 值.【详解】依题意.∵方程x 2﹣4x +m =0有两个相等的实数根,∴△=b 2﹣4ac =(﹣4)2﹣4m =0,解得:m =4.故答案为:4.【点睛】此题主要考查的是一元二次方程的根判别式,当△=b 2-4ac=0时,方程有两个相等的实根,当△=b 2-4ac >0时,方程有两个不相等的实根,当△=b 2-4ac <0时,方程无实数根.11.如果点()2,1A 是反比例函数k y x =图象上一点,那么k =_____.【答案】2【解析】【分析】本题考查了待定系数法求解反比例函数解析式.把()2,1A 代入函数k y x=即可求解.【详解】解: 点()2,1A 是反比例函数k y x=图象上一点,∴12k =,∴2k =,故答案为:2.12.已知y 是x 的正比例函数,当2x =时,3y =,那么当x =y =_____.【答案】332【解析】【分析】本题考查了正比例函数图象上点的坐标特征,利用一次函数图象上点的坐标特征即可求解,设正比例函数的解析式为()0y kx k =≠,由当2x =时,3y =,可求出k 值,进而可得出正比例函数解析式,再利用一次函数图象上点的坐标特征,即可求出当x =时y 的值,求出正比例函数解析式是解题的关键.【详解】解:设正比例函数的解析式为()0y kx k =≠,∵当2x =时,3y =,解得:32k =,∴正比例函数的解析式为32y x =,当x =时,33322y ==,故答案为:2.13.=______.【答案】3##3+【解析】()0(0)a a a a ⎧≥=⎨-<⎩化简即可.【详解】解:3<30-<,3=.故答案为:3.【点睛】此题考查二次根式的化简,当0a ≥a =;当0a ≤a =-.14.在实数范围内分解因式:241____x x ++=【答案】(22x x +++【解析】【分析】利用配方法将原式变形为2(2)3x +-,然后利用平方差公式进行因式分解.【详解】解:241x x ++=2224221x x ++-+=2(2)3x +-=(22x x +++故答案为:(22x x +++【点睛】本题考查配方法将代数式变形为完全平方式及平方差公式进行因式分解,熟记公式结构是本题的解题关键.15.如图,射线A l 、B l 分别表示两个物体A 和B 所受压力F 与受力面积S 的函数关系,当受力面积相同时,它们所受的压力分别为A F 、B F ,则A F _____B F .(填“>”、“<”或“=”)【答案】>【解析】【分析】利用数形结合法解题即可.本题考查了一次函数的应用,利用数形结合法解题是解题的关键.【详解】由图像知受力面积相同时,压力A B F F >,故答案为:>.16.已知等腰直角三角形斜边上的高为方程2560x x --=的根,那么这个直角三角形斜边的长是_____.【答案】12【解析】【详解】此题考查了解一元二次方程﹣因式分解法,等腰三角形的性质,以及直角三角形斜边上的中线性质,求出已知方程的解,确定出等腰直角三角形斜边上的高,利用三线合一得到此高为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出斜边的长,熟练掌握性质是解题的关键.【解答】解:方程2560x x --=,()()610x x -+=,解得:6x =或=1x -(舍去),∴等腰直角三角形斜边上的高为6,即为斜边上的中线,则这个直角三角形斜边的边长为12,故答案为:12.17.如图,四边形ABCD 中,90A ∠=︒,ABD DBC ∠=∠,6AD =,8BC =,那么DBC △的面积是_______.【答案】24【解析】【分析】本题考查角平分线的性质,关键是由角平分线的性质得到6DH DA ==.过D 作DH BC ⊥于H ,由角平分线的性质得到6DH DA ==,而8BC =,即可求出DBC △的面积.【详解】解:过D 作DH BC ⊥于H ,90A ∠=︒ ,ABD DBC ∠=∠,6DH DA ∴==,8BC = ,DBC ∴△的面积11682422BC DH =⋅=⨯⨯=.故答案为:24.18.已知点D 、E 分别是等边ABC 边AB 、AC 上的动点,将ADE V 沿直线DE 翻折,使点A 恰好落在边BC 上的点P 处,如果BPD △是直角三角形,且2BP =,那么EC 的长是____________________.【答案】1+或2-【解析】【分析】分两种情况讨论,一是90BPD ∠=︒,由等边三角形的性质得60∠=∠=∠=︒A B C ,得到30BDP ∠=︒,则24BD BP ==,由勾股定理求出PD ,由翻折得AD PD ==,60A DPE ∠=∠=︒,则4BC AB ==,30CPE ∠=︒,再根据线段的和差求出2CP =+,最后由12EC CP =即可求解;二是90BDP ∠=︒,则30BPD ∠=︒,从而求出BD ,根据勾股定理得AD PD ==进而求出BC ,则据线段的和差求出CP ,最后根据2EC CP =即可求解.【详解】解:如图1,BPD △是直角三角形,且90BPD ∠=︒,ABC 是等边三角形,2BP =,∴60∠=∠=∠=︒A B C ,∴30BDP ∠=︒,∴24BD BP ==,∴PD ===由翻折得AD PD ==,60A DPE ∠=∠=︒,∴4BC AB AD BD ==+=,18030CPE BPD DPE ∠=︒-∠-∠=︒,∴422CP BC BP =-=-=,18090CEP C CPE ∠=︒-∠-∠=︒,∴()112122EC CP ==⨯=+;如图2,BPD △是直角三角形,且90BDP ∠=︒,则30BPD ∠=︒,∴112BD BP ==,∴AD PD ====,∴1BC AB BD AD ==+=+,∴121CP BC BP =-=+=,18090CPE BPD DPE ∠=︒-∠-∠=︒,∴30CEP ∠=︒,∴)2212EC CP ==⨯=,1+或2-.【点睛】此题重点考查等边三角形的性质、轴对称的性质、直角三角形中30︒角所对的直角边等于斜边的一半、勾股定理等知识,正确地求出CP 的长是解题的关键.三、简答题(本大题共4题,每题6分,满分24分)19.计算:21(-+.【答案】1-.【解析】【分析】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.先根据完全平方公式计算,然后进行分母有理化后合并即可.【详解】解:21(+1)122-=-+122=-+1=-.20.解方程:()27x x -=.【答案】11x =+,21x =-【解析】【分析】本题考查了用配方法解一元二次方程,能够正确配方是解此题的关键.利用配方法求解即可.【详解】解:()27x x -=227x x -=22171x x -+=+()218x -=1x -=±11x =+,21x =-21.已知12y y y =+,并且1y 与(2)x -成正比例,2y 与x 成反比例,当=1x -时,3y =;当4x =时,74y =.(1)求y 关于x 的函数解析式;(2)求=1x -时的函数值.【答案】(1)924y x x =--;(2)3.【解析】【分析】(1)根据正比例和反比例函数的定义设表达式,再根据给出的自变量和函数的对应值求出待定的系数则可;(2)将=1x -代入(1)中求值即可.此题主要考查了待定系数法求函数解析式,设出解析式是解题的关键.【小问1详解】解:设12()y m x -=,2n y x=,则2()x y m x n =-+,根据题意,得:337244m n n m --=⎧⎪⎨+=⎪⎩,解得:29m n =⎧⎨=-⎩,∴924y x x=--;【小问2详解】解:当=1x -时,2493y =--+=.22.如图,已知BE AC ⊥于E ,CF AB ⊥于F ,BE CF 、相交于点D ,若BD CD =.求证:AD 平分BAC ∠.【答案】见解析【解析】【分析】本题主要考查了全等三角形的性质与判定,角平分线的判定,证明()AAS BDF CDE ≌得到DF DE =,再由BE AC ⊥,CF AB ⊥,即可证明AD 平分BAC ∠.【详解】证明:∵BE AC ⊥,CF AB ⊥,∴90DEB DEC ∠=∠=︒,又∵BDF CDE BD CD ==∠∠,,∴()AAS BDF CDE ≌,∴DF DE =,又∵BE AC ⊥,CF AB ⊥,∴AD 平分BAC ∠.四、解答题(本大题共4题,第23-25题每题8分,第26题10分,满分34分)23.如图,在平面直角坐标系xOy 中,已知()1,6A 、()3,B m 是反比例函数()0k y x x=>的图像上的两点,连接AB .(1)求反比例函数的解析式;(2)线段AB 的垂直平分线交x 轴于点P ,求点P 的坐标.【答案】(1)6y x =(2)()6,0-【解析】【分析】本题考查了待定系数法求反比例函数的解析式,反比例函数图像上点的坐标特征,线段垂直平分线的性质,熟练掌握待定系数法以及线段垂直平分线的性质是解题的关键.(1)利用待定系数法求得即可;(2)由反比例函数的解析式求得点B 的坐标,设P 点的坐标为(),0x ,根据垂直平分线的性质得出PA PB =,即可得出()()22221632x x -+=-+,解方程即可.【小问1详解】解: ()1,6A 是反比例函数()0k y x x=>的图像上的点,∴166k =⨯=,∴反比例函数的解析式为6y x =;【小问2详解】把()3,B m 代入6y x =得,623m ==,∴()3,2B ,设P 点的坐标为(),0x ,线段AB 的垂直平分线交x 轴于点P ,∴PA PB =,∴()()22221632x x -+=-+,解得6x =-,∴点P 的坐标为()6,0-.24.越来越多的人选择骑自行车这种低碳方便又健身的方式出行.某日,一位家住宝山的骑行爱好者打算骑行去上海蟠龙天地,记骑行时间为t 小时,平均速度为v 千米/小时(骑行速度不超过40千米/小时).根据以往的骑行经验,v 、t 的一些对应值如下表:v (千米/小时)15202530t (小时)2 1.5 1.21(1)根据表中的数据,求出平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式;(2)如果这位骑行爱好者上午8:30从家出发,能否在上午9:10之前到达上海蟠龙天地?请说明理由;(3)若骑行到达上海蟠龙天地的行驶时间t 满足0.8 1.6t ≤≤,求平均速度v 的取值范围.【答案】(1)30v t=(2)不能,理由详见解析(3)18.7537.5v ≤≤【解析】【分析】本题考查反比例函数的应用,关键是求出反比例函数解析式.(1)由表中数据可得30vt =,从而得出结论;(2)把23t =代入(1)中解析式,求出v ,从而得出结论;(3)根据30t v =和t 的取值范围得出结论.【小问1详解】解:根据表中数据可知,30vt =,30v t∴=,∴平均速度v (千米/小时)关于行驶时间t (小时)的函数表达式30v t =;【小问2详解】骑行者在上午9:10之前不能到达上海蟠龙天地,理由:从上午8:30到上午9:10,骑行者用时40分钟,即23小时,当23t =时,304523v ==(千米/时), 骑行速度不超过40千米/小时,∴骑行者在上午9:10之前不能到达上海蟠龙天地;【小问3详解】30t v= ,∴当0.8 1.6t ≤≤时,300.8 1.6v≤≤,解得18.7537.5v ≤≤,∴平均速度v 的取值范围为18.7537.5v ≤≤.25.如图,ABC 中,AC BC =,90ACB ∠=︒,CD 是边AB 上的中线,E 是边BC 上一点,F 是边AC上一点,且DF DE ⊥,连接EF.(1)求证:AF CE =;(2)如果4AF =,3DF =,求边AC 的长.【答案】(1)证明详见解析;(2)4【解析】【分析】(1)证()ASA ADF CDE ≌,即可得出结论;(2)由全等三角形的性质得4AF CE ==,3DF DE ==,则DEF是等腰直角三角形,得EF ==,再由勾股定理求出CF 的长,即可得出结论;本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质以及勾股定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.【小问1详解】证明:∵AC BC =,90ACB ∠=︒,∴45A B ∠=∠=︒,∵CD 是边AB 上的中线,∴12CD AB AD ==,1452DCE ACB ∠=∠=︒,CD AB ⊥,∴90CDA ∠=︒,A DCE ∠=∠,∵DF DE ⊥,∴90EDF CDA ∠=︒=∠,∴CDA CDF EDF CDF ∠-∠=∠-∠,即ADF CDE ∠=∠,在ADF △和CDE 中,A DCE AD CD ADF CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF CDE ≌,∴AF CE =;【小问2详解】解:由(1)可知,ADF CDE △≌△,∴4AF CE ==,3DF DE ==,∴DEF 是等腰直角三角形,∴EF ==∴CF ==,∴4AC AF CF =+=+即边AC 的长为426.如图,30AOB ∠=︒,C 是射线OB 上一点,且2OC =,D 是射线OA 上一点,连接CD ,将COD △沿着直线CD 翻折,得到CDE .(1)设OD x =,COD S y = ,求y 与x 的函数关系式;(2)如果线段DE 与射线OB 有交点,设交点为G .①直接写出OD 的取值范围;②若CEG 是等腰三角形,求ODE ∠的度数.【答案】(1)12y x =;(2)①433OD ≥;②90︒或45︒【解析】【分析】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,利用分类讨论思想解决问题是解题的关键.(1)过点C 作CH OA ⊥于H ,由直角三角形的性质可求1CH =,由三角形的面积公式可求解;(2)①当DE 与OB 的交点为E 时,求出OD 的值,即可求解;②分三种情况讨论,由等腰三角形的性质可求解.【小问1详解】解:(1)如图,过点C 作CH OA ⊥于H ,30AOB ∠=︒,2OC =,∴112CH OC ==, 12CODS y OD •CH ==⨯ ,∴12y x =;【小问2详解】①如图:当点E 落在OB 上时,将COD △沿着直线CD 翻折,∴OC CE =,OD DE =,30AOB DEC ∠=∠=︒,∴DC OB ⊥,30AOB ∠=︒,∴233DC ==,23OD CD ==,∴当433OD ≥时,线段DE 与射线OB 有交点,故答案为:433OD ≥;②当CG GE =时,30GCE DEC ∠=∠=︒,∴60DGO ∠=︒,∴90ODE ∠=︒;当CE GE =时,75CGE ∠=︒,∴45ODE CGE AOB ∠=∠-∠=︒,当CG CE =时,30CGE CEG ∠=∠=︒不合题意舍去,综上所述:ODE ∠的度数为90︒或45︒.。
八年级(上)期末数学试卷一、选择题(本题共18分,每小题3分)1.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5 C.a6÷a2=a3D.a5+a5=2a102.下列各式中,正确的是()A.B.C.D.3.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°5.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()A.12 B.16 C.20 D.16或206.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.10二、填空题(本题共24分,每小题3分)7.因式分解:3x2﹣6x+3=.8.计算:a2b2÷()2=.9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=.10.使分式有意义的x的取值范围是.11.若分式的值为0,则x的值为.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.13.在平面直角坐标系xOy中,已知点A(2,﹣2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.14.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.三、解答题(本题共24分,每小题6分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.16.已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.17.先化简,(﹣x+1)÷,再选一个你喜欢的数代入求值.18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.四、解答题(本题共32分,每小题8分)19.解方程:(1)+=(2)﹣=.20.△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案与试题解析一、选择题(本题共18分,每小题3分)1.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5 C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.下列各式中,正确的是()A.B.C.D.【考点】分式的基本性质.【专题】计算题.【分析】利用分式的基本性质化简各项得到结果,即可作出判断.【解答】解:A、﹣=,本选项错误;B、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.3.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(2,1)关于y轴对称的点的坐标是(﹣2,1).故选A.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.5.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为三角形的底边与腰没有明确,所以分两种情况讨论.【解答】解:等腰三角形的一边长为4,另一边长为8,则第三边可能是4,也可能是8,(1)当4是底边时,4+4=8,不能构成三角形;(2)当8是底边时,不难验证,可以构成三角形,周长=8+4+4=20.故选C.【点评】本题主要考查分情况讨论的思想,利用三角形三边关系判断是否能构成三角形也是解好本题的关键.6.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.10【考点】勾股定理;角平分线的性质.【专题】计算题.【分析】要求BC,因为BC=BD+CD,且BD=2CD,所以求CD即可,求证△ADE≌△ADC即可得:CD=DE,可得BC=BD+DE.【解答】解:∵在△AD E和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故答案为:9.【点评】本题考查了全等三角形的证明,解本题的关键是求证△ADE≌△ADC,即CD=DE.二、填空题(本题共24分,每小题3分)7.因式分解:3x2﹣6x+3=3(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.计算:a2b2÷()2=a4.【考点】分式的乘除法.【分析】首先计算乘方,然后把除法转化为乘法,进行约分即可.【解答】解:原式=a2b2÷=a2b2•=a4.故答案是:a4.【点评】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题主要考查线段的垂直平分线的性质和直角三角形的性质.10.使分式有意义的x的取值范围是x≠3.【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣3≠0,解可得答案.【解答】解:由题意得:x﹣3≠0,解得:x≠3.故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.若分式的值为0,则x的值为﹣1.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x2﹣1=0且x﹣1≠0,解得x=﹣1.故答案为﹣1.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.13.在平面直角坐标系xOy中,已知点A(2,﹣2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的有4个.【考点】等腰三角形的性质;坐标与图形性质.【分析】要使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,则点P即为OA的垂直平分线和x轴的交点;当OA是腰时,则点P即为分别以O、A为圆心,以OA为半径的圆和x轴的交点(点O除外).【解答】解:当OA当底边时,则点P(2,0);当OA当腰时,则点P(4,0)或(2,0)或(﹣2,0).故答案为:4.【点评】此题综合考查了等腰三角形的性质以及坐标与图形的性质,注意分情况考虑.14.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.【考点】规律型:数字的变化类;列代数式.【专题】规律型;猜想归纳;实数.【分析】由前四个数可知,分子是序数与2和的平方,分母比分子小4,可得第n个数据.【解答】解:∵第1个数:;第2个数:;第3个数:;第4个数:;…∴第n个数据是:.故答案为:.【点评】本题主要考查数字的变化规律,解题的切入点在分子这一平方数,据此容易得到第n个数据.三、解答题(本题共24分,每小题6分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.【考点】配方法的应用;非负数的性质:偶次方.【分析】已知等式变形后,利用非负数的性质求出x与y的值,即可确定出所求式子的值.【解答】解:∵x2+y2+6x﹣4y+13=0,∴(x+3)2+(y﹣2)2=0,∴x+3=0,y﹣2=0,∴x=﹣3,y=2,∴(xy)﹣2=(﹣3×2)﹣2=.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.17.先化简,(﹣x+1)÷,再选一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的混合运算法则化简即可,取值时使得分式有意义.【解答】解:原式==•=,当x=0时,原式=1.【点评】本题考查分式的混合运算法则,熟练掌握法则是正确解题的关键,注意取值时使得分式有意义.18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【解答】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.四、解答题(本题共32分,每小题8分)19.解方程:(1)+=(2)﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4+3x+9=7,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)去分母得:x﹣3+2x+6=12,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.△ABC中,A B=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,【解答】证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC.∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC(AAS),∴DE=DF.【点评】此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【考点】全等三角形的判定与性质.【分析】在AE上取一点F,使AF=AB,即可得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.【点评】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】①在AN上截取AE=AC,连接CE,先证明△ACE是等边三角形,得出∠AEC=60°,AC=EC=AE,再证明△ADC≌△EBC,得出DC=BC即可;②由全等三角形的性质得出AD=BE,即可得出结论.【解答】证明:①在AN上截取AE=AC,连接CE,如图所示:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∴△ACE是等边三角形,∴∠AEC=60°,AC=EC=AE,又∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,在△ADC和△EBC中,,∴△ADC≌△EBC(AAS),∴DC=BC,AD=BE;②由①得:AD=BE,∴AB+AD=AB+BE=AE,∴AB+AD=AC.【点评】本题考查了全等三角形的判定与性质、角平分线的定义、等边三角形的判定与性质;通过作辅助线构造全等三角形是解决问题的关键.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)由等腰直角三角形的性质得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,证出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,证出结论.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.【点评】本题考查了等腰直角三角形的性质和全等三角形的判定与性质;证明三角形全等是解决问题的关键.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【考点】分式方程的应用.【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.。
八年级上学期期末数学试卷(解析版)一、选择题1.如图,一只蚂蚁从点A 沿数轴向右直爬行2个单位到达点B ,点A 表示-2,设点B 所表示的数为m ,则1m -+(m+6)的值为 ( )A .3B .5C .7D .92.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形 C.可能是钝角三角形 D .一定是钝角三角形3.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩4.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .5.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 6.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .27.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .158.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( ) A .1个B .2个C .3个D .4个9.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .26510.下列四个图案中,不是轴对称图案的是( ) A .B .C .D .二、填空题11.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km . 12.9的平方根是_________.13.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.14.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.15.等腰三角形中有一个角的度数为40°,则底角为_____________.16.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.17.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 18.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克. 19.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.20.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .三、解答题21.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C - (1)作出三角形ABC 关于y 轴对称的三角形111A B C (2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .22.(问题背景)如图,在平面直角坐标系xOy 中,点A 的坐标是(0,1),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形,且90CAP ∠=︒(点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标______.(2)点C 在x 轴上移动过程中,当等腰直角三角形ACP 的顶点P 在第四象限时,连接BP . 求证:AOC ABP ∆∆≌; (深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.经过探究发现,点P 的横坐标总保持不变,请直接写出点P 的横坐标:______. (拓展延伸)(4)点C 在x 轴上移动过程中,当POB ∆为等腰三角形时,直接写出此时点C 的坐标.备用图23.(1)计算:3(1232)36•-+ (2)因式分解:3312x x - (3)计算:2(1)(2)(3)x x x x -+-+(4)计算:2(21)2(1)(1)x x x +-+-24.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?25.如图,点D 是△ABC 内部的一点,BD=CD ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,且BE=CF .求证:AB=AC .四、压轴题26.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.27.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?28.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.29.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH2+CH2=2AE2.30.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得2+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.A解析:A【解析】 【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状. 【详解】设直角三角形的直角边分别为a 、b ,斜边为c . 则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck (ak )2+(bk )2=k 2(a 2+b 2)=(ck )2 ∴三角形仍为直角三角形. 故选:A . 【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.3.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.4.C解析:C 【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案. 详解:∵一次函数y x b =+中100k b =-,, ∴一次函数的图象经过一、二、四象限, 故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.5.B解析:B 【解析】 【分析】根据正方形的面积公式及勾股定理即可求得结果. 【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形, 所以AB 2=AC 2+BC 2 所以123S S S =+ 因为12316S S S ++= 所以1S =8 故选:B 【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.6.C解析:C 【解析】 【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上, ∴a=2a-1, 解得a=1. 故选:C . 【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.7.A解析:A 【解析】 【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 8.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.9.D解析:D【解析】【分析】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.求出CE′即可.【详解】如图,作点E关于AD的对称点E′,连接CE′交AD于P′,连接EP′,此时EP′+CP′的值最小,作CH⊥AB于H.∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+22+,68∴CH=AC BCAB⋅=245,∴AH=185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系. 10.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.12.±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是解析:±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可. 【详解】解:∵点是的平分线上一点,且,∴P点到AB上的距离也是3.故答案为3.【点睛】本题考解析:3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.14.【解析】【分析】由题意,可知点A 坐标为(1,),点B 坐标为(2,0),由直线与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解解析:231b -<<-【解析】【分析】由题意,可知点A 坐标为(1,3),点B 坐标为(2,0),由直线y x b =+与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1,∴AE =∴点A 为(1B 为(2,0);当直线y x b =+经过点A (1ABC 边界只有一个交点,则1b +=1b =,∴点D 的坐标为(1);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:21b -<<;故答案为:21b -<<.【点睛】本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 15.40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故解析:40°或70°【解析】解:当40°的角为等腰三角形的顶角时,底角的度数=(180°-40°)÷2=70°; 当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°. 故答案为:40°或70°.点睛:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.16.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA, 解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.17.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 18.4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的解析:4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.19.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.20.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.三、解答题21.(1)见解析(2)点1A的坐标为(3,6);(3)①见解析.【解析】【分析】(1)首先确定A、B、C三点关于y轴的对称点位置A1、B1、C1,再连接即可得到△ABC关于y轴对称的△A1B1C1;(2)根据平面直角坐标系写出点1A的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC的最小值为BC的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20 【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.22.(1)(1,1);(2)证明见解析;(3)1;(4)(2,0)(2,0)(2,0)--.【解析】【分析】根据等腰直角三角形的性质,OA=AB ,题干中已知A 点坐标,即可求得OB 的长度,表示出B 点坐标即可.根据等腰直角三角形的性质得到90CAP OAB ︒∠=∠=,再根据等角的余角相等,得出角12∠=∠,最后利用三角形全等的判定方法进行判定即可.根据(2)的结论△ABP 也为直角三角形,且AB 垂直BP ,且AB=OB=1,即可得出P 点的横坐标.先根据题意,确定B 点、A 点坐标,设出P 点和C 点坐标,分情况进行讨论,当OP=OB 时,当OB=BP 时,当OP=BP 时,分别利用两点间距离公式求出点P 点的坐标,然后分别算出AP 的长,最后利用AP=AC 计算出A 点坐标即可.【详解】解:(1)∵点A 的坐标为(0,1)△OAB 是等腰直角三角形,且OA=AB ,OA⊥BA∴B 点坐标为(1,1).(2)证明:在等腰直角三角形ACP 中,AC AP =,90CAP ∠=︒在等腰直角三角形AOB 中,AO AB =,90OAB ∠=︒90CAP OAB ︒∠=∠=CAP OAP OAB OAP∴∠-∠=∠-∠12∠∠∴=在AOC∆和ABP∆中2AC APAO AB=⎧⎪∠=∠⎨⎪=⎩()AOC ABP SAS∴∆∆≌(3)AOC ABP∆∆≌(已证)∴∠ABP=90°∴PB垂直AB,P点在过B点且垂直与AB的垂线上,∵点B的坐标为(1,1)∴P点的横坐标为1.(4)由题意和(1)可知()01(11)A B,,,,设P(1,y),C(x,0),当OB=OP()()221-1+12y-=解得:21y=或21y=+,则()2212113AP=++-=()2212113AP=+-+-=解得:2x=±所以C点坐标为(2,02,0)同理当OB=OP时,可得C点坐标为(-2,0)当BP=OP时,可得C点坐标为(-1,0)故答案为:(2,0)(2,0)(1,0)(2,0)---【点睛】本题考查了等腰三角形的性质,三角形全的的判定方法,计算两点间距离,动点问题,解决本题的关键是熟练掌握等腰三角形的性质,能够得到相等的线段和角,动点问题要注意分类进行讨论,根据情况确定答案.23.(1)6;(2)()()322x x x+-;(3)236x x--;(4)2243x x++【解析】【分析】(1)根据二次根式乘法法则运算;(2)先提公因式,再套用公式;(3)根据整式乘法法则运算;(4)运用乘法公式运算.【详解】解:(1+=+=6-=6(2)()()()3231234322x x x x x x x -=-=+- (3)2(1)(2)(3)x x x x -+-+=22226x x x x -++-=236x x --(4)2(21)2(1)(1)x x x +-+-=224412(1)x x x ++--=2244122x x x ++-+=2243x x ++【点睛】考核知识点:因式分解,整式乘法.掌握相应法则是关键.24.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【解析】【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x=-, 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a=80.答:购买了80条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.25.证明见解析.【解析】【分析】欲证明AB=AC,只要证明∠ABC=∠ACB即可,根据“HL”证明Rt△BDE≌Rt△CDF,由全等三角形的性质可证∠EBD=∠FCD,再由等腰三角形的性质∠DBC=∠DCB,从而可证∠ABC=∠ACB.【详解】∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.四、压轴题26.(1)①60°;②AD=BE.证明见解析;(2)∠AEB=90°;AE=2CM+BE;理由见解析.【解析】【分析】(1)①由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.②由△ACD≌△BCE,可得AD=BE;(2)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC -∠CED =135°- 45°= 90°.在等腰直角△DCE 中,CM 为斜边DE 上的高,∴CM =DM= ME ,∴DE = 2CM .∴AE = DE+AD=2CM+BE .【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.27.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.28.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB ECAB AC=,∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中AD AEDAB EACAB AC⎪∠⎪⎩∠⎧⎨===,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,∴AM=EM=MD,∴AM+BD=CM;故答案为:90°,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE的面积始终保持不变,△ADE与△ADC面积的和达到最大,∴△ADC面积最大,∵在旋转的过程中,AC始终保持不变,∴要△ADC面积最大,∴点D到AC的距离最大,∴DA⊥AC,∴△ADE与△ADC面积的和达到的最大为2+12×AC×AD=5+2=7,故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.29.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【解析】【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,。