无皂乳液聚合实验
- 格式:doc
- 大小:2.89 MB
- 文档页数:23
无皂乳液聚合无皂乳液聚合的几种制备方法比较及应用摘要:无皂乳液聚合又称无乳化剂乳液聚合,是一种环保清洁的制备高聚物的聚合方法。
与常规乳液聚合相比,具有许多优点,因此受到越来越多的关注,应用空间和发展前景十分广阔。
详细地讨论了几种无皂乳液聚合的制备方法,对其优缺点进行了比较,并根据不同的方法举出一些应用的例子。
关键词:无皂乳液聚合;制备方法;应用前言无皂乳液聚合是指在反应过程中完全不加入乳化剂或仅加入微量乳化剂(小于临界胶束浓度CMC)的乳液聚合过程。
与常规乳液聚合相比,无皂乳液聚合具有如下特点:(1)避免了由于乳化剂的加入,而带来的对聚合产物电性能、光学性能、表面性能、耐水性及成膜性等的不良影响;(2)不使用乳化剂,降低了产品成本,缩减了乳化剂的后处理工艺;(3)制备出来的乳胶粒具有单分散性,表面“洁净”,粒径比常规乳液聚合的大,可以被制成具有表面化学能的功能颗粒;(4)无皂聚合乳液的稳定性通过离子型引发剂残基、亲水性或离子型共聚单体等在乳胶粒表面形成带电层来实现。
无皂乳液聚合由于体系中不含乳化剂,所以具有许多优异的性能。
但是也正是由于缺少乳化剂的保护作用,而使得乳液的稳定性下降,固含量相对较低。
因此,开发新型的反应性乳化剂和优化无皂乳液聚合工艺,是无皂乳液聚合面临的首要问题。
1.制备方法1.1制备方法的选择原因无皂乳液聚合的制备方法可根据其单体种类与性质以及反应体系来选择,并可以根据其机理,反应动力学、热力学以及影响无皂乳液聚合稳定性的因素来判断制备方法的优缺点。
其中无皂乳液的稳定性是在选择制备方法时的必要考虑因素。
在无皂乳液聚合过程中,生成的表面活性物质、聚合物的结构因素以及静电因素都可以不同程度的影响无皂乳液的稳定性。
根据影响稳定性的不同因素可知,要增强粒子稳定性。
原则上应增强粒子表面的电荷和亲水性,使Gibbs自由能充分降低。
可以得出增强稳定性的方法如下:(1)以聚(醋酸乙烯酯/丙烯酸钠)两亲聚台物为乳化剂。
无皂乳液聚合的几种制备方法比较及应用摘要:无皂乳液聚合又称无乳化剂乳液聚合,是一种环保清洁的制备高聚物的聚合方法。
与常规乳液聚合相比,具有许多优点,因此受到越来越多的关注,应用空间和发展前景十分广阔。
详细地讨论了几种无皂乳液聚合的制备方法,对其优缺点进行了比较,并根据不同的方法举出一些应用的例子。
关键词:无皂乳液聚合;制备方法;应用前言无皂乳液聚合是指在反应过程中完全不加入乳化剂或仅加入微量乳化剂(小于临界胶束浓度CMC)的乳液聚合过程。
与常规乳液聚合相比,无皂乳液聚合具有如下特点:(1)避免了由于乳化剂的加入,而带来的对聚合产物电性能、光学性能、表面性能、耐水性及成膜性等的不良影响;(2)不使用乳化剂,降低了产品成本,缩减了乳化剂的后处理工艺;(3)制备出来的乳胶粒具有单分散性,表面“洁净”,粒径比常规乳液聚合的大,可以被制成具有表面化学能的功能颗粒;(4)无皂聚合乳液的稳定性通过离子型引发剂残基、亲水性或离子型共聚单体等在乳胶粒表面形成带电层来实现。
无皂乳液聚合由于体系中不含乳化剂,所以具有许多优异的性能。
但是也正是由于缺少乳化剂的保护作用,而使得乳液的稳定性下降,固含量相对较低。
因此,开发新型的反应性乳化剂和优化无皂乳液聚合工艺,是无皂乳液聚合面临的首要问题。
1.制备方法1.1制备方法的选择原因无皂乳液聚合的制备方法可根据其单体种类与性质以及反应体系来选择,并可以根据其机理,反应动力学、热力学以及影响无皂乳液聚合稳定性的因素来判断制备方法的优缺点。
其中无皂乳液的稳定性是在选择制备方法时的必要考虑因素。
在无皂乳液聚合过程中,生成的表面活性物质、聚合物的结构因素以及静电因素都可以不同程度的影响无皂乳液的稳定性。
根据影响稳定性的不同因素可知,要增强粒子稳定性。
原则上应增强粒子表面的电荷和亲水性,使Gibbs自由能充分降低。
可以得出增强稳定性的方法如下:(1)以聚(醋酸乙烯酯/丙烯酸钠)两亲聚台物为乳化剂。
无皂乳液聚合反应原理传统的乳液聚合存在成核、增长和终止三个阶段,在无皂乳液聚合中也同样存在,其中成核和增长阶段的反应机理与乳液的性能密切相关。
①成核机理目前,关于无皂乳液聚合有两种成核机理:均相成核机理和齐聚物胶束成核机理。
对水溶性较大的极性单体而言,以均相成核机理为主,即引发剂在水溶液中分解生成自由基,并与溶于水中的单体分子进行链增长反应,反应遵循均相动力学。
随着链增长反应的进行,自由基活性链的聚合度逐渐增大,在水中的溶解性逐渐变差。
当活性链增长至临界链长时,便自身缠结,从水相中析出,形成基本初始粒子,初级粒子继续吸收齐聚物自由基和单体,形成乳胶粒,聚合就在乳胶粒中进行。
如图1.1所示。
Goodwall等人通过对以过硫酸钾(KPS)为引发剂的苯乙烯(St)无皂乳液聚合反应的研究,提出了齐聚物胶束成核机理。
该理论的主要内容为:在反应初期,水相中生成大量具有一定长度疏水链段的齐聚物,链的一端带有亲水性的引发剂碎片基团,使齐聚物本身具有表面活性剂的性质,当齐聚物浓度达到相应的CMC值时,便自身胶束化,形成增溶齐聚物胶束,在该胶束内引发聚合反应形成乳胶粒。
如图1.2所示。
图1.1均相成核机理示意图图1.2齐聚物胶束成核机理示意图Song等人在齐聚物胶束成核理论的基础上提出了两阶段模型。
在KPS/St体系中,无皂乳液聚合的成核期包括齐聚物胶束形成和粒子增长、聚并两个阶段。
反应初期,临界链长较长,随着齐聚物浓度不断增加,临界链长不断下降,齐聚物胶束形成的速率增加。
这一阶段定义为第一成核期,该阶段的特征是临界链长为变数。
在第二成核期,临界链长保持为一个恒定值。
在此阶段,生成高相对分子质量聚合物,导致乳胶粒表面的电荷密度大大降低,稳定性降低,发生粒子间的聚并,聚并到一定程度的乳胶粒体积增大,稳定性提高,使粒子间的聚并速率下降,最终乳胶粒数目达到一个恒定值,至此成核结束。
近年张茂根等人对无皂乳液聚合的成核、成粒机理的研究做了许多工作,提出了三阶段成粒机理。
无皂乳液聚合方法
哎,说起这个无皂乳液聚合方法,其实它就是个搞化学的人研究出来的新技术。
传统的乳液聚合,那得要加好多皂类的东西去稳定那些小液滴,不然它们就容易聚在一起,变得不均匀。
但这个无皂的,就省去了这一步,听起来就高级多了嘛。
具体操作起来,也是有点门道的。
首先呢,你得选好那些单体,就是些能聚在一起变成高分子的小分子。
然后,还要加点儿乳化剂,不过这里的乳化剂不是传统意义上的皂类,它更像是个“和事佬”,能让单体们在水里头均匀分布,但又不会让它们真的聚起来。
接下来,就是加引发剂了。
这个引发剂就像个“点火器”,能让单体们开始聚合反应。
在无皂的条件下,这个反应得控制得刚刚好,不然就容易出问题。
温度、时间,哪个都不能马虎。
等反应完了,你得到的乳液就是无皂的了。
这种乳液有个好处,就是它的表面比较干净,不会有那些皂类残留,用起来就更放心了。
而且,因为少了皂类的干扰,聚合出来的高分子材料性能也更好,更均匀。
总的来说,这个无皂乳液聚合方法,虽然听起来有点复杂,但实际上是个很有前途的技术。
它能让我们的化学制品更环保、更高效,还能提高产品的性能。
以后啊,说不定会有更多的化学家去研究它,让它变得更好、更实用。
咱们这些吃瓜群众,就等着享受新技术带来的好处吧!。
无皂乳液聚合的研究进展摘要本文阐述了无皂乳液聚合的反应机理(包括成核成粒机理和核增长机理)和反应动力学,以及影响其稳定性的因素和增强稳定性的方法。
着重介绍了无皂乳液的聚合方法,包括引发剂碎片法、水溶性单体共聚法、反应性乳化剂共聚法、超声无皂乳液聚合和加入其他添加剂的聚合方法。
并结合无皂乳液聚合的应用对其发展趋势作了展望。
关键词:无皂乳液聚合;反应机理;聚合方法;稳定性;应用1 前言无皂乳液聚合是指完全不加乳化剂或乳化剂用量小于临界胶束浓度的乳液聚合。
由于在反应过程中不含乳化剂或乳化剂浓度很低,和传统乳液聚合相比,无皂乳液聚合产物具有以下特点:1)不使用乳化剂降低了产品成本,同时在某些应用场合也免去了去除乳化剂的后处理;2)制得的乳胶粒表面洁净,避免了应用过程中由于乳化剂的存在对聚合物产品电性能、光学性质、表面性质、耐水性及成膜性等的不良影响;3)制得的乳胶粒子的粒径单分散性好。
最早的无皂乳液聚合是由Gee,Davis和Melvile[1]于1939年在乳化剂浓度小于CMC条件下进行的丁二烯乳液聚合。
1960年Matsumoto和Ochi[2]在完全不含乳化剂的条件下,合成了聚苯乙烯、聚甲基丙烯甲酯及聚醋酸乙烯酯乳液,这些乳胶粒具有单分散性粒度。
此后相继出现了许多有关无皂乳液聚合研究的报道。
目前对无皂乳液聚合的研究居于领先地位的是美、日等国,我国对此的研究起步较晚,但鉴于对它的重要性的认识,进入90年代以来,特别是近年来,国内已有不少研究机构和学者开始从事这方面的研究工作,如浙江大学、广州市化学工业研究所、南开大学、天津大学、中国科学院等,并取得了不少重要的成果。
2 无皂乳液聚合的理论研究2.1无皂乳液聚合的反应机理2.1.1 成核机理反应机理包括乳胶粒子成核与增长机理。
胶粒的性质很大程度上取决于成核机理,乳液体系的粒子密度(Np)、粒径大小(Dp)与成核机理密切相关。
传统乳液聚合是按胶束成核机理进行反应、成核的,在反应过程中体系靠高浓度的乳化剂起稳定作用。
无皂乳液聚合研究论文•相关推荐无皂乳液聚合研究论文毕业论文题目 CTFE、羟丁基乙烯基醚、丙烯酸无皂乳液聚合研究学院化学化工学院专业化学工程与工艺班级学生学号指导教师二〇一七年五月四日摘要无皂乳液聚合是一种较为新颖的乳液聚合技术。
含氟聚合物的无皂乳液聚合是以水为分散介质的,因此避免了有机溶剂涂料中的有机溶剂对环境的污染和对人类的危害,而且耐腐蚀性较强。
水性涂料中的水不会造成环境污染等问题,而且生产成本也不高,所以水基涂料是环保性涂料发展的很重要方向。
本论文分四个部分。
第一部分,介绍了无皂乳液聚合研究进展,主要讨论了无皂乳液聚合的成核机理、稳定机理、增长机理,影响无皂乳液聚合稳定性的因素。
第二部分,主要是实验过程,系统的研究了单体、乳化剂和引发剂的选择及配比以及聚合温度、聚合时间对其单体总转化率、乳液性状、粒径及稳定性等主要性能的影响,通过设计对比试验找出反应的最佳配比。
第三部分,主要是对试验结果的讨论和分析,确定最佳的反应温度、时间和单体配比、乳化剂与引发剂的用量,对聚合物产品的表征和性能的测定。
第四部分,得出本次研究的结论。
关键词:无皂乳液聚合、CTFE、羟丁基乙烯基醚、固含量、粒径。
ABSTRACT Soap-free emulsion polymerization is novel new technology. Fluoropolymer-free emulsion with water as the dispersion medium, to avoid organic solvents in the organic solvent coating environmental pollution and harm to humans, but relatively strong corrosion resistance. Water-based paint will not bring the water pollution problems, and cost of production is not high, so water-based paint is the development of environmentally friendly coatings is very important direction.The thesis is divided into four parts. The first part, introduced free emulsion polymerization progress, mainly discussed the soap-free emulsion polymerization nucleation mechanism, stability mechanism, growth mechanism, influencing factors in the stability of emulsion polymerization. The second part, an experimental process, the system of the monomer, emulsifier and initiator of the selection and ratio and polymerization temperature, polymerization time on the total conversion rate of monomer, emulsion characteristics, particle size and stability of other major performance, by designing tests to find the optimum contrast ratio. The third part, mainly for the discussion and analysis of test results to determine the optimum reaction temperature, time and monomer ratio, the amount of emulsifier and initiator, the polymer product characterization and determination of properties. The fourth part, the conclusions drawn in this study.Key words: emulsion polymerization, CTFE, hydroxyl butyl vinyl ether, solid content, particle size.目录摘要 .......................................................................................................................... (I)ABSTRACT ......................................................................................................... ................ II 目录 .......................................................................................................................... ..... III 1 前言 .......................................................................................................................... .... - 1 -1.1 无皂乳液聚合的研究进展 ....................................................................................... - 1 -1.2 无皂乳液聚合机理 ................................................................................................... - 1 -1.3 无皂乳液聚合的聚合方法 ....................................................................................... - 2 -1.3.1 引入可离子化的引发剂 .................................................................................... - 2 -1.3.2 引入亲水性共聚单体 ........................................................................................ - 3 -1.3.3 引入离子型共聚单体 ........................................................................................ - 3 -1.3.4 引入表面活性单体 ............................................................................................ - 3 -1.3.5 助溶剂法 ............................................................................................................ - 4 -1.4 可聚合乳化剂种类 ................................................................................................... - 4 -1.4.1 烯丙(氧)基型 ..................................................................................................... - 4 -1.4.2 (甲基)丙烯酸型 .................................................................................................. - 4 -1.4.3 丙烯酰胺型 ........................................................................................................ - 4 -1.4.4 苯乙烯型 ............................................................................................................ - 4 -1.4.5 马来酸酯型 ........................................................................................................ - 5 -1.4.6 其他类型 ............................................................................................................ - 5 -1.5 影响无皂乳液稳定性的因素 ................................................................................... - 5 -1.6 提高乳液稳定性的方法 ........................................................................................... - 5 -1.6.1 利用聚合物链末端的亲水性引发剂碎片 ........................................................ - 6 -1.6.2 加入活性物质 .................................................................................................... - 6 -1.6.3 提高乳胶粒表面的电荷密度 ............................................................................ - 6 -1.6.4 在乳胶粒表面引入亲水性物质 ........................................................................ - 6 -1.6.5 调整聚合反应的分散介质 ................................................................................ - 7 -1.6.6 适当的无皂乳液制备工艺................................................................................ - 7 - 2 实验部分 ...................................................................................................................... - 8 -2.1实验仪器 .................................................................................................................... - 8 -2.2实验药品 .................................................................................................................... - 8 -2.3 实验装置及工艺流程 ............................................................................................... - 9 -2.4 实验操作 ................................................................................................................... - 9 -2.4.1 含氟无皂乳液聚合物的制备 ............................................................................ - 9 -2.4.2 性能测试 .......................................................................................................... - 10 - 3 结果与讨论 ................................................................................................................ - 12 -3.1 聚合反应条件的确定 ............................................................................................. - 12 -3.1.1 单体配比的确定 .............................................................................................. - 12 -3.1.2 聚合温度的确定 .............................................................................................. - 12 -3.1.3 聚合反应过程中压力变化与反应进程的关系 .............................................. - 14 -3.1.4 丙烯酸的加入量对产品性能的影响 .............................................................. - 15 -3.1.5 引发剂的用量对产品性能的影响 .................................................................. - 20 -3.1.6 反应时间的确定 .............................................................................................. - 23 -3.2 聚合物产品的表征和性能 ..................................................................................... - 25 -3.2.1 聚合物乳液稳定性的研究 .............................................................................. - 25 -3.2.2 聚合物对水的接触角...................................................................................... - 25 - 结论........................................................................................................................ - 27 - 参考文献 ............................................................................................................ - 28 - 致谢........................................................................................................................ - 30 -1 前言无皂乳液聚合是指完全不加乳化剂或用小于临界胶束浓度的乳化剂的乳液聚合[1]。
乳化剂在乳液聚合中起着关键性的作用。
可是,乳化剂一般为亲水性小分子化合物,残留在乳液中使胶膜出现孔隙而不完整,因而造成耐水性、耐污性和光泽差。
乳化剂易迁移和吸附在界面而影响涂膜的附着力和光泽,乳化剂有起泡性,因而制成的产品易产生泡沫。
为了克服以上弊端,国内外一直致力于开发无皂乳液聚合技术。
无皂乳液聚合是指不加乳化剂(更确切地说不加常规小分子乳化剂)或加入微量乳化剂(小于其临界胶束浓度)的乳液聚合过程。
涂料和胶粘剂用乳液要求固含量较高,电解质等水溶性物质含量低,稳定性好。
无皂乳液稳定性差,合成固含量高的无皂乳液十分困难。
为了提高无皂乳液及其聚合的稳定性,国内外进行了大量的研究。
提出了许多方法,如采用水溶性单体共聚,采用反应性表面活性剂或大分子乳化剂,加人难溶无机固体粉末或有机溶剂等。
但笔者认为具有工业应用前景的方法主要是前3种。
本文将介绍这3种方法.</P><P> 1 采用水溶性单体共聚</P><P><BR> 所用水溶性单体包括羧酸类单体、酰胺类单体、羟基类单体、磺酸类单体和一些阳离子单体。
通过共聚,水溶性单体被键合在乳胶粒表面,形成亲水性水化膜而产生立体效应来维持乳液的稳定,水化膜的形成也降低了乳胶粒和水之间的界面张力。
离子型水溶性单体还使胶粒表面产生电荷,通过静电斥力来维持乳液的稳定。
所用羧酸类单体主要有(甲基)丙烯酸、衣康酸、富马酸以及马来酸;丙烯酰胺类单体有(甲基)丙烯酰胺、N-羟甲基(甲基)丙烯酰胺、N,N-二甲基丙烯酰胺等;羟基类单体主要有甲基丙烯酸羟乙(丙)酯;磺酸类单体主要有苯乙烯磺酸钠、(甲基)丙烯酸乙酯磺酸钠、2-甲基烯丙基磺酸钠、丙烯酰胺甲基丙烷磺酸钠等。
水溶性单体的亲水性、种类、用量、加料方式和羧基单体的中和度对聚合及乳液的稳定性均有影响。
单体的水溶性太大,易在水相发生均聚,生成水溶性电解质,反之,易埋在胶粒内,均不利于无皂乳液聚合。
⽆皂乳液聚合实验附⼆实验: ⽆皂乳液聚合法合成单分散⾼分⼦胶体微球⼀.⽬的和要求1. 了解⾼分⼦和⾼分⼦聚合反应基本知识。
2. 掌握⽆皂乳液聚合反应机理以及单分散⾼分⼦微球合成操作。
3. 了解形成稳定的胶体微球体系的机理和zeta 电势等有关知识。
4. 了解⾼分⼦微球的基本表征⼿段、仪器原理及相关操作。
⼆.前⾔1. ⾼分⼦化学的基本概念20世纪20年代是⾼分⼦科学诞⽣的年代,1920年,⾼分⼦科学的始祖H. Staudinger(德国)⾸次提出以共价键联结为核⼼的⾼分⼦概念,并获得1953年度诺贝尔化学奖。
⾼分⼦(macromelecular)是⼀种由许多原⼦通过共价键连接⽽形成的分⼦量很⾼(104-107,甚⾄更⾼)的化合物。
⼀般把相对分⼦质量⾼于10000的分⼦称为⾼分⼦,所以⾼分⼦⼜称⼤分⼦。
由于⾼分⼦多是由⼩分⼦通过聚合反应⽽制得的,因此也常被称为聚合物或⾼聚物,⽤于聚合的⼩分⼦则被称为“单体”。
如果把⼩分⼦化合物看作“点”分⼦,那么⾼分⼦就像“⼀条链”或“⼀串珠⼦”,这条贯穿于整个分⼦的链被称为⾼分⼦的主链,⾼分⼦主链的长径⽐可以达到103-105,甚⾄更⼤。
由于⾼分⼦化合物的相对分⼦质量很⼤,所以在物理、化学和⼒学性能上与⼩分⼦化合物有很⼤差异。
如⾼分⼦化合物的⾼强度、⾼弹性、⾼粘度、⼒学状态的多重性以及结构的多样性等特点都是其有别于⼩分⼦化合物的特征。
每个⾼分⼦都是⼀个长链,与⼩分⼦化合物相⽐,其分⼦间的作⽤⼒要⼤得多,超过了组成⼤分⼦的化学键能,所以它不能像⼀般⼩分⼦化合物那样被⽓化,⽤蒸馏法加以纯化,这也正是⾼分⼦化合物具有各种⼒学强度,⽤作材料的内在因素。
除了少数天然⾼分⼦如蛋⽩质、DNA等外,⾼分⼦化合物的分⼦量通常是不均⼀的,⾼分⼦化合物实际上是⼀系列同系物的混合物,这种性质称为“多分散性”。
因此其分⼦量实质上都是指平均分⼦量。
平均分⼦量可以通过体积排除⾊谱来测定(SEC,也称凝胶渗透⾊谱GPC,见附录)。
附二实验: 无皂乳液聚合法合成单分散高分子胶体微球一.目的和要求1. 了解高分子和高分子聚合反应基本知识。
2. 掌握无皂乳液聚合反应机理以及单分散高分子微球合成操作。
3. 了解形成稳定的胶体微球体系的机理和zeta 电势等有关知识。
4. 了解高分子微球的基本表征手段、仪器原理及相关操作。
二.前言1. 高分子化学的基本概念20世纪20年代是高分子科学诞生的年代,1920年,高分子科学的始祖H. Staudinger(德国)首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖。
高分子(macromelecular)是一种由许多原子通过共价键连接而形成的分子量很高(104-107,甚至更高)的化合物。
一般把相对分子质量高于10000的分子称为高分子,所以高分子又称大分子。
由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。
如果把小分子化合物看作“点”分子,那么高分子就像“一条链”或“一串珠子”,这条贯穿于整个分子的链被称为高分子的主链,高分子主链的长径比可以达到103-105,甚至更大。
由于高分子化合物的相对分子质量很大,所以在物理、化学和力学性能上与小分子化合物有很大差异。
如高分子化合物的高强度、高弹性、高粘度、力学状态的多重性以及结构的多样性等特点都是其有别于小分子化合物的特征。
每个高分子都是一个长链,与小分子化合物相比,其分子间的作用力要大得多,超过了组成大分子的化学键能,所以它不能像一般小分子化合物那样被气化,用蒸馏法加以纯化,这也正是高分子化合物具有各种力学强度,用作材料的内在因素。
除了少数天然高分子如蛋白质、DNA等外,高分子化合物的分子量通常是不均一的,高分子化合物实际上是一系列同系物的混合物,这种性质称为“多分散性”。
因此其分子量实质上都是指平均分子量。
平均分子量可以通过体积排除色谱来测定(SEC,也称凝胶渗透色谱GPC,见附录)。
高分子化合物中的原子连接成很长的链状分子时,叫链状高分子或线型高分子(如聚乙烯PE,聚甲基丙烯酸甲酯PMMA)。
这种高分子在加热时可以熔融,在适当的溶剂中可以溶解。
高分子链种类不同,因而具有不同的柔性(flexibility)。
由于链中化学键可以旋转,因此高分子链可以呈现伸展的、折叠的、螺旋的甚至是缠绕的线团(entanglement coil)等诸多构象(conformation)。
线型高分子链上可以有支化的侧链(side chain),线型高分子链间可以发生键合形成二维、三维的网状交联结构。
高分子分子链可以聚集形成各种晶态、非晶态的凝聚态结构,这些结构变化赋予高分子材料千变万化的性质和广泛的应用,如硬型或韧性塑料,高强度纤维以及高弹性橡胶等。
线型高分子化合物可以在加热时熔融,在适当溶剂中溶解。
交联的高分子化合物由于一般都不是平面结构而是立体结构,所以也叫体型高分子(如碱性酚醛树脂,Resoles)。
体型高分子加热时不能熔融,只能变软;不能在任何溶剂中溶解,只能被某些溶剂溶胀。
高分子化合物在自然界中大量存在,这种高分子叫天然高分子。
在生物界中,构成生物体的蛋白质,纤维素;携带生物遗传信息的核酸;食物中的淀粉,衣服原料的棉、毛、丝、麻以及木材、橡胶等等,都是天然高分子。
非生物界中,如黏土、石英、金刚石等,都是无机高分子。
完全由人工方法合成的高分子,在高分子科学中占有重要的地位。
这种高分子是由一种或几种小分子作原料,通过各种聚合反应而得到的,如由乙烯(单体)经加聚反应得聚乙烯(聚合物);由乙二醇(单体)和对苯二甲酸(单体)经缩聚反应生成聚对苯二甲酸乙二酯(聚合物)。
2. 高分子聚合方法将小分子化合物聚合成高分子量的高分子化合物的聚合方法有许多种,这些方法通常可以按照不同的分类方法可以进行分类。
2.1 1929年,W. H.Carothers (1896~1937,聚酰胺-66(尼龙)的发明者) 按照反应过程中是否析出低分子物,把聚合反应分为缩聚反应和加聚反应。
缩聚反应通常是指多官能团单体之间发生多次缩合,同时放出水、醇、氨或氯化氢等低分子副产物的反应,所得聚合物称缩聚物。
加聚反应是指α-烯烃、共轭双烯和乙烯类单体等通过相互加成形成聚合物的反应,所得聚合物称加聚物,该反应过程中并不产生低分子副产物,因而加聚物的化学组成和起始的单体相同。
2.21953年,Carothers 的学生P. J. Flory(1910-1985,1974年诺奖获得者)按反应机理,把聚合反应分成逐步聚合和链式聚合两大类。
逐步聚合反应每一步的速率常数和活化能大致相同。
反应初期,大部分单体很快消失并聚合成二至四聚体等中间产物;低聚物继续反应,使产物的分子量增大。
因此,可认为单体转化率基本上不依赖于聚合时间的延长,但产物的分子量随聚合时间的延长逐渐增大。
例如:带官能团化合物之间的缩聚反应如乙二醇和对苯二甲酸形成聚对苯二甲酸乙二酯、由己二酸和己二胺合成聚己二酰胺己二胺的反应等;还有二异氰酸酯与二醇形成聚氨酯的聚加成反应等。
链式聚合反应一般包括引发、增长和终止等反应步骤。
各步反应的速率常数和活化能差别很大,延长聚合时间可提高转化率,而分子量不再变化。
α-烯烃、共轭双烯和乙烯类单体的自由基聚合和正、负离子或配位聚合均属链式聚合反应,环醚和内酰胺在选定条件下的离子型开环聚合,正常子聚合中某些单体的异构化聚合,以及苯乙烯或丁二烯在烷基锂存在下的负离子活性聚合,这些反应尽管各有特点,但一般也属链式聚合。
按照引发方式的不同,链式聚合还可分为引发剂(或催化剂)引发聚合、热引发聚合、光引发聚合、辐射聚合等。
2.3 按照单体和聚合物的结构,又可有定向聚合(或称立构有规聚合)、异构化聚合、开环聚合和环化聚合等类聚合反应。
3. 自由基聚合反应作为加成聚合反应中的一种,自由基聚合反应是高分子合成工业中最常见、应用最广泛和最成熟的聚合反应。
据统计,在塑料、橡胶、纤维、涂料和粘合剂等诸如多合成材料工业中经自由基聚合获得的高聚物产量占总产量的60%以上,占热塑性树脂的80%。
因此了解和掌握自由基聚合反应非常有必要。
自由基聚合反应(radical polymerization)是通过自由基引发单体聚合,使高分子链不断增长(链生长)的聚合反应。
又称游离基聚合反应。
它主要应用于烯类的加成聚合。
自由基聚合反应是连锁反应(chain reaction)的一种,主要涉及三个基元反应,即链引发(chain initiation)、链增长(chainpropagation)和链终止(chain termination)反应,分别可以表述为:链引发:R∙ +M RM ∙ (1)链增长:RM ∙ RMM ∙RM n∙( M∙)(2)链终止:RM x∙+RM y∙RM x M y (失活的聚合物) (3)其中R∙代表自由基活性中心,通常由引发剂分解产生,M为单体,R∙与单体双键发生加成反应生产单体自由基RM∙,单体自由基不断与单体反应产生长链自由基RM n∙,而RM n∙可以通过多种途径发生链终止反应,如双基中止(3),或者与初级自由作用而中止等,最终使得聚合反应停止。
3.1引发剂用于自由基聚合的引发剂体系有许多种,其中常用的引发剂包括偶氮类化合物、过硫酸盐以及氧化还原引发剂,分别按如下反应分解产生自由基:引发剂在聚合体系中是在一定温度下是逐渐分解的。
上述引发剂1-3不溶于水,通常用于油相聚合体系(其分解温度一般在45~80℃),引发剂4-7的水溶性较好,常用于水相聚合反应,最常用的是过硫酸钾。
引发剂分解快慢直接影响到聚合速度,它是整个聚合过程的决速步骤。
引发剂分解速率可以用引发剂的消耗速率来表示:-d[I]/dt = kd[I] (4)上述(1)中,[I]为引发剂浓度,k d为引发剂分解常数,对其进行积分可得:ln ([I]/[I0]) = -k d t (5)常用引发剂的k d约10-4~10-6s-1。
半衰期(t1/2)是表征引发剂分解速率的一个重要参数。
由(5)可知,t1/2=ln 2/k d = 0.693/k d (6)通常用60o C时值将引发剂的活性分为三类t1/2 < 1h 高活性引发剂t1/2 1- 6h 中活性t1/2 > 6h 低活性引发剂其它引发体系:除了上述引发体系以外,自由基聚合反应还可以通过热引发、光引发或辐射引发的方式进行。
因此,聚合反应的单体需要避光、低温保存。
实际上,为了避免单体在运输和保存期间发生聚合,通常会在单体中添加一定量(0.001%~0.1wt%)的阻聚剂(polymerization inhibitor),如对苯二酚、对甲氧基苯酚(MEHQ)等。
3.2 聚合单体大多数烯类分子可以进行自由聚合反应,但是其聚合能力取决于取代剂的存在以及取代基的性质、数目、位置等。
乙烯作为最简单的烯烃,由于其结构高度对称,偶极矩为零,很难进行自由基聚合,在高温、高压条件下才能进行。
若单体分子中有拉电子取代基,如腈基(-CN)、酯基(-C(O)OR)、酰胺(C(O)NH2)以及卤素Cl、F等,这些取代基(统称Y)的存在导致单体的极性增加,使C=C 双键上的π电子云密度降低,从而使得分子容易被带孤电子的自由基进攻,发生加成反应,生成单体自由基直至高分子聚合物。
另外,在单体自由基中,由于Y 取代基的拉电子作用可以降低体系的能量,增加自由基的稳定性,因此从能量角度来看,这类反应容易发生。
δ+ δ-CH2=CH Y如果Y是一个推电子基,它将使得单体双键电子允密度增加,不利于自由基进攻,也不利于单体自由基的生成,因此这种单体不发生自由基聚合。
但是,对于苯乙烯、二乙烯基苯单体来说,尽管分子中的苯基和乙烯基都是推电子基,但这类单体还是很容易进行自由基聚合反应。
这是因为这类分子中存在共轭效应,它能使单体的双键上的电子云容易流动,诱导极化,同时也使单体自由基能量降低,稳定性增加。
常见的自由基聚合反应单体有:(甲基)丙烯酸,(甲基)丙烯酸酯,苯乙烯、二乙烯基苯、丙烯腈、丙烯酰胺、乙烯基吡啶等。
4. 自由基聚合反应聚合的实施按反应体系的物理状态的不同,自由基聚合的实施方法有本体聚合、溶液聚合、悬浮聚合、乳液聚合四种方法。
它们的特点不同,所得产品的形态与用途也不相同。
4.1 本体聚合,体系中通常只含单体和少量引发剂,所以操作简便,产物纯净;缺点是聚合热不易排除。
工业上用自由基本体聚合生产的聚合物主要品种有聚甲基丙烯酸甲酯、高压聚乙烯和聚苯乙烯。
4.2 溶液聚合,优点是体系粘度低,传热、混合容易,温度易于控制;缺点是聚合度较低,产物常含少量溶剂,使用和回收溶剂需增加设备投资和生产成本。
溶液聚合在工业上主要用于聚合物溶液直接使用的场合,如丙烯腈溶液聚合直接作纺丝液,丙烯酸酯溶液聚合液直接作涂料和胶粘剂等。