分式的加减法(一)
- 格式:doc
- 大小:74.50 KB
- 文档页数:4
分式的加减法分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,所以b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是(5)y x -1+yx +1 因为最简公分母是___________,所以y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,所以1()x x y -+yx +1 =练习A : (1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 =(7)231x +x43; 因为最简公分母是_____,所以231x +x43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xyy x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍。
§11.4 分式的加减法(一)●课题§11.4 分式的加减法(一)●教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.●教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.●教学难点当分式的分子是多项式时的分式的减法.●教学方法启发与探究相结合●教具准备投影片四张:第一张:提出问题,;第二张:想一想,做一做,;第三张:想一想,;第四张:议一议,; 第五张:例1,; 第六张:补充练习,. ●教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v 32)h .(2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v 23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.[生]如果要比较(v 1+v 32)与v 23的大小,就比较难了,因为它们的分母中都含有字母.[生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b . 如果a -b >0,则a >b ; 如果a -b =0,则a =b ; 如果a -b <0,则a <b .[师]这位同学想得方法很好,显然(v 1+v 32)和v 23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生]如果用作差的方法,例如(v 1+v 32)-v 23,如何判断它大于零,等于零,小于零呢?[师]我们不妨观察(v 1+v 32)-v 23中的每一项都是分式,这是什么样的运算呢?[生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时.[生]a 3000, a 1000是分式,a 3000-a1000是分式的加减法.[师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法. Ⅱ.讲授新课 1.同分母的加减法[师]我们接着看下面的问题[生]同分母的分数的加减是分母不变,把分子相加减,例如134+133-1317=131734-+=-1310.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着到黑板上板演“做一做”中的三个小题. [生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ;[生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x=12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x=1312+-++-+x x x x=1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步.通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =c b a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式).前面问题二现在可以完成了吧!大胆地试一试.[生]a 3000-a1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.[生 ]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法[生 ]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师 ]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.[生 ]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125.[生 ]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算. [例1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a 515即可.解:(1)a 3+a a 515-=a 515+aa 515-=a a 5)15(15-+=a a 5=51;[生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x.所以第(2)题的解法如下:(2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起.[生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h. (2)小丽走第一条路所用的时间为v23h. 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h. Ⅲ.应用、升华 1.随堂练习第1题计算:(1)x b 3-x b ; (2)a 1+a 21;(3)b a a --ab a-解:(1)xb 3-x b =x b b -3=x b2;(2)a 1+a 21=a 22+a 21=a 212+=a 23;(3)b a a --a b a -=b a a --b a a--=b a a a ---)(=b a a -2. 2.补充练习Ⅵ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大.[生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.…… Ⅴ.课后作业 Ⅵ.活动与探究已知x +y 1=z +x 1=1,求y +z1的值. [过程]已知条件实际上是一个方程组,我们可以取其中两个方程x +y 1=1,z +x1=1,由这两个方程把y 、z 都用x 表示后,再求代数式的值.[结果]由x +y 1=1,得y =x-11, 由z +x 1=1,得z =x x 1-.所以y +z 1=x -11+1-x x =11--x +1-x x =11--x x =1.●板书设计。
第五章分式与分式方程3.分式的加减法(一)同分母分式加减法、学生起点分析学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,在初一学习了整式的加减,在上一章学习了因式分解,本章又学习了分式及其乘除,都为这一节课的学习做好了铺垫。
由分数加减运算类比分式的加减是这节内容的突破点。
学生活动经验基础:在相关知识的学习过程中,学生经历过许多类比和猜测的活动,如分式的乘除法运算,这些活动经验都为本节学习有很好的启迪。
、教学任务分析同分母分式的加减法是最简单的,也是学习异分母的分式加减的基础,所以作为起始节也是工具节内容,它就要求教学时务必使学生理解它并且能够灵活运用,对分母互为相反式的分式加减,能明白改变运算符号的实质。
教学目标:1 、类比同分数加减法的法则归纳出同分母分式的加减法法则,理解其算理。
2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算,具有一定的代数化归能力。
3 、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想。
4 、通过小组合作,课堂展示,培养学生的语言表达能力和自信心,从而提升学习兴趣。
学习重点:同分母分式的加减运算;分母互为相反式的分式加减法运算学习难点:解决一些简单的实际问题,进一步体会分式的模型思想。
三、教学过程第一环节:提前一天布置,完成导学案中的预习案,对问题进行充分思考预习案:1 •同分母的分数如何加减?举例说明1+_22.类似分数运算法则,你认为,应等于什么?3.猜一猜,同分母的分式应该如何加减?a b同分母的分式相加减,分母________ ,分子_____ 用式子表示则为c ± c= _________ .第二环节情景引入小组活动:针对已完成的预习案,小组内部合作交流,并根据得到的结论回答下列问题(时间3分钟)做一做:1—=12——=13753 3778 81212猜一猜1 2213574——+—— = ———=+--- =——-------a a x x2b2b3y3y活动目的:通过做一做的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性。
分式的加减法运算分式是数学中的一种表示形式,常用于表示部分与整体之间的关系或比例关系。
在分式中,有时需要进行加减法运算,以求得分式的和或差。
下面将介绍分式的加减法运算方法,并给出一些例子进行解析。
一、同分母当两个分式的分母相同时,可以直接对分子进行加减运算,分母保持不变。
例如:计算3/4 + 1/4由于两个分式的分母相同,因此可以直接对分子进行加法运算,得到4/4。
答:3/4 + 1/4 = 4/4同样的道理,对于两个分式进行减法运算也是一样的。
例如:计算5/6 - 1/6由于两个分式的分母相同,因此可以直接对分子进行减法运算,得到4/6。
答:5/6 - 1/6 = 4/6二、异分母当两个分式的分母不同时,需要进行分母的通分操作,再进行加减法运算。
1. 分母为相同因数的情况如果两个分式的分母可以通过相同的因数相乘得到,那么可以直接进行通分操作,再进行加减法运算。
例如:计算1/3 + 1/6由于3和6可以通过乘以2得到相同的分母,所以先将两个分式的分母进行通分,得到2/6 + 1/6。
然后可以对分子进行加法运算,得到3/6,再约分得到1/2。
答:1/3 + 1/6 = 1/2同样的方法,可以进行异分母分式的减法运算。
例如:计算5/8 - 1/12由于8和12可以通过乘以3得到相同的分母,所以先将两个分式的分母进行通分,得到15/24 - 2/24。
然后可以对分子进行减法运算,得到13/24。
答:5/8 - 1/12 = 13/242. 分母为互质的情况如果两个分式的分母不能通过相同的因数相乘得到相同分母,那么需要使用辗转相除法来得到最小公倍数,并进行通分操作。
例如:计算2/5 + 3/7由于5和7互质,没有相同的因数,所以需要找到最小公倍数。
7和5的最小公倍数为35,所以可以将两个分式的分母进行通分,得到14/35 + 15/35。
然后可以对分子进行加法运算,得到29/35,再约分得到 5/7。
答:2/5 + 3/7 = 5/7同样的方法,可以进行异分母分式的减法运算。
分式方程的加减法运算
分式方程是指含有分数形式的方程,其中未知数出现在分母或分子中。
分式方程的加减法运算是解决这类方程的常见方法之一,下面将详细介绍分式方程的加减法运算。
一、同分母分式的加减法
当分式方程中的分式有相同的分母时,可以直接进行加减法运算。
例如,对于分式方程$\frac{3}{5x} + \frac{2}{5x}$,由于两个分式的分母相同,可以将分子相加得到$\frac{3+2}{5x}=\frac{5}{5x}$。
二、不同分母分式的加减法
当分式的分母不同的时候,需要通过找到它们的最小公倍数来将它们的分母转换成相同的,然后再进行加减法运算。
例如,对于分式方程$\frac{1}{2x} - \frac{1}{3y}$,分母的最小公倍数为$6xy$,将分子乘以相应的倍数进行转换得到$\frac{3y}{6xy} - \frac{2x}{6xy}=\frac{3y-2x}{6xy}$。
三、加减法运算注意事项
在进行分式方程的加减法运算时,需要注意以下几点:
1. 确保分式的分母相同或转换成相同的分母;
2. 分子之间进行加减法运算时,分母保持不变;
3. 结果可能需要进行约分或化简。
通过以上介绍,我们可以看到分式方程的加减法运算并不复杂,关键在于找到合适的方法将分式转换成相同的分母,然后进行简单的加减法运算即可。
希望本文的内容能够帮助到大家理解分式方程的加减法运算,更好地解决相关问题。
第五章 分式与分式方程
3.分式的加减法(一)
萧县实验初级中学 耿晓梅
课时安排说明:
本节内容一共安排了三课时。
第一节课阐述同分母的分式加减法的运算法则及分母互为相反式的分式加减法运算。
第二节课则阐述异分母分式的通分、加减法的运算法则及简单的应用,第三节课则提升到分母有公因式的分式加减法、分式与整式的加减运算、分式的求值及应用。
这样安排,给学生一个简单到复杂的认识过程,有了第一节的铺垫,使学生对分式加减法的掌握并不觉得难,且本节对于第三章分式的学习有着至关重要的作用,是后面根据实际生活问题列出分式方程,并求出正确答案的基本功,教学时必须踏踏实实,。
一、学生起点分析
学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,在初一学习了整式的加减,在上一章学习了因式分解,本章又学习了分式及其乘除,都为这一节课的学习做好了铺垫。
由分数加减运算类比分式的加减是这节内容的要害。
学生活动经验基础:在相关知识的学习过程中,学生经历过许多类比和猜测的活动,如实数的加减运算类比整式的合并同类项;由n 10在0>n 时的值的情况去猜测0<n 时的情况,由正整数相乘去发现规律猜测与负整数的乘法等,这些活动经验都为本节学习有很好的启迪。
二、教学任务分析
同分母分式的加减法是最简单的,也是学习异分母的分式加减的基础,所以作为起始节也是工具节内容,它就要求教学时务必使学生理解它并且能够灵活运用,对分母互为相反式的分式加减,能明白改变运算符号的实质。
因此,本节课的教学目标定位为:
1、类比同分数加减法的法则归纳出同分母分式的加减法法则。
2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算。
3、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想。
三、教学过程设计
本节课设计了6个教学环节:情景引入——同分母加减——练习巩固——拓展提高——课堂小结——布置作业
第一环节 情景引入
活动内容 做一做:=+3231 =-7271 =+8381 =-12
5127 猜一猜
=+a a 21 =-x x 12 =+b b 2523 =-y
y 3437 活动目的:通过做一做的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性。
从而抛出同分母分式加减法的运算法则,点明本节课的主要内容。
活动的注意事项:通过人人都可以入手的做一做,让学生回答,可以使学生很快进入状态又不觉得困难。
而后两个运算后要约分,学生极有可能报出没有约分的答案。
因此,类比时注意引导学生,正确猜想,约分是分数的必要步骤哦,使法则的提出顺理成章,也为后面的学习做好铺垫。
运算法则:同分母的分式相加减,分母不变,把分子相加减. 用式子表示为:
a
c b a c a b ±=± 第二环节 同分母加减
活动内容
学习了同分母分式加减法的法则,是否会用还得先讲再练:
例1(1)ab b a ab b a -++; (2)2422---x x x ;
(3)n m n m n m n m ++-+-42; (4)1
31112+-++--++x x x x x x . 活动目的:教学生如何运用法则进行运算,通过这4道例题,让学生学会加减法运算并注意运算时可能出现的问题。
活动的注意事项:在进行运算时若分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式——化简。
第三环节 练习巩固
活动内容
练一练 (1)x m n x m -+-1; (2) b a b ab b a a ++++222; (3) y
x y x y x y x -+---2722; 活动目的:通过3道题的演练巩固,让学生对同分母分式的加减法有更好的认识与掌握。
活动的注意事项:通过学生的解答情况,对法则做进一步的讲解,力图让学生理解并掌握同分母分式的加减法法则。
第四环节 拓展提高
活动内容
例2 计算
(1)y
x y y x x -+-; (2)a a a a ----12112. 练一练
(1)a b b b a a 222-+-; (2)x x x --+-1112 (3)m n n n m n m n n m ---+-+22 活动目的:这是一组分母互为相反式的分式加减的题目,实则是简单的异分母分式的加减法,有了例题的讲解,又有练一练的巩固,应该能够掌握,第三小题有意增加难度,在于学生能力的提高。
解答时只要将后一分母前的运算符号变为相反,即可按同分母分式的加减法法则进行运算。
旨在初现异分母分式加减的运算,实则化成同分母的分式,这要求学生能够熟练掌握,。
为下节课一般的异分母加减做好准备。
活动的注意事项:通过例题来理解分母互为相反式的分式加减运算,改变运算符号实质等同于乘以-1,也就是后面要讲的通分,学生刚接触肯定是略有难度,应精心讲解,耐
心指导学生完成练一练。
第五环节 课堂小结
活动内容:
1、同分母分式加减法则是:同分母的分式相加减。
分母不变,把分子相加减。
2、学会用转化的思想将分母互为相反式的分式加减运算转化成同分母分式的加减法。
3、分子是多项式时,一定记得添括号后再进行加减运算。
4、类比方法很多时候是对的哦,学会用这种方法去分析和解决问题。
活动目的:结合本节课的学习,同学生一起总结主要内容喝关键点,从而使学生对所学内容能更好的理解并掌握,激发学生学好数学的积极性。
活动的注意事项:留有时间小结,同时学生自发老师补充,对3要特别提出,它对运算的正确性至关重要。
第六环节 布置作业
1、P118-119 随堂练习和习题5.4
2、提升训练(选做)(1)n m m n m n m n n m -+----99695 (2)y
x y x y x y x y x y x 442+--++--+- 四、教学反思
1、不能脱离教材: 教材为我们提供了最基本有效的教学素材,我们应该充分挖掘这些素材,把他们转化成本节课的实质内容,并能湿透教学目标,让学生通过对这些素材的把握,做到举一反三,灵活运用。
2、因势利导,由浅入深:鼓励学生通过与分数类比,抛出分式加减运算法则后,应该先讲用再让用,顺水推舟给出例2,演练结合,讲纠互补,注意对关键点的引导。
3、课后多虑:作为运算,那还是应该多练,扎实基本功,毕竟课堂时间有限。