高二数学基本不等式试题
- 格式:docx
- 大小:343.21 KB
- 文档页数:10
高二数学专项练习:基本不等式训练题为了帮助学生们更好地学习高中数学,查字典数学网精心为大家搜集整理了高二数学专项练习:基本不等式训练题,希望对大家的数学学习有所帮助!高二数学专项练习:基本不等式训练题1.若xy>0,则对xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:244.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x?4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x??-4x?=83,当且仅当12-x=-4x时,即x=-3时取等号.当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12x B.x2-1+1x2-1C.2x+2-x D.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3 B.-3C.62 D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100C.50 D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba?ab=2;②∵x,y(0,+),lgx+lgy2lgx?lgy;③∵aR,a0,4a+a 24a?a=4;④∵x,yR,,xy<0,xy+yx=-[(-xy)+(-yx)]-2?-xy??-yx?=-2.其中正确的推导过程为()A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24a?a=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x?2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y2x?4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 ?x+1??4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22?x-1??9x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)?(1b -1)?(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x?225x+12019=36000(元)当且仅当x=225x(x>0),“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
高二数学一元二次不等式试题1.不等式的解集为()A.B.C.D.【答案】D【解析】由,得,即所以,故选D.【考点】一元二次不等式的解法.2.已知不等式的解集为,则不等式的解集为( )A.B.C.D.【答案】B【解析】由已知可得是方程的两根.由根与系数的关系可知,,.代入不等式解得.【考点】本题考查一元二次不等式的解法.3.不等式的解集是()A.B.C.D.【答案】C【解析】先将不等式转化为,结合二次函数的图像可得二次不等式的解集为,选C.【考点】二次不等式.4.某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?【答案】(1)12;(2)18【解析】(1)根据球场建n座时,每平方米的平均建筑费用表示,且(其中),又知建5座球场时,每平方米的平均建筑费用为400元.所以可以求出的值,这样就求出每平方米的平均建筑费用的表达式.另外每平米的购地费用是总费用除以总的建筑面积.再通过应用基本不等式即可得到结论.本小题的关键是购地费用不是总费用除以购买了20000平方米,这也是易错点.(2)由(1)可知球场每平方米的综合费用的表达式,又球场每平方米的综合费用不超过820元,通过解不等式即可得到结论.试题解析:(1)设建成个球场,则每平方米的购地费用为,由题意知,则,所以.所以,从而每平方米的综合费用为(元).当且仅当=12时等号成立.所以当建成12座球场时,每平方米的综合费用最省. 8分(2)由题意得,即,解得:.所以最多建 18个网球场. 12分【考点】1.基本不等式的应用.2.二次不等式的解法.5.设,解关于的不等式.【答案】当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】由实数的取值是不为零关系到不等的类型,所以要首先考虑的情况;、当时,要解不等式,需要先解方程得两根:2和,可以发现实数的取值对两根的大小起决定作用,故又需要依此对的取值进行分类讨论.试题解析:解:(1)若,则不等式化为,解得 2分(2)若,则方程的两根分别为2和 4分①当时,解不等式得 6分②当时,不等式的解集为 8分③当时,解不等式得 10分④当时,解不等式得或 12分综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为 14分【考点】1、一元一次、一元二次不等式的解法;2、分类讨论的思想.6.不等式对一切R恒成立,则实数a的取值范围是.【答案】.【解析】根据一元二次不等式的解集与二次方程的根及二次函数的图象之间的关系求解,不等式变形为,对一切R恒成,则有解得.【考点】一元二次不等式的解集.7.不等式对一切R恒成立,则实数a的取值范围是.【答案】【解析】根据一元二次不等式的解集与二次方程的根及二次函数的图象之间的关系求解,不等式变形为,对一切R恒成,则有解得.【考点】一元二次不等式的解集.8.设若关于的不等式的解集中的整数恰有3个,则()A.B.C.D.【答案】C【解析】要使关于x的不等式(x-b)2>(ax)2的解集中的整数恰有3个,那么此不等式的解集不能是无限区间,从而其解集必为有限区间,由题得不等式(x-b)2>(ax)2,即(a2-1)x2+2bx-b2<0,它的解应在两根之间,,因此应有 a2-1>0,解得a>1或a<-1,注意到0<b<1+a,从而a>1,,故有△=4b2+4b2(a2-1)=4a2b2>0,,不等式的解集为或者若不等式的解集为又由0<b<1+a得0<<1,故-3<<-2,0<<1,这三个整数解必为-2,-1,0,2(a-1)<b≤3 (a-1),,注意到a>1,并结合已知条件0<b<1+a.,故要满足题设条件,只需要2(a-1)<1+a<3(a-1)即可,则,b>2a-2,b<3a-3,又0<b<1+a,故 1+a>2a-2,3a-3>0解得1<a<3,综上1<a<3.故选C.【考点】本试题主要考查了解一元二次不等式解法,二次函数的有关知识,逻辑思维推理能力,含有两个变量的题目是难题.点评:解决该试题的关键是对于二次不等式的开口方向和因式分解的正确处理。
高二数学不等式的性质试题答案及解析1.根据条件:满足,且,有如下推理:(1)(2) (3) (4) 其中正确的是()A.(1)(2)B.(3) (4)C.(1) (3)D.(2) (4)【答案】B【解析】由,因为,所以,对于的值可正可负也可为0,对于(1)错误,因为,而,所以;对于(2)错误,因为,从而;对于(3)正确,因为,当时,,当时,由;对于(4)正确,因为;综上可知,选B.【考点】不等式的性质.2.设.则下列不等式一定成立的是( )A.B.C.D.【答案】D【解析】由得不到,故A错误.利用基本不等式得,故B错误;令a=-1,b=-1得,即,故C错误;,,故选D.【考点】不等式的基本性质;基本不等式。
3.若,则下列结论不正确的是()A.B.C.D.【答案】D【解析】由已知,则均正确,而故D不正确【考点】不等式的性质4.如果关于x的不等式和的解集分别为和,那么称这两个不等式为对偶不等式. 如果不等式与不等式为对偶不等式,且,则 .【答案】【解析】由题意得:不等式与为对偶不等式.,因此与同解,即与同解,所以【考点】不等式解集5.设,则下列不等式中一定成立的是A.B.C.D.【答案】A【解析】A.故A正确;B中,故B不正确,D中,故D不正确;C中当,故C不正确【考点】不等式的性质6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列说法正确的是 ( )A.若,则B.若,则C.若,则D.若,则【答案】A【解析】当时,B和D均不正确。
当时,若则。
故C不正确。
由不等式的性质可知A正确。
【考点】不等式的性质。
8.设,现有下列命题:①若,则;②若,则;③若,则;④若,则其中正确命题的序号为 .【答案】①,④【解析】因为,现有下列命题:①若即,又.所以成立,即①式成立;因为,令.所以.所以②式不成立;因为令则所以不成立.故③式不成立;因为所以又因为所以.故④式成立.【考点】1.不等式的性质.2.含绝对值的运算.3.含根式的运算.9.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )A.[-2,+)B.(-,-2)C.[-2,2]D.[0,+)【答案】A【解析】对一切实数x,恒成立.当时, 恒成立.当时,因为的最大值为-2, 故【考点】恒成立问题,及参数分离法.10.若,,,则A.B.C.D.【答案】A【解析】根据题意,由于>1,,<0,0<<1那么可知其大小关系为,故选A.【考点】对数函数与指数函数的值域点评:解决的关键是根据指数函数与对数函数性质来求解范围,比较大小,属于基础题。
高二数学不等式的性质试题1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3【答案】D【解析】函数y=a x当0<a<1时单调递减,所以x>y;又因为函数y= x3 在R上单调递增,所以x3>y3也可以用特殊值法.【考点】函数的单调性.2.函数在恒为正,则实数的范围是.【答案】【解析】注意到,所以函数在恒为正显然不可能;或,故应填入:.【考点】不等式的恒成立.3.设,,,(e是自然对数的底数),则()A.B.C.D.【答案】D【解析】由于,所以;又因为,从而有,故选D.【考点】比较大小.4.已知满足且,则下列选项中不一定能成立的是( )A.B.C.D.【答案】C【解析】由已知满足且得到:,所以A、B、D一定成立,故选C.【考点】不等式的基本性质.5.已知且,则下列不等式中成立的是( )A.B.C.D.【答案】D【解析】A.当时不成立,同理B.、 C.也不成立,由指数函数的单调性, D.成立【考点】不等式,指数函数的单调性6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列不等关系正确的是()A.B.C.D.【答案】C【解析】A中当时不等式不成立,A错;B中当时,不等式不成立,B错;C中对于,因为在范围内是增函数,当时,不等式成立,所以C正确;D中要使不等式成立需,故选C.【考点】不等式的性质;指数函数与对数函数的单调性.8.如果, 那么()A.B.C.D.【答案】D【解析】利用不等式的性质:故选D【考点】不等式的性质。
9.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.10.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.11.若不等式与同时成立,则必有( )A.B.C.D.【答案】C【解析】因为两个不等式同时成立,利用2个等价关系可以得到a与b的关系.又因为所以.故答案为C【考点】不等式的性质12.若a、b、c,则下列不等式成立的是()A.B.C.D.【答案】C【解析】因为,,不等式两边同时乘以或除以一个正数,不等号的方向不变,因此.A答案中或为0则不成立,B答案中要求,D答案中为0则不成立.【考点】不等式的性质.13.下列命题中的真命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】不等式基本性质中,与乘法有关的性质,不等式两边都要是非负数,才可能得出相应的结论,如果出现负数,结论不一定成立.如A中为负数,结论就可能不成立:,但;B中如,但,C中,但,故A、B、C都是错误的,排除A、B、C,只能选D.实际上D中条件不等式右边的是,,不等式两边均非负,可同时平方得.【考点】不等式的基本性质.14.已知,,则A.B.C.D.【答案】C【解析】因为,,,所以,,即,故选C。
高二数学基本不等式试题答案及解析1.已知且,则的最大值为 .【答案】【解析】已知且,,因此,.【考点】基本不等式的应用.2.设为正实数,满足,则的最大值为.【答案】【解析】由,原式【考点】基本不等式3.若实数满足,则的最大值___________;【答案】【解析】因为,所以【考点】基本不等式的应用4.若a,b,cÎR+,且a+b+c=1,求的最大值.【答案】【解析】解:∵()2=a+b+c+2() 3分≤1+2()=1+2(a+b+c)=3. 6分∴,当且仅当a=b=c=时取“=”号. 8分【考点】不等式的求解最值点评:主要是考查了运用均值不等式来求解最值,属于基础题5.交通管理部门为了优化某路段的交通状况,经过对该路段的长期观测发现:在交通繁忙的时段内,该路段内汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为①求在该路段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/时)②若要求在该时段内车流量超过千辆/时,则汽车的平均速度应限定在什么范围内?【答案】①时,(千辆/时)②【解析】解:①依题意,得=当且仅当,即时,上式等号成立,所以(千辆/时)②由条件得,整理,得即,解得答:当千米/时时,车流量最大,最大车流量约为千辆/时,如果要求在在该时段内车流量超过千辆/时,则汽车的平均速度应大于千米/时且小于千米/时。
【考点】基本不等式;解一元二次不等式点评:求式子的最值,方法可以结合二次函数、函数的导数、基本不等式和三角函数等。
本题就是结合基本不等式。
6.设、为正数,则的最小值为()A.B.C.D.【答案】B【解析】,当且仅当即时等号成立,所以最小值为9【考点】均值不等式点评:利用均值不等式求最值时要注意其成立的条件:都是正数,当和为定值时,乘积取最值,当乘积为定值时,和取最值,最后验证等号成立的条件是否满足7.设求证:【答案】可以运用多种方法。
【解析】证明[法一]:2分10分当且仅当,取“=”号。
基本不等式基础过关练题组一 对基本不等式的理解1.若a ,b ∈R,且ab >0,则下列不等式恒成立的是 ( ) A.a 2+b 2>2ab B.a +b ≥2√aa C.1a +1a >√aaD.a a +a a≥22.不等式(x -2y )+1a -2a ≥2成立的前提条件为 ( ) A.x ≥2y B.x >2y C.x ≤2y D.x <2y3.(2020山东德州夏津一中高一月考)不等式9a -2+(x -2)≥6(其中x >2)中等号成立的条件是 ( ) A.x =5 B.x =-3C.x =3 D.x =-54.(2020浙江杭州高一月考)下列不等式一定成立的是 ( ) A.3x +12a≥√6 B.3x 2+12a 2≥√6C.3(x 2+1)+12(a 2+1)≥√6D.3(x 2-1)+12(a 2-1)≥√6题组二 利用基本不等式比较大小5.(多选)(2021辽宁葫芦岛高一质量检测)已知两个不等正数a ,b 满足a +b =1,则下列说法正确的是 ( ) A.ab <14 B.1a +1a<4C.√a +√a <√2D.a 2+b 2>126.若0<a <b ,则下列不等式一定成立的是 ( ) A.b >a +a 2>a >√aa B.b >√aa >a +a 2>aC.b >a +a 2>√aa >aD.b >a >a +a 2>√aa7.小W 从A 地到B 地和从B 地到A 地的速度分别为m 和n (m >n ),其全程的平均速度为v ,则 ( ) A.a +a 2<v <m B.n <v <√aaC.√aa <v <a +a 2D.v =a +a 28.若a >b >c ,则a -a 2与√(a -a )(a -a )的大小关系是 .9.某商店出售的某种饮料需分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价a +a 2%,若p ,q >0,且p ≠q ,则提价多的方案是 .题组三 利用基本不等式求最值10.已知实数x ,y >0,则x +y +4a +1a 的最小值为 ( ) A.4√2 B.6 C.2√10 D.3√611.(2020浙江诸暨高二期末)已知函数y =x +4a -1(x >1),则函数的最小值等于 ( )A.4√2B.4√2+1C.5D.912.(2021宁夏大学附属中学高二上期中)若-2<x <0,则函数y =-x (x +2)的最大值为 ( ) A.1 B.2 C.4 D.513.已知a >b >0,则a 2+16a (a -a )的最小值为 ( ) A.8 B.8√2 C.16D.16√214.若正数x ,y 满足x +4y -xy =0,则当x +y 取得最小值时,x 的值为 ( )A.9B.8C.6D.315.(2021江苏溧阳高一期末检测)已知正实数x ,y 满足x +y =1,则1a +1a的最小值是 .16.(2021黑龙江鹤岗第一中学高一上月考)(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)已知x <54,求4x -2+14a -5的最大值.题组四 利用基本不等式证明不等式17.(2021福建三明第一中学高一上月考)已知a ,b 均为正实数,求证:a 2b 2+a 2+b 2≥ab (a +b +1).18.(2021安徽六安城南中学高二上开学考试)已知a ,b ,c 是三个不全相等的正数. 求证:a +a -a a +a +a -a a +a +a -aa>3.19.设x >0,求证:x +22a +1≥32.题组五 利用基本不等式解决实际问题20.某人要用铁管做一个形状为直角三角形且面积为1m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是 ( ) A.4.6m B.4.8m C.5mD.5.2m21.(2020广东广州荔湾高二期末)为满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体A1B1C1D1,该项目由矩形核心喷泉区ABCD(阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD的面积为1000m2,绿化带的宽分别为2m和5m(如图所示).当整个项目A1B1C1D1占地面积最小时,核心喷泉区的边BC的长度为()A.20mB.50mC.10√10mD.100m22.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层,每层建筑面积为4000平方米的楼房.经初步估计得知,若将楼房建为x(x≥12,x∈N*)层,则每平方米的平均建筑费用s=3000+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用的最小值是多少? 注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积能力提升练题组一利用基本不等式求最值1.(2020广东惠州高二期末,)已知x>0,y>0,且2x+y=1,则xy的最大值是()A.14B.4C.18D.82.(2021黑龙江大庆实验中学高一上开学考试,)已知a >0,b >0,a +b =1,则a 2+4a +a 2+4a 的最小值为 ()A.6B.8C.15D.173.(2021河北辛集中学高一上月考,)已知a >0,b >0,a +b =4ab ,则a +b 的最小值为 ( )A.12 B.1 C.2 D.44.(2020河南三门峡外国语高级中学高一下期中,)设正数x ,y 满足x 2+a 22=1,则x √1+a 2的最大值为( )A.32 B.3√22C.34D.3√245.(2020浙江丽水高一期末,)设正数a ,b 满足a 2+4b 2+1aa =4,则a = ,b = .6.(2020河北唐山第一中学高一下月考,)已知x >0,则a 2+3a +6a +1的最小值是.7.(2020湖北麻城一中高一月考,)已知a ,b ∈R,且a >b >0,a +b =1,则a 2+2b 2的最小值为 ,4a -a +12a的最小值为 . 8.(2021江苏苏州高一期末,)已知a ,b 均为正实数且ab +a +3b =9,则a +3b 的最小值为 .9.(2021吉林长春东北师范大学附属中学高一上段考,)已知x >0,y >0,4x 2+y 2+xy =1,求:(1)4x 2+y 2的最小值; (2)2x +y 的最大值.题组二 利用基本不等式证明不等式 10.()已知a ,b为正数,求证:1a +4a ≥2(√2+1)22a +a.11.()若a>b,且ab=2,求证:a2+a2a-a≥4.12.(2021湖南长沙长郡中学高一上检测,)已知a>0,b>0,a+b=1,求证:(1)1a +1a+1aa≥8;(2)(1+1a )(1+1a)≥9.13.()(1)已知a,b,c∈R,求证:√a2+a2+√a2+a2+√a2+a2≥√2(a+b+c);(2)若0<x<1,a>0,b>0,求证:a2a +a21-a≥(a+b)2.题组三基本不等式在实际问题中的应用14.(2021山东日照五莲高一上期中,)某工厂过去的年产量为a,技术革新后,第一年的年产量增长率为p(p>0),第二年的年产量增长率为q(q>0,p≠q),这两年的年产量平均增长率为x,则()A.x=a+a2B.x=√aaC.x>a+a2D.x<a+a215.(2020湖北宜昌高三期末,)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似表示为y=12x2-300x+80000,为使每吨的平均处理成本最低,则该厂每月的处理量应为()A.300吨B.400吨C.500吨D.600吨16.(2021山东菏泽第一中学等六校高一上联考,)欲在如图所示的锐角三角形空地中建一个内接矩形花园(阴影部分),则矩形花园面积的最大值为m2.17.(2021四川绵阳南山中学高三上开学考试,)网店和实体店各有利弊,两者的结合将在未来一段时间内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月的运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足关系式x=3-2a+1.已知网店每月固定的各种费用支出为3万元,每1万件产品的进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.18.(2020山东滨州高一上期末,)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络,其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费为y1(单位:万元),仓库到车站的距离为x(单位:千米),x>0,其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比,若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最少?最少费用是多少?答案全解全析基础过关练1.D∵a2+b2-2ab=(a-b)2≥0,∴A不符合题意;当a<0,b<0时,明显B,C不符合题意;∵ab>0,∴aa >0,aa>0,∴aa+aa≥2√aa·aa=2,当且仅当a=b时等号成立,∴D符合题意.2.B 因为不等式成立的前提条件是x -2y 和1a -2a均为正数,所以x -2y >0,即x >2y ,故选B .3.A 当x >2时,9a -2+(x -2)≥2√9a -2·(a -2)=6,等号成立的条件是9a -2=x -2,即(x -2)2=9,解得x =5(x =-1舍去).故选A .4.B 对于A,x 可能是负数,不成立;对于B,由基本不等式可知,3x 2+12a 2≥√6,当且仅当3x 2=12a 2,即x 4=16时取等号,故成立;对于C,当3(x 2+1)=12(a 2+1)时,(a 2+1)2=16,x 无解,不成立;对于D,x 2-1可能是负数,不成立.故选B .5.ACD A.因为a ,b 为两个不等正数,所以√aa <a +a 2=12,可得ab <14,故选项A 正确;B.因为1a +1a =a +aaa =1aa,所以由选项A 可知,1aa>4,故选项B 不正确;C.因为(√a +√a )2=a +b +2√aa =1+2√aa ,所以由选项A 可知选项C 正确; D.因为a 2+b 2=(a +b )2-2ab =1-2ab ,所以由选项A 可知,a 2+b 2=1-2ab >12,故选项D 正确.6.C ∵0<a <b ,∴2b >a +b ,∴b >a +a 2>√aa .∵b >a >0,∴ab >a 2,∴√aa >a. 故b >a +a 2>√aa >a.7.B 设从A 地到B 地的路程为s ,小W 从A 地到B 地和从B 地到A 地所用的时间分别为t 1,t 2,则t 1=aa ,t 2=aa ,其全程的平均速度为v =2aa 1+a 2=2aaa +aa=2aaa +a.∵m >n >0,∴v =2aaa +a <2√aa=√aa ,v -n =2aaa +a -n =2aa -aa -a 2a +a=a (a -a )a +a>0,∴n <v <√aa . 故选B . 8.答案a -a 2≥√(a -a )(a -a )解析 因为a >b >c ,所以a -a 2=(a -a )+(a -a )2≥√(a -a )(a -a ),当且仅当a -b =b -c ,即2b =a +c 时,等号成立.9.答案 乙解析 不妨设原价为1,则按方案甲提价后的价格为(1+p%)(1+q%),按方案乙提价后的价格为(1+a +a 2%)2,易知√(1+a %)(1+a %)≤1+a %+1+a %2=1+a %+a %2,当且仅当1+p%=1+q%,即p =q 时等号成立,又p ≠q ,故(1+p%)(1+q%)<(1+a +a 2%)2,所以提价多的方案是乙.10.B ∵x ,y >0,∴x +y +4a +1a≥2√a ·4a+2√a ·1a=4+2=6,当且仅当x =4a且y =1a,即x =2,y =1时等号成立.故选B .11.C 因为x >1,所以y =x +4a -1=(x -1)+4a -1+1≥2√(a -1)·4a -1+1=5,当且仅当x -1=4a -1,即x =3时,等号成立.故选C . 12.A ∵-2<x <0,∴-x >0,x +2>0,∴y =-x (x +2)≤(-a +a +22)2=1,当且仅当-x =x +2,即x =-1时等号成立. 故选A .规律总结 1.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,缺一不可.2.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分,消元或配凑因式.13.C ∵a >b >0,∴由基本不等式的变形可得b (a -b )≤(a +a -a 2)2=a 24,∴a 2+16a (a -a )≥a 2+16a 24=a 2+64a 2≥2√a 2×64a 2=16,当且仅当{a -a =a ,a 2=64a2,即{a =2√2,a =√2时,等号成立.误区警示 利用基本不等式求最值,若需多次应用基本不等式,则要注意等号成立的条件必须一致,如本题中第一次利用基本不等式取等号的条件为b =a -b ,第二次利用基本不等式取等号的条件为a 2=64a 2,故最终的最值应该是在这两个条件下共同取得的. 14.C ∵x >0,y >0,x +4y =xy ,∴4a +1a =1, ∴x +y =(x +y )(4a +1a )=5+a a +4a a ≥5+2√a a ·4aa=9,当且仅当x =2y 时,等号成立,此时{a =2a ,a +4a =aa ,解得{a =6,a =3.故选C . 15.答案 4解析 由题意可得,1a +1a =a +a a+a +aa=2+a a +aa ≥2+2√aa ·aa =4, 当且仅当x =y =12时等号成立.16.解析 (1)∵1=4a +b ≥2√4aa =4√aa ,∴√aa ≤14,∴ab ≤116,当且仅当4a =b ,即a =18,b =12时取等号, 故ab 的最大值为116.(2)∵x <54,∴5-4x >0, ∴4x -2+14a -5=-(5-4a +15-4a)+3≤-2√(5-4a )×15-4a +3=1, 当且仅当5-4x =15-4a ,即x =1时,等号成立,故4x -2+14a -5的最大值为1. 17.证明 由基本不等式得a 2b 2+a 2≥2a 2b ,a 2b 2+b 2≥2ab 2,b 2+a 2≥2ab , 三式相加得2a 2b 2+2a 2+2b 2≥2a 2b +2ab 2+2ab =2ab (a +b +1). 所以a 2b 2+a 2+b 2≥ab (a +b +1).18.证明 ∵a ,b ,c 是三个不全相等的正数,∴三个不等式a a +a a≥2,a a +a a≥2,a a +a a≥2的等号不能同时成立, 则a a +a a +a a +a a +a a +aa >6, ∴(aa +aa -1)+(aa +aa -1)+a a +aa-1>3,即a +a -a a +a +a -a a +a +a -aa>3. 19.证明 因为x >0,所以x +12>0,所以x +22a +1=x +1a +12=x +12+1a +12-12≥2√(a +12)·1a +12-12=32,当且仅当x +12=1a +12,即x =12时,等号成立.故x >0时,x +22a +1≥32.20.C 设直角三角形两直角边长分别为x m,y m,则12xy =1,即xy =2. 周长l =x +y +√a 2+a 2≥2√aa +√2aa =2√2+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C . 21.B 设BC =x m,则CD =1000am,所以a 矩形a 1a 1a 1a 1=(x +10)(1000a+4)=1040+4x +10000a≥1040+2√4a ·10000a=1440,当且仅当4x =10000a,即x =50时,等号成立,所以当BC 的长度为50m 时,整个项目占地面积最小.故选B . 22.解析 设楼房每平方米的平均综合费用为y 元. 依题意得y =s +8000×100004000a=50x +20000a+3000(x ≥12,x ∈N *).因为50x +20000a+3000≥2×√50a ·20000a+3000=5000,当且仅当50x =20000a,即x =20时,等号成立,所以当x =20时,y 取得最小值5000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用的最小值为5000元.能力提升练1.C 由题意得,xy =12×2xy ≤12×(2a +a 2)2=12×(12)2=18,当且仅当2x =y ,即x =14,y =12时等号成立,所以xy 的最大值是18.故选C . 2.D易得a 2+4a +a 2+4a =a +b +4a +4a =1+4(a +a )aa =1+4aa.又ab ≤(a +a 2)2=14,∴1aa ≥4,∴1+4aa ≥17,∴a 2+4a+a 2+4a ≥17,当且仅当a =b =12时取等号.故选D .3.B ∵a +b =4ab ,a >0,b >0,∴等式两边同除以ab ,得1a +1a =4, ∴a +b =(a +b )·14(1a +1a )=12+14(a a +aa ) ≥12+14×2√a a ·a a =12+12=1, 当且仅当a a =a a ,即a =b =12时取等号.故选B . 4.D ∵正数x ,y 满足x 2+a 22=1,∴2x 2+y 2=2, ∴x √1+a 2=√22×√2x ×√1+a 2≤√22×(√2a )2+(√1+a 2)22=√22×2a 2+a 2+12=3√24,当且仅当{2a 2+a 2=2,√2a =√1+a 2,即{a =√32,a =√22时取等号,∴x √1+a 2的最大值为3√24.5.答案 1;12解析 a 2+4b 2+1aa =(a -2b )2+4ab +1aa ≥(a -2b )2+2√4aa ·1aa =(a -2b )2+4,当且仅当a -2b =0且4ab =1aa ,即a =1,b =12时,等号成立,所以a =1,b =12. 6.答案 5解析 ∵x >0,∴x +1>1,∴a 2+3a +6a +1=(a +1)2+(a +1)+4a +1=x +1+1+4a +1≥2√(a +1)·4a +1+1=5, 当且仅当x +1=4a +1,即x =1时,等号成立, ∴a 2+3a +6a +1的最小值是5.7.答案 23;9解析 因为a +b =1,所以a =1-b ,因为a >b >0,所以0<b <12.所以a 2+2b 2=(1-b )2+2b 2=3b 2-2b +1=3(a -13)2+23,所以当b =13时,a 2+2b 2有最小值且最小值为23. 易得4a -a +12a =41-2a +12a ,故4a -a +12a =(41-2a +12a )(1-2b +2b )=5+8a1-2a +1-2a 2a ≥5+2√8a 1-2a ·1-2a 2a=5+4=9,当且仅当8a1-2a =1-2a 2a,即b =16时等号成立,故4a -a +12a 的最小值为9.8.答案 6解析 ∵ab +a +3b =9,∴a =9-3aa +1,由题意可知,a =9-3aa +1>0,故0<b <3, ∵a +3b =9-3aa +1+3b =12-3(a +1)a +1+3b =12a +1+3(b +1)-6≥2√12a +1×3(a +1)-6=6,当且仅当12a +1=3(b +1),即{a =3,a =1时取等号.方法点睛 求含多个字母的代数式的最值,常见的方法有消元法、基本不等式法等.应用消元法时要注意变元范围的传递.应用基本不等式法时,需遵循“一正、二定、三相等”的原则,如果原代数式中没有积为定值或和为定值,则需要将给定的代数式变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9.解析 (1)∵4x 2+y 2≥2·2x ·y =4xy ,∴xy ≤4a 2+a 24,当且仅当2x =y 时等号成立,又4x 2+y 2+xy =1,∴1=4x 2+y 2+xy ≤4x 2+y 2+4a 2+a 24,∴4x 2+y 2≥45,当且仅当x =√1010,y =√105时等号成立, ∴4x 2+y 2的最小值是45.(2)由4x 2+y 2+xy =1,得(2x +y )2-1=3xy. 又∵2xy ≤(2a +a )24,当且仅当2x =y 时等号成立,∴(2x +y )2-1≤32×(2a +a )24,解得(2x +y )2≤85,∴2x +y ≤2√105.当且仅当x =√1010,y =√105时等号成立, ∴2x +y 的最大值是2√105.10.证明 因为a >0,b >0,所以(2a +b )(1a +4a )=6+a a +8a a ≥6+2√a a ·8aa=6+4√2=2(√2+1)2(当且仅当b =2√2a 时,等号成立).因为2a +b >0, 所以1a +4a ≥2(√2+1)22a +a.11.证明a 2+a 2a -a =(a -a )2+2aa a -a =(a -a )2+4a -a =(a -b )+4a -a ≥2√(a -a )·4a -a=4,当且仅当a =1+√3,b =-1+√3或a =1-√3,b =-1-√3时等号成立.所以a 2+a 2a -a≥4. 12.证明 (1)∵a +b =1,a >0,b >0, ∴1a +1a +1aa =1a +1a +a +aaa =2(1a +1a ), 1a +1a=a +a a +a +a a=2+a a +a a ≥2+2=4,当且仅当a =b =12时等号成立,∴1a +1a +1aa ≥8.(2)证法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +a a =2+aa, 同理,1+1a =2+aa ,∴(1+1a )(1+1a )=(2+a a )(2+aa)=5+2(a a +a a )≥5+4=9,当且仅当a =b =12时等号成立, ∴(1+1a )(1+1a)≥9. 证法二:(1+1a )(1+1a )=1+1a +1a +1aa . 由(1)知,1a +1a +1aa≥8,故(1+1a )(1+1a )=1+1a +1a +1aa ≥9,当且仅当a =b =12时,等号成立. 13.证明 (1)∵a +a 2≤√a2+a 22,∴√a 2+a 2≥√2=√22(a +b )(当且仅当a =b 时,等号成立).同理,√a 2+a 2≥√22(b +c )(当且仅当b =c 时,等号成立),√a 2+a 2≥√22(a +c )(当且仅当a =c 时,等号成立).三式相加得√a 2+a 2+√a 2+a 2+√a 2+a 2≥√22(a +b )+√22(b +c )+√22(a +c )=√2(a +b +c )(当且仅当a =b =c 时,等号成立). (2)∵0<x <1,∴1-x >0. 又∵a >0,b >0,∴不等式左边=(x +1-x )(a 2a+a 21-a )=a 2+b 2+a 1-a ·b 2+1-a a ·a 2≥a 2+b 2+2√a 1-a ·a 2·1-a a·a 2=a 2+b 2+2ab =(a +b )2=右边当且仅当a1-a ·b 2=1-aa·a 2,即x =aa +a 时,等号成立.故a 2a +a 21-a≥(a +b )2. 14.D 由题意可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2. 易得(1+p )(1+q )≤(1+a +1+a 2)2,当且仅当p =q 时取等号,∵p ≠q ,∴(1+p )(1+q )<(1+a +1+a 2)2,则1+x <2+a +a2=1+a +a 2,即x <a +a 2.故选D .15.B 设每吨的平均处理成本为s 元, 由题意可得s =a a =12a 2-300a +80000a=a 2+80000a -300,其中300≤x ≤600.由基本不等式可得a 2+80000a -300≥2√a 2·80000a-300=400-300=100, 当且仅当a 2=80000a,即x =400时,每吨的平均处理成本最低.故选B .16.答案 400解析 如图,设矩形花园的一边DE 的长为x (x >0)m,邻边长为y (y >0)m,则矩形花园的面积为xy m 2,∵花园是矩形,∴△ADE 与△ABC 相似, ∴aa aa =aaaa ,又∵AG =BC =40, ∴AF =DE =x ,FG =y ,∴x +y =40.由基本不等式可得x +y ≥2√aa ,则xy ≤400,当且仅当x =y =20时,等号成立,故矩形花园的面积的最大值为400m 2. 17.答案 37.5解析 由题意,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足x =3-2a +1, 即t =23-a-1(1<x <3),设月利润为y 万元,则y =(48+a 2a )x -32x -3-t =16x -a 2-3=16x -13-a +12-3 =45.5-[16(3-a )+13-a ]≤45.5-2√16=37.5, 当且仅当16(3-x )=13-a ,即x =114时取等号, 故该公司的最大月利润为37.5万元. 18.解析 设y 1=aa +1(k ≠0),y 2=mx (m ≠0),其中x >0.当x =9时,y 1=a9+1=2,y 2=9m =7.2, 解得k =20,m =0.8, 所以y 1=20a +1,y 2=0.8x ,设两项费用之和为z (单位:万元), 则z =y 1+y 2=20a +1+0.8x =20a +1+0.8(x +1)-0.8 ≥2√20a +1·0.8(a +1)-0.8=7.2.=0.8(x+1),即x=4时,等号成立,当且仅当20a+1所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最少,最少费用是7.2万元.解题模板已知函数类型的应用问题,可以用待定系数法求出解析式;含分式的函数求最大(小)值,往往利用基本不等式求解,解题时要注意验证基本不等式成立的三个条件.。
高二数学不等式试题,且恒成立,则n的最大值为( ).1.若a>b>c,n∈N+A.2B.3C.4D.5【答案】C【解析】=.=4.或者(a-c)·=[(a-b)+(b-c)]·所以nmax≥2·2 =4.2.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c ∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为()A.B.C.D.【答案】【解析】由又,所以,当且仅当时取等号.故答案选【考点】1.离散型随机变量的期望;2.基本不等式.3.若实数满足,则的最小值为_______【答案】18【解析】不等式表示的区域是直线的右上方区域,而表示点(x,y)与点(-3,1)两点的距离的平方。
显然两点间的最小距离为点(-3,1)到直线的距离,所以z的最小值为.【考点】利用几何意义求最值。
4.若为非零实数,且,则下列不等式成立的是()A.B.C.D.【答案】C【解析】:∵实数a,b满足a<0<b,若 a=-3,b=1,则 A、B、D都不成立,只有C成立【考点】不等关系与不等式5.若不等式的解集为,则不等式的解集为()A.B.或C.D.或【解析】由三个二次关系可知方程的解为且,设,所以,所以不等式为,解集为【考点】三个二次关系与一元二次不等式解法6.已知实数,满足不等式组,则关于的方程的两根之和的最大值和最小值分别是()A.,B.,C.,D.,【答案】A【解析】作出不等式组表示的平面区域,如图所示,则关于的方程的两根之和,由图可知当目标函数经过点时取得最大值,=,经过点时取得最小值,,故选A.【考点】简单的线性规划问题.7.不等式的解集是【答案】;【解析】,解集为【考点】分式不等式解集8.设关于x,y的不等式组表示的平面区域内存在点,满足,则m的取值范围是()A.B.C.D.【解析】将化成,将其代入,得,即,由题意,得有解,即,解得,即m的取值范围是;故选C.【考点】不等式组与平面区域.【技巧点睛】本题考查二元一次不等式组和平面区域、不等式组的解的存在性,属于中档题;学生解决本题的常用方法是先画出可行域再思考如何处理,难度较大;本题的解题技巧在于,将平面区域内存在点使成立,利用消元法将其转化为关于的不等式组有解的问题,再利用集合间的关系进行求解.9.(2015秋•宁德校级期中)不等式x2+2x﹣3≤0的解集为()A.[﹣1,3]B.[﹣3,﹣1]C.[﹣3,1]D.[1,3]【答案】C【解析】根据解一元二次不等式的基本步骤,进行解答即可.解:不等式x2+2x﹣3≤0可化为(x+3)(x﹣1)≤0,该不等式对应方程的两个实数根为﹣3和1,所以该不等式的解集为[﹣3,1].故选:C.【考点】一元二次不等式的解法.10.已知,则的最小值是()A.4B.3C.2D.1【答案】A【解析】因为,且,所以;则(当且仅当,即时取等号);故选A.【考点】1.对数的运算;2.基本不等式.11.表示不等式的平面区域(不含边界的阴影部分)是()【答案】A【解析】作出直线,将原点代入不等式不成立,因此不等式表示直线的右上方,因此只有A正确【考点】不等式表示平面区域12.若、满足,且的最小值为,则的值为()A.2B.C.D.【答案】D【解析】对不等式组中的讨论,可知直线与轴的交点在与轴的交点的右边,故由约束条件作出可行域如图,由,令得,,由得,由图可知,当直线过时直线在轴上的截距最小,即最小,此时,解得:,故选D.【考点】1、可行域的画法;2、已知最优解求参数.13.(2015秋•厦门期末)若a>b,c>d,则下列不等式成立的是()A.B.ac>bd C.a2+c2>b2+d2D.a+c>b+d【答案】D【解析】本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d,∴设a=1,b=﹣1,c=﹣2,d=﹣5分别代入选项A、B、C均不符合,故A、B、C均错,而选项D正确,故选:D.【考点】不等式的基本性质.14.给定两个命题:对任意实数都有恒成立;:关于的方程有实数根.如果为假命题,为真命题,求实数的取值范围.【答案】(-∞,0)∪(,4)【解析】先求出,为真命题时的取值范围,由为假命题,为真命题可得,一真一假进行分类讨论求出的取值范围试题解析:命题P:对任意实数x都有ax2+ax+1>0恒成立,则“a=0”,或“a>0且a2-4a<0”.解得0≤a<4.命题:关于x的方程x2-x+a=0有实数根,则Δ=1-4a≥0,得a≤.因为P∧为假命题,P∨为真命题,则P,有且仅有一个为真命题,故∧为真命题,或P∧为真命题,则或解得a<0或<a<4.所以实数a的取值范围是(-∞,0)∪(,4).【考点】简单的逻辑用语的应用.【方法点睛】(1)正确理解逻辑连接词“或”、“且”,“非”的含义是关键,解题时应根据组成各个复合命题的语句中所出现的逻辑连接词进行命题结构与真假的判断,其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③判断复合命题的真假;(2)解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算;(3)注意或为真,且为假说明一真一假.15.若不等式ax2+bx-2>0的解集为则a,b的值分别是()A.B.C.D.【答案】C【解析】由不等式的解集可知方程的根为解方程得【考点】三个二次关系16.已知实数x、y满足,若不等式恒成立,则实数a的最小值是.【答案】【解析】不等式对应的可行域为直线围成的三角形及其内部,其中三个顶点为,设,不等式变形为恒成立最大值为,所以实数a的最小值是【考点】1.线性规划;2.不等式性质17.某人需要补充维生素,现有甲、乙两种维生素胶囊,这两种胶囊都含有维生素,,,和最新发现的.甲种胶囊每粒含有维生素,,,,分别是1mg,1mg,4mg,4mg,5mg;乙种胶囊每粒含有维生素,,,,分别是3mg,2mg,1mg,3mg,2mg.此人每天摄入维生素至多19mg,维生素至多13mg,维生素至多24mg,维生素至少12mg.(1)设该人每天服用甲种胶囊粒,乙种胶囊粒,为了能满足此人每天维生素的需要量,请写出,满足的不等关系.(2)在(1)的条件下,他每天服用两种胶囊分别为多少时,可摄入最大量的维生素.并求出最大量.【答案】(1)详见解析;(2)服用5粒甲种胶囊和4粒乙种胶囊时,可摄入最大量的维生素为33mg【解析】(1)直接由题意列出关于x,y的不等关系所组成的不等式组;(2)由(1)中的不等式组作出可行域,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案试题解析:(1).(2)目标函数为:作出以上不等式组所表示的平面区域,即可行域.作直线:,把直线向右上方平移,直线经过可行域上的点时,取得最大值.解方程组得点坐标为,此时(mg).答:每天服用5粒甲种胶囊和4粒乙种胶囊时,可摄入最大量的维生素为33mg.【考点】线性规划问题的实际应用18.已知常数,解关于的不等式【答案】当,原不等式为;当时,原不等式的解集为或.;当时,时,原不等式的解集为.当时,原不等式的解集为.【解析】讨论是否为0.当,再讨论的正负,同时讨论其判别式.当判别式大于0时注意两根的大小,画抛物线结合图像可解不等式.试题解析:解(1)若,则原不等式为,故解集为.(2)若①当,即时,方程的两根为,∴原不等式的解集为.②当时,即时,原不等式的争集为.③当,即时,原不等式的争集为.(3)若.①当,即,原不等式的解集为或.②当时,时,原不等式化为,∴原不等式的解集为.③当,即时,原不等式的解集为综上所述,当时,原不等式的解集为;当原不等式的解集为;当,原不等式为;当时,原不等式的解集为或.;当时,时,原不等式的解集为.当时,原不等式的解集为.【考点】一元二次不等式.19.若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.a+c≥b﹣c B.ac>bc C.>0D.(a﹣b)c2≥0【答案】D【解析】A、令a=﹣1,b=﹣2,c=﹣3,计算出a+c与b﹣c的值,显然不成立;B、当c=0时,显然不成立;C、当c=0时,显然不成立;D、由a大于b,得到a﹣b大于0,而c2为非负数,即可判断此选项一定成立.解:A、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;B、c=0时,ac=bc,本选项不一定成立;C、c=0时,=0,本选项不一定成立;D、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项一定成立,故选D【考点】两角和与差的正弦函数;正弦定理.20.若不等式ax2+bx+2>0的解集为{x|﹣},则a+b= .【答案】﹣14【解析】利用不等式的解集与方程解的关系,结合韦达定理,确定a,b的值,即可得出结论.解:∵不等式ax2+bx+2>0的解集为{x|﹣},∴﹣和为方程ax2+bx+2=0的两个实根,且a<0,由韦达定理可得,解得a=﹣12,b=﹣2,∴a+b=﹣14.故答案为:﹣14.【考点】一元二次不等式的应用.21.已知a,b,c都是正实数,求证(1)≥a+b+c.【答案】(1)(2)证明见解析【解析】(1)利用分析法证明,由于a,b,c都是正实数,所以最终只需要证明:(a﹣b)2≥0;(2)根据不等式特点,先利用基本不等式证明,,从而得证.证明:(1)要证即证:a2≥2ab﹣b2即证:(a﹣b)2≥0显然成立,故得证;(2)∵a,b,c都是正实数,∴,相加,化简得≥a+b+c.【考点】不等式的证明;其他不等式的解法.22.如果实数x、y满足条件,那么2x﹣y的最大值为()A.2B.1C.﹣2D.﹣3【答案】B【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.当直线过点时,最大为1.故选B.【考点】简单线性规划的应用.23.命题“恒成立”则实数的取值范围为 ;【答案】【解析】当时,不等式恒成立;当,不等式恒成立,则,解得;因此实数的取值范围为【考点】恒成立问题;24.设满足约束条件,若目标函数的最大值为1,则的最小值为________.【答案】【解析】画出可行域如下图所示,由得,平移直线,由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.【考点】1、线性规划;2、基本不等式.【方法点晴】题目分成两个部分,每个部分用相应的知识点来解决,第一部分是线性规划,先画出可行域,将目标函数移到取得最大值为,这样就求出了的一个关系式;第二部分是基本不等式,求此类基本不等式的方法是“”的代换,也就是,展开后就可以用基本不等式求解了,最后要注意等号是否成立.25.若关于的不等式有解,则实数的取值范围是 _________.【答案】【解析】由题意得,关于的不等式有解,所以的最小值小于,而表示数轴上的对应点到对应点的距离之和它的最小值为,所以有,可得.【考点】绝对值不是的解法及绝对值的意义.【方法点晴】本题主要考查了绝对值的几何意义、绝对值不等式的解法,函数的恒成立问题的求解,着重考查了转化与化归的思想方法,属于中档试题,本题的解答中,根据关于的不等式有解,转化为的最小值小于,再利用绝对值的几何意义,得到的最小值为,即可列出不等式关系,求解出的范围.26.若不等式组表示的平面区域为三角形,其面积等于,则的值为A.B.C.D.【答案】B【解析】易知直线只有有图中位置,题设不等式组才能表示一个三角形区域,计算得,,,(),直线与轴交点为,由,解得或(舍去),故选B.【考点】二元一次不等式组表示的平面区域.【名师】要作出二元一次不等式组表示平面区域关键是作出二元一次不等式表示的平面区域,在平面直角坐标系中,平面内所有的点被直线Ax+By+C=0分成三类:(1)满足Ax+By+C=0的点;(2)满足Ax+By+C>0的点;(3)满足Ax+By+C<0的点.27.已知,,,则三者的大小关系是()A.B.C.D.【答案】A【解析】【考点】比较大小28.若实数满足条件,则的最大值为________.【答案】4【解析】由图可得当取到:时,最大,为4【考点】线性规划中的最优解问题。
高二数学一元二次不等式及其解法试题1.如果不等式ax2+bx+c<0(a≠0)的解集为空集,那么()A.a<0,Δ>0B.a<0,Δ≤0C.a>0,Δ≤0D.a>0,Δ≥0【答案】C【解析】只能是开口朝上,最多与x轴一个交点情况∴a>0,Δ≤0;故选C。
【考点】主要考查一元二次不等式解法。
点评:基本题型,记清不等式ax2+bx+c<0(a≠0)的解集的各种情况。
2.不等式(x+2)(1-x)>0的解集是()A.{x|x<-2或x>1}B.{x|x<-1或x>2}C.{x|-2<x<1}D.{x|-1<x<2}【答案】C【解析】所给不等式即(x+2)(x-1)<0∴-2<x<1,故选C。
【考点】主要考查一元二次不等式解法。
点评:基本题型,解不等式ax2+bx+c<0(a≠0)首选因式分解法,注意各因式中x系数化为正。
3.已知x满足不等式组:,则平面坐标系中点P(x+2,x-2)所在象限为()A.一B.二C.三D.四【答案】C【解析】不等式组的解集为x<-6∴x+2<-4,x-2<-8∴点P在第三象限。
故选C。
【考点】主要考查一元二次不等式组的解法。
点评:基本题型,数形结合,先解不等式组,进一步确定点的位置。
4.不等式(x+5)(3-2x)≥6的解集为()A.{x|x≤-1或x≥}B.{x|-1≤x≤}C.{x|x≥1或x≤-}D.{x|-≤x≤1}【答案】D【解析】首先移项,合并同类项,分解因式可得-≤x≤1,故选D。
【考点】主要考查一元二次不等式解法。
点评:基本题型,解不等式ax2+bx+c>0(<0)(a≠0)首选因式分解法,注意各因式中x系数化为正。
5.若二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:则不等式ax2+bx+c>0的解集是。
【答案】(-∞,-2)∪(3,+∞)【解析】两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。
高二数学专题复习(五)基本不等式1 限时练高二 ______班_____组 学号:_______ 姓名:______________ 一、【基础过关】(大约35分钟).225,0.1的最大值求已知xx x +<.19,1.2的最小值求已知-+>x x x.)41(,410.3的最大值求已知x x x -<<4.(2020·上海,13)下列不等式恒成立的是( )A.a 2+b 2≤2abB.a 2+b 2≥-2abC.a+b ≥2√|ab |D.a+b ≥-2√|ab |5.(2015·福建,理5)若直线x a +yb =1(a>0,b>0)过点(1,1),求a+b 的最小值.6.(2015·湖南,文)若实数a ,b 满足1a +2b =√ab ,则ab 的最小值为( )A.√2B.2C.2√2D.47.(2019·天津,文13)设x>0,y>0,x+2y=4,则(x+1)(2y+1)xy的最小值为 .8.(2019·天津,理13)设x>0,y>0,x+2y=5,则√xy的最小值为.9.(2014·重庆,文9)若log4(3a+4b)=log2√ab,则a+b的最小值是()A.6+2√3B.7+2√3C.6+4√3D.7+4√3二、【能力提升】(大约5分钟)10.(2015·重庆,文14)设a,b>0,a+b=5,则√a+1+√b+3的最大值为.高二数学专题复习(五)基本不等式1限时练答案1. 302. 73.641A.由基本不等式可知a2+b2≥2ab,故A不正确;B.a2+b2≥-2ab⇒a2+b2+2ab≥0,即(a+b)2≥0恒成立,故B正确;C.当a=-1,b=-1时,不等式不成立,故C不正确;D.当a=0,b=-1时,不等式不成立,故D不正确.故选B.∵直线xa+yb=1过点(1,1),∴1a+1b=1.又a,b均大于0,∴a+b=(a+b)(1a+1b)=1+1+ba+ab≥2+2√ba·ab=2+2=4.故选C.由已知1a+2b=√ab,可知a,b同号,且均大于0.由√ab=1a+2b≥2√2ab,得ab≥2√2.即当且仅当1a=2b,即b=2a时等号成立,故选C.(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy.∵x+2y=4,∴4≥2√2xy,∴2xy≤4.∴1xy≥12.∴2+5xy≥2+52=92.先化简,利用√xy 的范围求解.√xy=√xy=√xy =2√xy √xy≥2·√2√xy ·6√xy =4√3.当且仅当√xy =√xy,即xy=3时等号成立.由log 4(3a+4b )=log 2√ab ,得12log 2(3a+4b )=12log 2(ab ),所以3a+4b=ab ,即3b +4a =1. 所以a+b=(a+b )(3b +4a )=3ab +4ba +7≥4√3+7,当且仅当3ab =4ba ,即a=2√3+4,b=3+2√3时取等号.故选D .10.(2015·重庆,文14,5分,难度★★)设a ,b>0,a+b=5,则√a +1+√b +3的最大值0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是=√x +√y,而(√x +√y )2=x+y+2√xy ≤x+y+(x+y )=18,所以√x +√y ≤3√2 .此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2.。
高二数学绝对值不等式试题答案及解析1.已知实数满足,证明:.【答案】见解析【解析】有已知条件,可得,,然后得到,展开进行整理即可。
证明:证法一,∴,,∴,. 2分∴,即, 4分∴,∴, 6分即,∴. 8分证法二:要证,只需证 2分只需证只需证 4分即. 6分,∴,,∴成立.∴要证明的不等式成立. 8分【考点】绝对值不等式;不等式证明的基本方法.2.不等式的解集是 ( )A.B.C.D.【答案】D【解析】由得,即或,解得或【考点】解含绝对值不等式3.不等式的解集为A.[-5.7]B.[-4,6]C.D.【答案】C【解析】本题利用绝对值的几何意义,结合数轴求解。
不等式的解集为,选C。
【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。
有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。
4.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.5.在实数范围内,不等式的解集为__________【答案】【解析】解:由不等式|2x-1|+|2x+1|≤6,可得①-(2x-1)+(-2x-1)≤6, x<-,或②-(2x-1)+(2x+1)≤6-≤x<,或③2x-1+2x+1≤6,X解①得-≤x<-,解②得-≤x<,解③得≤x≤把①②③的解集取并集可得不等式的解集为【考点】分式不等式点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于中档题.6.不等式的解集为。
3.4 基本不等式:ab ≤a +b2双基达标 限时20分钟1.若x >0,y >0,且x +y =4,则下列不等式中恒成立的是( ).A.1x +y ≤14B.1x +1y≥1C.xy ≥2D.1xy≥1解析 若x >0,y >0,由x +y =4,得x +y4=1,∴1x +1y =14(x +y )⎝ ⎛⎭⎪⎫1x +1y =14⎝ ⎛⎭⎪⎫2+y x +x y ≥14(2+2)=1. 答案 B2.下列各函数中,最小值为2的是( ).A .y =x +1xB .y =sin x +1sin x ,x ∈⎝⎛⎭⎪⎫0,π2C .y =x 2+3x 2+2D .y =x +1x解析 对于A :不能保证x >0, 对于B :不能保证sin x =1sin x ,对于C :不能保证x 2+2=1x 2+2,对于D :y =x +1x≥2.答案 D3.若0<a <b 且a +b =1,则下列四个数中最大的是( ).A.12B .a 2+b 2C .2abD .a解析 a 2+b 2=(a +b )2-2ab ≥(a +b )2-2·⎝⎛⎭⎪⎫a +b 22=12.a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab .∵0<a <b 且a +b =1,∴a <12.∴a 2+b 2最大. 答案 B 4.设a >2,则a +1a -2的最小值是________. 解析 ∵a >2,∴a -2>0. ∴a +1a -2=(a -2)+1a -2+2≥2+2=4. 当且仅当a -2=1a -2,即a =3时,等号成立. 答案 45.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ab =a +b +3≥2ab +3,∴ab ≥3,即ab ≥9. 答案 [9,+∞)6.已知x >0,y >0,lg x +lg y =1,求2x +5y的最小值.解 法一 由已知条件lg x +lg y =1可得:x >0,y >0,且xy =10. 则2x +5y =2y +5x 10≥210xy 10=2, 所以⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当⎩⎪⎨⎪⎧2y =5x ,xy =10.即⎩⎪⎨⎪⎧x =2,y =5时等号成立.法二 由已知条件lg x +lg y =1可得:x >0,y >0,且xy =10,2x +5y ≥22x ·5y=21010=2(当且仅当⎩⎪⎨⎪⎧2x =5y ,xy =10.即⎩⎪⎨⎪⎧x =2,y =5.时取等号).综合提高 限时25分钟7.设a >0,b >0.若3是3a 与3b的等比中项,则1a +1b的最小值为( ).A .8B .4C .1D.14解析 因为3a ·3b=3,所以a +b =1, 1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b ≥2+2 b a ·a b=4,当且仅当b a =a b ,即a =b =12时,“=”成立,故选B.答案 B8.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ).A .6.5 mB .6.8 mC .7 mD .7.2 m解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).因为要求够用且浪费最少,故选C. 答案 C9.(2011·潍坊高二检测)在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________. 解析 设两数为x ,y ,即4x +9y =60, 又1x +1y =⎝ ⎛⎭⎪⎫1x +1y 4x +9y 60=160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160×(13+12)=512,当且仅当4x y =9y x,且4x +9y =60,即x =6,y =4时,等号成立. 答案 6 410.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n >0,则1m +2n的最小值为________.解析 函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A (-2,-1),(-2)·m +(-1)·n +1=0, 2m +n =1,m ,n >0, 1m +2n =⎝ ⎛⎭⎪⎫1m +2n ·(2m +n )=4+n m+4m n≥4+2n m ·4mn=8,当且仅当⎩⎪⎨⎪⎧2m +n =1n m=4mn,即⎩⎪⎨⎪⎧m =14n =12时等号成立.答案 811.求函数y =x 2+6x +1x 2+1的值域.解 函数的定义域为R , y =x 2+1+6x x 2+1=1+6x x 2+1. (1)当x =0时,y =1; (2)当x >0时,y =1+6x +1x≤1+62=4. 当且仅当x =1x时,即x =1时,y max =4;(3)当x <0时,y =1+6x +1x=1-6-x +1-x ≥1-62=-2.当且仅当-x =-1x时,即x =-1时,y min =-2.综上所述:-2≤y ≤4,即函数的值域是[-2,4].12.(创新拓展)(2012·济宁高二检测)某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房.经初步估计得知,如果将楼房建为x (x ≥12)层,则每平方米的平均建筑费用为Q (x )=3 000+50x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解 设楼房每平方米的平均综合费用为f (x )元,依题意得f (x )=Q (x )+8 000×10 0004 000x=50x +20 000x+3 000(x ≥12,x ∈N ),f (x )=50x +20 000x+3 000≥250x ·20 000x+3 000=5 000(元).当且仅当50x =20 000x,即x =20时上式取“=”因此,当x =20时,f (x )取得最小值5 000(元).所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元.。
高二数学一元二次不等式试题答案及解析1.设函数,记不等式的解集为.(1)当时,求集合;(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,不等式是一个具体的一元二次不等式,应用因式分解法可求得其解集;(2)注意这个条件只能用于第(1)小问,而不能用于第(2)问,所以不能用第(1)小问的结果,来解第(2)问;不等式从而可得,然后由画出数轴,就可列出关于字母a的不等式组,从而求出a的取值范围.试题解析:(1)当时,,解不等式,得, 5分. 6 分(2),,又,,. 9分又,,解得,实数的取值范围是. 14分【考点】1.一元二次不等式;2.集合间的关系.2. (1)求不等式的解集:;(2)求函数的定义域:.【答案】(1); (2)【解析】(1)根据解一元二次不等式的步骤,首先求方程,再结合函数的图象写出不等式的解;(2)已知解析式求函数的定义域,转化为解不等式,从而得到函数的定义域.试题解析:解:(1)解:原不等式等价于,令,得或所以原不等式的解为或,即原不等式的解集为(2)要使函数有意义,则,得不等式组的解为或,所以原不等式的解集为.所以函数的定义域为【考点】1、一元二次不等式的解法;2、分式不等式的解法;3、函数的定义域.3.设,解关于的不等式.【答案】当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】由实数的取值是不为零关系到不等的类型,所以要首先考虑的情况;、当时,要解不等式,需要先解方程得两根:2和,可以发现实数的取值对两根的大小起决定作用,故又需要依此对的取值进行分类讨论.试题解析:解:(1)若,则不等式化为,解得 2分(2)若,则方程的两根分别为2和 4分①当时,解不等式得 6分②当时,不等式的解集为 8分③当时,解不等式得 10分④当时,解不等式得或 12分综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为 14分【考点】1、一元一次、一元二次不等式的解法;2、分类讨论的思想.4.已知函数,求不等式的解集。
高中数学~~基本不等式1、某工厂修建一个长方体无盖蓄水池∙[ 高二数学] ∙ 题型:解答题某工厂修建一个长方体无盖蓄水池,其容积为1200立方米,深度为3米.池底每平方米的造价为15元,池壁每平方米的造价为12元.设池底长方形的长为x 米.(1)求底面积,并用含x 的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?问题症结:找不到突破口,请老师帮我理一下思路考查知识点:∙均值定理求最值难度:中 解析过程:()()1211,12004003S S ==解:设水池的底面积为S 池壁面积为则有平方米240024006x x x=+可知池底的宽为米,则S ()24002,15400126y y x x ⎛⎫=⨯++ ⎪⎝⎭设总造价为则 400600072x 600028808880x ⎛⎫=++≥+= ⎪⎝⎭ min 400208880x x y x===当且仅当即时取等号,此时元。
同学你好,如有疑问可在添加讨论中留言。
规律方法:利用均值不等式的知识求解。
1、已知3/x+2/y=1,求x+y 的最小值∙[ 高一数学] ∙ 题型:解答题问题症结:找不到突破口,请老师帮我理一下思路考查知识点:∙ 均值定理求最值难度:中解析过程:规律方法:利用“1”的灵活性进行计算。
德智答疑/shuxue知识点:基本不等式概述所属知识点:[不等式]包含次级知识点:基本不等式、均值定理求最值知识点总结本节主要包括基本不等式、利用基本不等式求最值等知识点。
其中利用基本不等式求最值是重点和难点。
1、基本不等式基本不等式(2)常用来求最小值,其变形公式常用来求最大值;求最值时,一定要注意“一正二定三相等”,三者缺一不可。
2、使用基本不等式求最值时,要注意观察收集题目中的数学信息(正数、定值等),然后变形,配凑出基本不等式的条件。
3、使用基本不等式求最值,如果等号成立的条件不成立,就说明不能取到该最值,必须寻找另外的方法(如:函数的单调性和数形结合等)求最值。
第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。
班级_________ 姓名_____________ 学号____________ 分数 ___________ 《必修五单元测试三不等式》测试卷(A卷)(测试时间:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.在不等式x + 2y-1>0表示的平面区域内的点是()A. (1,-1)B. (0,1)C. (1,0)D. (-2,0)【答案】B【解析】试题分析:・・・1+2><(_1)_1〈0;0+2><1_1血1 + 2><0-1 = 0;-2 + 2><0-1<0,二可知点(0丄)在不等式x+2y-l >0表示的平面区域內.故B正确.2.已知集合A = [xeN\x2-5x + 4<0], B = {x\x2-4 = o],下列结论成立的是()A. Be A B_. A\J B = A C. Ar\B = A D. AcB = {2}【答案】D【解析】由已知得A = {123,4}, B = {-2,2},则AcB = {2},故选D.x>l3.区域{y>\构成的儿何图形的面积是()x+y<3A. 2B. 1C. 一D.-4 2【答案】D【解析】画出不等式组表示的区域如图,结合图形对知区域三角形的面积是S=-xlxl=l,应选答案D.2 24.[2018届河南省中原名校高三上学期第一次质】若a<b<0,则下列不等关系屮,不能成立的是1 ] ] ] 1 1A. ->-B. -------------------- >-C. a3 <b3D. a2 > b2a b a~b a【答案】B【解析]Va<b<0,.\a<a - b<0由y =丄在(一a,0)上单调递减知:一-— < 丄x a~b a因此B不成立.故选:B.5.不等式乞二L>0的解集是()x + 3A. _,+8B. (4,+00)、2(J 、C. (-00, -3)U(4, +oo)D. (-00,-3)u —,+oo【答案】D【解析】分式不等式可转换为二次不等式:(2兀一1)(兀+3)>0,(\ \据此可得不等式的解集为:(-00,-3)u -,+a)>本题选择D选项.6.已知关于兀的不等式x2-4x>m对任意XG(O,1]恒成立,则有()A. m <一3B. m >—3C. —3 < m < 0D. m > ~4【答案】A【解析1 vx2-4x> w对任意xe[O3l]恒成立,令/(x)=x2-4x s xe[0a l], v f(x)的对称轴为x = 2 ,二/ (x)在[0 J]单调递减,二当* 1时取到最小值为-3 ,:.实数w的取值范围是w<-3,故选A.X>1x + y<47.【2018届四川省南充市高三零诊】若实数俎y满足lx-2y-lS0 ,贝ljz = 2x + y的最大值为()A. 2B. 5C. 7D. 8【答案】C【解析】作出可行域:学@科网rf]Z = 2x +儿可得:y=- 2x + z,平行移动丿=-2兀+ z,由图象可知当直线经过点A时,直线的纵截距最大, 即z最大;易得A(3, 1),带入目标惭数z = 2咒+儿得:z = 2x3 + l = 7,即z = 2兀+ y的最大值为7故选:C.8.已知/(兀)=0?+加,且满足:15/(1)53,-1</(-1)<1,则/(2)的取值范围是()A. [0,12] B. [2,10] C. [0,10] D. [2,12]【答案】B【解析】・・・/(兀)=血2+加且15/(1)53, -1</(-1)<1, :.\<a + b<3, -\<a-b<\,JV+V =4 x— 3/(2)= 4a + 2b,令4d + " = x(Q+b) + y(a—b),可得{7-,解得{—,即x-y=2 y=l4a + 2/? = 3(Q+b)+(o—b), ・・・353(d+b)59, 253(a+b)+(d—b)510,则/(2)的取值范围是[2,10],故选B.F — r — 69.不等式一<0的解集为()兀—1A. {兀|兀(一2或»1}B. {兀| 兀<一2或vxv3}C. {兀|-2v兀〈1或x〉3}D. {%|-2VJVV1或lcxv3}【答案】B【解析】不等式即:(〒)(节2)<0(-1)转化为高次不等式:(x-3)(x+2)(x-l)<0利用数轴穿根法解得x < —2或1 v尢v 3 ,本题选择B选项.点睛:解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.10.若a,bER且必>0,则下列不等式中,恒成立的是()11 2 b a9 9.—— +「> ~严= —d—二2A. a + b > 2ab g a + b > Q a b ^Jab D. Q b'【答案】D【解析】对于选项A,当a = b时不成立;对于选项巧当a<0.b<0或a = b > 0时不成立;对于选项C, 当aV0,b<0时不成立:对于选项D,因为ab>0,所以;>0^>0,由基本不等式有恒成立, 故选D.y>0尤-y + 1 二011.[2018届广东省茂名市五大联盟学校高三9月】设绘y满足约束条件U + y-3<0,贝ijz = x-3y的最大值为()A. 3B. -5C. 1D. -1【答案】Ax - y +1 > 0 y = _x —z —z画出不等•式组k + 表示的区域如图,则问题转化为求动直线 3 B 在y 上的截距B 的最小值 1 1的问题,结合图形可知:当动直线一孑经过点P (3,0)^, z nlax = 3-3x0 = 3,应选答案A .12. [2018届云南省师范大学附属中学高三月考一】若直线ax + by-2 = Q (d>0』>0)始终平分圆第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填•在答题纸上)13.【2018届江苏省泰州屮学高三上学期开学】已知点PU ,y )满足<-XI y>>-+ y Xy z ~~ _贝I 」X 的最大值为 __________【解析】画出满足条件的半面区域,如图示:由z【答案】D【解析】x 2+y 2-2x-2y = 2 的周长,则眾的最小值为(3-2^2 43-2^2 ~2-D.【解析】直线平分圆周,则直线过圆心(1」),所以有G + b = 2,-!- +丄二丄(d + b) — 2ci b 2、)"(1 1)• -I 2G b )b = y[2a 时取“二”),故选 D.y咒表示过平面区域的点Qy)与(°,°)的直线的斜率,显然直线过力仃,3)时,z取得最大值,x故答案为:3.14. [2018届河南省中原名校高三上学期第一次联考】某学生计划用不超过50元钱购买单价分别为6元、7元的软皮和硬皮两种笔记本,根据需要软皮笔记本至少买3本,硬皮笔记本至少买2本,则不同的选购方式共有. _________ 种.【答案】7.(6x + 7y < 50% > 3沖2【解析】根据题意,设买x本软皮笔记本,y本硬皮笔记本,则有I ,32y <——当x=3时,7 ,可取的值.为2、3、4;26y < —当x=4时,7,可取的值为2、3;20y <——当x=5时,一7,可取的值为2;14y <——当X二6时,7,可取的值为2;共7种不同的选购方式;故答案为:7.15.若不等式x2-ax-b< 0的解集为何2VXV3},则不等式bx2-ax-l>0的解集为_____________________【答案】【解析】.••不等式x2-ax-b<0的解集为{x|2<x<3})・・・2,3是一元二次方程x2-ax-b = 0的两个实数根,2 +3 = a[2 x 3 =- b ,解得。
高二数学基本不等式训练练习数学基本不等式训练1.若xy0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400B.100C.40D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x0时,求f(x)的最小值;(2)当x0 时,求f(x)的最大值.解:(1)∵x0,12x,4x0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x0时,f(x)的最小值为83.(2)∵x0,-x0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba②∵x,y(0,+),lgx+lgy2lgx③∵aR,a0,4a+a 24a④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy 是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24aa=4是错误的;④由xy0得xy,yx均为负数,但在推导过程中将全体xy+yx 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a0,b0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
高二数学期末复习一(不等式2) 一、选择题1.若a 、b 、c 为实数;则下列命题正确的是( )A.若a >b ;则ac 2>bc 2B.若a <b <0;则a 2>ab >b 2C.若a <b <0;则a 1<b 1D.若a <b <0;则a b >ba 2.若a 1<b 1<0;则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④a b +ba>2.正确的不等式有( ) 个个个个3.若a >b >1;P =b a lg lg ⋅;Q =21(lg a +lg b );R =lg(2ba +);则( ) A.R <P <QB.P <Q <RC.Q <P <RD.P <R <Q4.角x ;y 满足-2π<x <y <2π;则x -y 的取值范围是( ) A.(-π;0) B.(-π;π) C.(-2π;0) D.(-2π;2π)5.下列命题中;真命题有( )①若a +b >0且ab >0;则a >0且b >0 ②若a >b 且ab >0;则a >b >0 ③若b a >dc ⇒ad >bc ④a >b 是2c a >2cb成立的必要条件 A.①③ B.②③ C.②④ D.①④6.两次购买同一种物品;可以有两种不同的策略.第一种是不考虑物品价格的升降;每次购买这种物品的数量一定;第二种是不考虑物品价格的升降;每次购买这种物品所花的钱数一定.若两次购买这种物品时价格不相同;则两种策略中比较经济的情况为( )A.第一种策略经济B.第二种策略经济C.两种策略同样经济D.不能判断7.函数f (x )=x +x4+3在(-∞;-2]上( ) A.无最大值;有最小值7 B.无最大值;有最小值-1 C.有最大值7;有最小值-1 D.有最大值-1;无最小值8.一批救灾物资随26辆汽车从某市以v km/h 速度匀速直达灾区;已知两地公路线长 400 km ;为了安全起见;两辆汽车的间距不得小于(20v )2km ;那么这批物资全部到达灾区;最少需要( )9.已知h >0;设甲:两实数a 、b 满足|a -b |<2h ;乙:两实数a 、b 满足|a -1|<h 且|b -1|<h ;则( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件;也不是乙的必要条件10.若x >0;y >0且y x +≤a ·(x +y )成立;则a 的最小值是( ) A.22B.2 2二、填空题11.设0<x <1;则a =2x ;b =1+x ;c =x -11中最大的一个是__________. 12.已知不等式:①a 2+3>2a (a ∈R );②aa 1+≥2;③a 5+b 5>a 3b 2+a 2b 3;④a 2+b 2≥2(a -b -1)(a ;b ∈R ).其中正确的不等式的序号是__________.13. b g 糖水中有a g 糖(b >a >0);若再添上m g 糖(m >0);则糖水就变甜了.试根据这个事实;提炼一个不等式:__________.14.已知三个不等式:①ab >0;②-a c <-bd;③bc <ad .以其中两个作为条件;余下一个作为结论;则可以组成__________个正确的命题.三、解答题15设x 、y 、z ∈R ;比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 16.比较下列两个数的大小:(1)2-1与2-3; (2)2-3与6-5;(3)从以上两小题的结论中;你能否得出更一般的结论?并加以证明.17求证:ab b a +≥b a +(a >0;b >0). 18某单位决定投资3200元建一仓库(长方体状);高度恒定;它的后墙利用旧墙不花钱;正面用铁栅;每米长造价40元;两侧墙砌砖;每米造价45元;顶部每平方米造价20元;试算:仓库底面积S 的最大允许值是多少?此时铁栅长为多少?19.设f (x )=x 2-x +B ;实数a 满足|x -a |<1;求证:|f (x )-f (a )|<2(|a |+1).20 经过长期观测得到:在交通繁忙的时段内;某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (km/h)之间的函数关系为y =160039202++v v v(v >0). (1)在该时段内;当汽车的平均速度v 为多少时;车流量最大?最大车流量为多少?(精确到千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时;则汽车的平均速度应在什么范围内?21.已知a >b >0;求证:a b a 8)(2-<2b a +-ab <b b a 8)(2-不等式(一)(A 卷)一、选择题1.若a 、b 、c 为实数;则下列命题正确的是( )A.若a >b ;则ac 2>bc 2B.若a <b <0;则a 2>ab >b 2C.若a <b <0;则a 1<b 1 D.若a <b <0;则a b >ba 解析:A.因为c 2≥0;所以只有c ≠0时才正确.c =0时;ac 2=bc 2;所以A 是假命题.变式:若ac 2>bc 2;则a >b ;命题是真命题.B.a <b ;a <0⇒a 2>ab ;a <b ;b <0⇒ab >b 2;B 是真命题.C.由性质定理a <b <0⇒a 1>b 1;C 是假命题. D.例如-3<-2<0;32<23;D 是假命题.答案:B 2.若a 1<b 1<0;则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④a b +ba >2.正确的不等式有( ) 个个个个分析:本题主要考查不等式的性质及均值不等式的适用条件. 解:由a 1<b1<0可知b <a <0;③不正确;②不正确. ∴a +b <0;ab >0.∴a +b <ab ;①正确. 由a b >0; b a >0;而a ≠b ;∴a b +ba>2;④正确. 答案:B3.若a >b >1;P =b a lg lg ⋅;Q =21(lg a +lg b );R =lg(2ba +);则( ) A.R <P <Q B.P <Q <R C.Q <P <RD.P <R <Q分析:本题主要考查均值不等式与对数函数的单调性. 解:a >b >1⇒lg a >0;lg b >0.⎪⎪⎩⎪⎪⎨⎧=+=>+==⋅>+=Q b a ab b a R P b a b a Q )lg (lg 21lg )2lg(lg lg )lg (lg 21⇒ R >Q >P . 答案:B4.角x ;y 满足-2π<x <y <2π;则x -y 的取值范围是( ) A.(-π;0) B.(-π;π) C.(-2π;0) D.(-2π;2π)分析:本题主要考查负数在不等式中的变化;不等式的性质.解:由x <y ;得x -y <0.又-π<x -y <π;∴-π<x -y <0. 答案:A5.下列命题中;真命题有( )①若a +b >0且ab >0;则a >0且b >0 ②若a >b 且ab >0;则a >b >0 ③若b a >dc ⇒ad >bc ④a >b 是2c a >2cb成立的必要条件 A.①③ B.②③ C.②④ D.①④ 分析:本题主要考查不等式的性质;用排除法. 解:∵ab >0;∴a 、b 同号.又a +b >0; ∴a >0且b >0.①正确;排除B 、C. 由③b a -dc >0;得bd bc ad ->0;不能保证ad >bc .③不正确.故应选D. 答案:D6.两次购买同一种物品;可以有两种不同的策略.第一种是不考虑物品价格的升降;每次购买这种物品的数量一定;第二种是不考虑物品价格的升降;每次购买这种物品所花的钱数一定.若两次购买这种物品时价格不相同;则两种策略中比较经济的情况为( )A.第一种策略经济B.第二种策略经济C.两种策略同样经济D.不能判断分析:本题主要考查不等式的应用.本题关键是比较两种不同的购买方式的平均价格的 大小. 解:(1)按第一种策略购物;设第一次购物时价格为p 1;购n (kg);第二次购物时价格为p 2;仍购n (kg).按这种策略购物时两次购物的平均价格为n n p n p 221+=221p p +. (2)若按第二种策略购物;第一次花m 元钱;能购1p m (kg)物品;第二次仍花m 元钱;能购2p m (kg)物品;两次购物的平均价格为212p mp m m +=21112p p +.比较两次购物的平均价格221p p +-21112p p +=221p p +-21212p p p p +=)(24)(2121221p p p p p p +-+=)(2)(21221p p p p +->0(∵p 1≠p 2);∴第一种策略的平均价格高于第二种策略的平均价格. 因而;用第二种策略比较经济. 答案:B 7.函数f (x )=x +x4+3在(-∞;-2]上( ) A.无最大值;有最小值7 B.无最大值;有最小值-1 C.有最大值7;有最小值-1 D.有最大值-1;无最小值解析:f (x )=x +x 4+3=-(-x +x-4)+3≤-4+3=-1. 故选D.答案:D8.一批救灾物资随26辆汽车从某市以v km/h 速度匀速直达灾区;已知两地公路线长 400 km ;为了安全起见;两辆汽车的间距不得小于(20v )2km ;那么这批物资全部到达灾区;最少需要( )A.5 hB.10 hC.15 hD.20 h解析:时间t =[400+25(20v )2]÷v =v 400+40025v≥225=10.答案:B9.已知h >0;设甲:两实数a 、b 满足|a -b |<2h ;乙:两实数a 、b 满足|a -1|<h 且|b -1|<h ;则( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件;也不是乙的必要条件 分析:本题主要考查含绝对值不等式|a |-|b |≤|a ±b |≤|a |+|b |;充要条件. 解:|a -b |=|(a -1)-(b -1)|≤|a -1|+|b -1|<2h .故应选B. 答案:B10.若x >0;y >0且y x +≤a ·(x +y )成立;则a 的最小值是( ) A.22B.2 2分析:本题主要考查222b a +≥(2b a +)2;参数隔离法.解:由2)()(22y x +≥(2y x +)2;∴2y x +≥2y x +;即a ≥22;a min =22.故应选A.答案:A二、填空题11.设0<x <1;则a =2x ;b =1+x ;c =x-11中最大的一个是__________. 解析:∵b -c =(1+x )-x-11=x x ---1112=-xx -12<0;∴b <c .又b =1+x >2x =a ;∴c 最大. 答案:c12.已知不等式:①a 2+3>2a (a ∈R );②aa 1+≥2;③a 5+b 5>a 3b 2+a 2b 3;④a 2+b 2≥2(a -b -1) (a ;b ∈R ).其中正确的不等式的序号是__________. 分析:本题考查比较法;综合法证明不等式;凑平方. 解:①a 2+3-2a =(a -1)2+2>0. ②a 为负值不正确.③a 5+b 5-a 3b 2-a 2b 3=a 3(a 2-b 2)-b 3(a 2-b 2)=(a 3-b 3)(a 2-b 2)=(a +b )(a -b )2(a 2+ab +b 2);其值大于零不一定成立.当a ≠b 且均为负值或一负值一零值时;其值为负值;当a =b 时其值为零.不正确.④a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0. 答案:①④13. b g 糖水中有a g 糖(b >a >0);若再添上m g 糖(m >0);则糖水就变甜了.试根据这个事实;提炼一个不等式:__________.分析:本题主要考查应用数学知识解决实际问题的能力.加糖以后;糖水变甜了;说明浓度变大了.解:加糖以前;糖水的浓度为b a ;而加入m g 糖以后;糖水浓度为mb m a ++;糖水变甜了;说明浓度变大了;即m b m a ++>b a. 答案: m b m a ++> ba14.已知三个不等式:①ab >0;②-a c <-bd;③bc <ad .以其中两个作为条件;余下一个作为结论;则可以组成__________个正确的命题.分析:本题考查综合运用不等式的性质;证明不等式.解:由②;abadbc ->0;又ab >0⇒bc -ad >0; 即bc >ad ;说明由①②③.同理可证明其他情况. 答案:0三、解答题15设x 、y 、z ∈R ;比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 分析:本题考查不等式的性质与比较法.解:(5x 2+y 2+z 2)-(2xy +4x +2z -2)=(x -y )2+(2x -1)2+(z -1)2≥0. ∴5x 2+y 2+z 2≥2xy +4x +2z -2 (当且仅当x =y =21且z =1时等号成立). 16.比较下列两个数的大小: (1)2-1与2-3; (2)2-3与6-5;(3)从以上两小题的结论中;你能否得出更一般的结论?并加以证明. 解法一:(变形后利用平方求差) (1)(2+3)2-(2+1)2=26-4>0.故2+3>2+1;即2-1>2-3.(2)(2+5)2-(6+3)2=45-218=220-218>0. 故2+5>6+3;即2-3>6-5.(3)一般结论:若n 是正整数; 则有1+n -n >3+n -2+n .证明过程与(1)(2)类似;从略. 解法二:(利用分子有理化)(1)∵2-1=121+;2-3=321+;而121+>321+;故2-1>2-3.(2)∵2-3=321+; 6-5=561+;而321+>561+;故2-3>6-5. (3)同解法一.注:本题的结论可推广到对一切n ∈R +都成立.17求证:ab b a +≥b a +(a >0;b >0). 思路一:从结论入手;探求、分析上一步成立的充分条件.证法一:(分析法)要证a b b a +≥b a +; 只要证a a +b b ≥a b +b a ; 即证3a +3b ≥ab (b a +).需证(b a +)(a -ab +b )≥ab (b a +); 即a -ab +b ≥ab ;也就是要证a +b ≥2ab 成立.a +b ≥2ab 显然成立;∴原不等式成立. 思路二:从条件入手;利用已知不等式;逐次推理. 证法二:(综合法)∵a 、b 为正实数;∴a +b ≥2ab .又ba +b ≥2a ; ① a +ab ≥2b ;②①+②得b a +b +a +ab ≥2a +2b ;即abb a+≥b a +成立. 证法三:(作差比较法) (a b b a +)-(b a +) =(b a -b )+(ab -a )=b b a -+a a b -=abb a b a ))((--=abb a b a 2))((-+.∵a 、b 为正实数;∴b a +>0;ab >0;(a -b )2≥0.于是有abb a b a 2))((-+≥0.∴ab ba +≥b a +.18某单位决定投资3200元建一仓库(长方体状);高度恒定;它的后墙利用旧墙不花钱;正面用铁栅;每米长造价40元;两侧墙砌砖;每米造价45元;顶部每平方米造价20元;试算:仓库底面积S 的最大允许值是多少?此时铁栅长为多少?分析:本题考查不等式在实际中的应用.解:设铁栅长x m ;一堵墙长y m ;则有S =xy . 由题意得40x +2×45y +20xy =3200.应用二元均值不等式;得3200≥229040y x ⋅+20xy =120xy +20xy =120S +20S . ∴S +6S ≤160.∴(S -10)(S +16)≤0.由于S +16>0;∴S -10≤0;即S ≤100.因此S 的最大允许值是100 m 2;当且仅当40x =90y ; 而xy =100;解得x =15; 即铁栅的长应为15 m.19.设f (x )=x 2-x +B ;实数a 满足|x -a |<1;求证:|f (x )-f (a )|<2(|a |+1). 分析:本题考查绝对值不等式|a |-|b |≤|a ±b |≤|a |+|b |的应用.证明:∵f (x )-f (a )=x 2-x +B -a 2+a -B =x 2-a 2-(x -a )=(x -a )(x +a -1); 又∵|x -a |<1;∴|f (x )-f (a )|=|x -a |·|x +a -1|<|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a |+1=2(|a |+1). ∴|f (x )-f (a )|<2(|a |+1).20 经过长期观测得到:在交通繁忙的时段内;某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (km/h)之间的函数关系为y =160039202++v v v(v >0). (1)在该时段内;当汽车的平均速度v 为多少时;车流量最大?最大车流量为多少?(精确到千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时;则汽车的平均速度应在什么范围内? 分析:本题主要考查函数、不等式等基本知识;考查应用数学知识分析问题和解决问题的能力.解:(1)依题意;y =)1600(3920vv ++≤160023920+=83920; 当且仅当v =v 1600;即v =40时;上式等号成立. 所以y max =83920≈11.1(千辆/小时).(2)由条件得160039202++v v v>10;整理得v 2-89v +1600<0; 即(v -25)(v -64)<0. 解得25<v <64.答:当v =40 km/h 时;车流量最大;最大车流量约为千辆/小时.如果要求在该时段内车流量超过10千辆/小时;则汽车的平均速度应大于25 km/h 且小于64 km/h.21已知a >b >0;求证:a b a 8)(2-<2b a +-ab <b b a 8)(2-.分析:本题主要考查利用分析法证明不等式. 证明:要证原不等式;只需证 a b a 4)(2-<a +b -2ab <b b a 4)(2- ⇔(a b a 2-)2<(a -b )2<(b b a 2-)2⇔a b a 2-<a -b <bba 2-⇔a b a 2+<1<b ba 2+⇔1+a b <2<b a +1 ⇔ a b <1<ba ⇔a b <1<ba . (*)由题设知不等式(*)成立;以上过程可逆;原不等式成立.。
高二数学基本不等式试题1.下列结论中正确的是A.的最小值为B.的最小值为C.的最小值为D.当时,无最大值【答案】B【解析】使函数有意义,则,当且仅当,即取到等号;对于可能小于0,对于当且仅当,即时取等号,但的最大值为1,错;对于在上为增函数,因此有最大值.【考点】基本不等式的应用.2.下列各式中,最小值是2的是()A.B.C.D.【答案】C【解析】,当且仅当,即,取得最小值,故选择C,不选择A的原因是不满足是正数的条件,不选择B的原因是中的等号不成立,不选择D的原因是该式没有最小值,所以运用均值不等式求最值,一定要注意“一正、二定、三相等”是否都具备,缺一不可.【考点】利用均值不等式求最值.3.若直线始终平分圆的周长,则的最小值为 ( )A.1B.5C.D.【答案】D【解析】由题可知直线进过圆心,即有.为求,可以利用前面的条件换掉,得,但考虑到不好求值,另寻它法.即将“1”.“2”换成,则有,故选D.【考点】巧用“1”和基本不等式证明不等式.4.已知,且,则的最小值是_______.【答案】9【解析】∵a+b=ab,∴,∴,当且仅当时,“=”成立,∴最小值为9.【考点】基本不等式求最值.5.已知,若恒成立,则实数的取值范围【答案】【解析】由题,则,则恒成立即恒成立,则【考点】基本不等式,恒成立问题6.已知x,y,z均为正数.求证:.【答案】不等式的证明可以考虑运用均值不等式法来得到。
【解析】证明:∵x,y,z都是为正数,∴. 4分同理,可得,. 6分将上述三个不等式两边分别相加,并除以2,得. 8分【考点】均值不等式点评:主要是考查了均值不等式的求证不等式的运用,属于中档题。
7.已知,,,则的最小值为.【答案】【解析】因为,,,,所以,=,当且仅当且时,的最小值为。
【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
8.已知函数在时取得最小值,则__________.【答案】36【解析】根据题意,由于函数在时取得,即时取得最小值故可知36,故答案为36.【考点】函数的最值点评:主要是考查了函数的最值的求解,属于基础题。
9.设均为正数,且,则的最小值为 .【答案】【解析】根据题意,由于均为正数,且,则可知,那么利用均值不等式可知,的最小值为,故答案为。
【考点】均值不等式点评:主要是考查了均值不等式的求解最值的运用,属于基础题。
10.已知实数满足,,则c的最大值为______.【答案】【解析】因为,所以。
将化为,再化为。
所以,解得,所以c的最大值为。
【考点】基本不等式点评:本题主要是应用基本不等式:,这个式子在求最值方面有很大作用。
11.交通管理部门为了优化某路段的交通状况,经过对该路段的长期观测发现:在交通繁忙的时段内,该路段内汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为①求在该路段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/时)②若要求在该时段内车流量超过千辆/时,则汽车的平均速度应限定在什么范围内?【答案】①时,(千辆/时)②【解析】解:①依题意,得=当且仅当,即时,上式等号成立,所以(千辆/时)②由条件得,整理,得即,解得答:当千米/时时,车流量最大,最大车流量约为千辆/时,如果要求在在该时段内车流量超过千辆/时,则汽车的平均速度应大于千米/时且小于千米/时。
【考点】基本不等式;解一元二次不等式点评:求式子的最值,方法可以结合二次函数、函数的导数、基本不等式和三角函数等。
本题就是结合基本不等式。
12.设,则有()A.B.C.D.【答案】B【解析】根据题意,由于,那么根据均值不等式性质可知,,故可知成立,而对于,当a=1,b=3不成立,排除A,当a=b=1, 选项C错误,选项D错误,故选B.【考点】均值不等式点评:不等式的性质13.设,则函数的最大值是__________【答案】【解析】根据题设,则函数,故可知等号成立的条件是,故答案为。
【考点】均值不等式点评:解决该试题的关键是根据已知的变量为正数,利用均值不等式的思想求解最值,属于基础题。
14.已知正数、满足,则的最小值是【答案】【解析】解:∵x>0,y>0,∴xy≤( )2,又x+y=xy,∴x+y≤()2,∴(x+y)2≥4(x+y),∴x+y≥4.故答案为:4【考点】基本不等式点评:本题考查基本不等式,利用基本不等式将已知条件转化为关于x+y的二次不等式是关键,属于基础题.15.若且则的最小值为()A.B.C.D.【答案】C【解析】∵,∴选C【考点】本题考查了基本不等式的运用点评:“1”的代换是解决此类问题的常用方法16.函数y=x++5(x>1)的最小值为()A.5B.6C.7D.8【答案】D【解析】当且仅当即时等号成立,取得最小值8【考点】均值不等式求最值点评:均值不等式求最值注意验证等号成立条件是否满足17.若,则的最小值是()A.B.C.2D.3【答案】D【解析】因为,则,当且仅当取得等号,故表达式的最小值为3,选D.【考点】本题主要考查均值不等式的求解最值的运用。
点评:解决该试题的关键是能根据题目中a的范围,构造一正二定三相等的特点来得到函数表达式的最值,也可以运用函数单调性来得到结论。
18.下列命题中,①的最小值是2;②的最小值是2;③的最小值是2;④的最小值2,正确的有()A.1个B.2个C.3个D.4 个【答案】A【解析】①错.因为x<0时不成立;②.正确;③错;④,错;故正确的命题只有一个19.已知,函数的最小值是()A.5B.4C.8D.6【答案】B【解析】因为,函数,选B20.将8分为两数之和,使其立方之和最小,则分法为( )A.2和6B.4和4C.3和5D.以上都不对【答案】B【解析】解:因为将8分为两数之和,8=x+y,使其立方之和x3+y3最小时,利用均值不等式和立方和公式得到分法为4和4.选B21.已知为不相等的正实数,则三个数的大小顺序是【答案】A【解析】解:由基本不等式可得,,所以。
22.,求证:【答案】见解析【解析】本试题主要是考查了均值不等式的运用,来证明不等式。
可以运用作差法也可以晕过分析法,也可以运用综合法得到。
或者向量法都可以法一:(作差比较),当且仅当时等号成立法二:(作商比较)①时,显然成立②,,当且仅当时等号成立法三:,当且仅当时等号成立法四:(反证法)假设与矛盾,故假设不成立,即原不等式成立。
法五:(不等式)设,当且仅当时等号成立23.(1)若,,求证:;(2)已知,且, 求证:与中至少有一个小于2.【答案】见解析【解析】第一问利用均值不等式,可知第二问中,证明:(1)(2)24.函数()的最大值是()A.0B.C.4D.16【解析】解:因为25.若方程的任意一组解都满足不等式,则的取值范围是()A.B.C.D.【答案】A【解析】解:由题意,方程(x-2cosθ)2+(y-2sinθ)2=1(0≤θ≤2π)表示的曲线在x=y的左上方(包括相切),则26.若,且.当时,c的最大值是()A.B.C.D.【答案】A【解析】,所以,所以的最大值是,故选A27.不等式组表示的平面区域的面积是___________【答案】【解析】略28.已知,且,则的最大值为()A.B.C.D.【答案】C【解析】,当且仅当时,即,是等号成立,所以的最大值为。
29.若,则的最小值为【答案】30.若实数a、b满足a+b=2,是的最小值是()A.18B.6C.2D.2【答案】B【解析】当且仅当时,等号成立;故选B31.若,则的最小值是( )A.B.C.D.不存在【答案】B【解析】【考点】基本不等式.专题:计算题.分析:先将函数解析式变形为2x+2x+ ,凑出乘积为定值,然后利用基本不等式求出函数的最小值.解答:解:因为x>0,又=2x+2x+≥3=3,当且仅当2x=时取等号,所以4x+的最小值是3,故选B.点评:本题考查利用基本不等式求函数最值,注意利用基本不等式使用的条件是:一正、二定、三相等,属于基础题.32.若,则的最小值是( )A.B.C.D.不存在【答案】B【解析】【考点】基本不等式.分析:先将函数解析式变形为2x+2x+ ,凑出乘积为定值,然后利用基本不等式求出函数的最小值.解答:解:因为x>0,又4x+=2x+2x+≥3=3,当且仅当2x=时取等号,所以4x+的最小值是3,故选B.点评:本题考查利用基本不等式求函数最值,注意利用基本不等式使用的条件是:一正、二定、三相等,属于基础题.33.已知,则的最小值是.【答案】4【解析】本题考查均值定理由指数运算的性质有,则;因为,所以其中等号当且仅当即时成立即当时,的最小值是34.设,试求x+2y+2z的最大值【答案】15【解析】略35.(本小题满分12分)已知,求证:.【答案】证明:要证成立4分只需证成立 4分只需证 6分只需证只需证 8分只需证只需证………10分而显然成立,则原不等式得证.…………12分【解析】略36.12分)已知,,求的范围。
【答案】【解析】略37.设则有最小值()A.4B.8C.10D.12【答案】B【解析】略38.正数满足,则的取值范围是.【答案】【解析】由得ab=a+b+3.【考点】均值不等式的应用39.已知,,若不等式恒成立,则的最大值为()A.10B.9C.8D.7【答案】B【解析】由已知可得,所以,所以即,答案选B.【考点】基本不等式的应用40.函数的图象恒过定点,若点在直线上,则的最小值为()A.3B.4C.5D.6【答案】B【解析】令,得,即;在直线,;则(当且仅当,即时,取等号).【考点】1.函数过定点;2.基本不等式.。