自卸车设计计算书
- 格式:doc
- 大小:430.00 KB
- 文档页数:18
高位自卸汽车设计计算说明书sc 高位自卸汽车设计计算说明书一、概述高位自卸汽车是一种广泛应用于建筑、道路建设和物流行业的专用车辆。
其特点在于通过高举的卸料斗,可将货物自动卸载至运输车辆或货场上。
本设计计算说明书旨在为SC1000型高位自卸汽车的设计和制造提供详细的计算和说明。
二、设计参数1.车辆型号:SC1000型高位自卸汽车2.载重能力:1000吨3.自重:50吨4.最大举升高度:15米5.行驶速度:80公里/小时6.最大爬坡度:20%7.发动机功率:300千瓦8.液压系统压力:20兆帕9.轮胎规格:59/80R24.5(双胎)10.外形尺寸(长×宽×高):12000×2500×3500毫米三、结构特点1.车架:采用高强度钢焊接而成,具有足够的强度和刚度。
车架前部安装有举升液压缸,后部安装有支撑液压缸。
2.举升系统:由举升液压缸、液压泵站和电控系统组成。
通过电控系统控制液压泵站,使液压缸伸缩,从而实现卸料斗的升降。
3.支撑系统:由支撑液压缸和支撑座组成,用于在卸料过程中保持车架的稳定。
4.动力系统:包括发动机、变速箱、传动轴和驱动桥等部件,为车辆提供动力。
5.转向系统:采用液压助力转向,提高转向效率和减轻驾驶员劳动强度。
6.制动系统:采用液压盘式制动器,具有制动性能稳定、散热性好等优点。
7.轮胎:选用59/80R24.5(双胎)规格的轮胎,适合多种路面条件。
四、液压系统设计1.液压油缸:采用大口径、高压力的液压油缸,确保举升和支撑系统的稳定工作。
油缸内部采用镀铬处理,提高耐磨性和抗腐蚀性。
2.液压泵站:选用高性能的液压泵站,提供稳定的液压油输出。
泵站设有安全阀和压力调节阀,以保护液压系统不受损坏。
3.电控系统:采用PLC控制,实现卸料、举升和支撑等动作的自动化控制。
同时设有紧急停止按钮,确保操作安全。
五、电气系统设计1.电源系统:采用24伏直流电源,配备两个12伏铅酸蓄电池,确保车辆启动和运行时的电源供应。
重型自卸汽车设计(转向系及前桥设计)摘要汽车在行驶的过程中,需要按照驾驶员的意志经常改变其行驶方向,即所谓的汽车转向。
汽车的转向系统是一套用来改变或恢复汽车行驶方向的专用机构,本文的研究内容即是重型自卸汽车的转向系设计。
本文针对的是与非独立悬架相匹配的整体式两轮转向机构。
利用相关汽车设计和连杆机构运动学的知识,首先对汽车总体参数进行设计,在此基础上,对转向器,转向传动机构进行选择,接着再对转向器和转向传动机构(主要是转向梯形)进行设计,最后,利用软件AUTOCAD完成转向梯形和转向器的设计图纸。
转向器在设计中选用的是循环球式齿条齿扇转向器,在对转向器的设计中,包括了螺杆—钢球—螺母传动副的设计和齿条—齿扇传动副的设计,前者是基于参照同类汽车,确定出钢球中心距,设计出一系列的尺寸,而后者则是根据汽车前轴的载荷来确定出齿扇模数,再由此设计出所有参数的。
转向梯形的设计选用的是整体式转向梯形,本文在设计中借鉴同类汽车转向梯形设计的经验尺寸对转向梯形进行尺寸初选。
再通过对转向内轮实际达到的最大偏转角时与转向外轮理想最大偏转角度的差值的检验,和作为一个四杆机构对I其最小传动角的检验,来判定转向梯形的设计是否符合基本要求。
本文在消化,吸收,总结,归纳前人的成果上,系统、全面地对机械动力转向系进行理论分析,设计及优化。
为重型自卸汽车转向系的设计开发提供了一种步骤简单的设计方法。
关键词:转向系,转向器,转向梯形IITHE DESIGN OF HEAVY DUMP (THE DESIGN OF STEERING SYSTEM AND RRONT AXLE)ABSTRACTIn a moving vehicle, the driver will need to frequently change its traveling direction, the so-called steering. Vehicle steering system is used to change or restore a car in the direction of a dedicated agency, the contents of this paper is the study of light vehicle steering system design.This article is aimed at non-independent suspension and would like to match the overall style of the two steering. The use of the relevant vehicle design and kinematic linkage of knowledge, first of all, the overall parameters of the vehicle design, in this basis, the steering gear, steering transmission choice, and then to the steering gear and steering transmission (mainly trapezoidal steering ) design, and finally, the use of AUTOCAD software and the steering gear steering linkage to complete the design drawings.Steering the ball of choice is the cycle of fan-type steering gear rack teeth, in the design of steering gear, including a screw - Ball - Vice-nutIIIdrive the design and rack - fan drive gear pair design, the former is based on the reference to similar vehicles, to determine the center distance of the ball, the design of a series of size, while the latter is based on the vehicle front axle load to determine the fan module out of gear, and then all of the resulting design parameters.Steering linkage design is a whole selection of steering trapezoid, the paper design is used in car steering linkage from a similar experience in the design of the size of the steering linkage to the primary size. Through to the actual steering wheel in the maximum deflection angle with the steering wheel in the most ideal test of the difference of deflection angle, and four institutions, as a minimum transmission angle of its examination, to determine whether the design of steering trapezoid in line with the basic requirements.In this paper, digestion, absorption, and summing up, summing up the results of their predecessors, the systematic, comprehensive mechanical steering system to carry out theoretical analysis, design and optimization. For the light vehicle steering system design and development provides a simple design method steps.Key word: steering system,steering gear,steering trapezoidIV目录前言 (1)第一章从动桥结构方案的确定 (3)§1.1从动桥总体方案确定 (3)第二章转向系结构方案的确定 (5)§2.1转向系整体方案的分析 (5)§2.1.1转向器方案的分析 (5)§2.1.2 循环球式转向器结构及工作原理 (6)§2.1.2动力转向系统分类 (7)§2.2转向系整体方案的分析 (8)第三章从动桥的设计计算 (10)V§3.1从动桥主要零件尺寸的确定 (10)§3.2 从动桥主要零件工作应力的计算 (11)§3.2.1 制动工况下的前梁应力计算 (12)§3.2.2 在最大侧向力(侧滑)工况下的前梁应力计算 (16)§3.3 转向节在制动和侧滑工况下的应力计算 (17)§3.3.1 在制动工况下 (17)§3.3.2 在侧滑况下 (19)§3.4 主销与转向节衬套在制动和侧滑工况下的应力计算 (20)§3.4.1 在制动工况下 (20)§3.4.2 在侧滑工况下 (22)第四章转向系统的设计计算 (24)§4.1 转向系主要性能参数 (24)VI§4.1.1 转向器的效率 (24)§4.1.2 传动比的变化特性 (26)§4.1.3 给定的主要计算参数 (27)§4.1.4 转向盘回转总圈数n (28)§4.2 转向系计算载荷的确定 (29)§4.3 循环球式转向器的计算 (30)§4.3.1 循环球式转向器主要参数 (30)§4.3.2 螺杆、钢球和螺母传动副 (31)§4.3.3 齿条、齿扇传动副设计 (32)§4.4 循环球式转向器零件强度的校核 (35)§4.4.1 钢球与滚道间的接触应力σ (35)§4.4.2 齿的弯曲应力σ (37)VII§4.5 液压动力转向机构的计算 (38)§4.5.1 动力转向系统的工作原理 (38)§4.5.2 转向动力缸的工作分析 (39)§4.6 转向梯形机构确定、计算及优化 (45)§4.6.1 转向梯形结构方案分析 (45)§4.6.2 整体式转向梯形机构优化设计 (47)第六章结论 (57)参考文献 (58)致谢 (60)VIIIIX前言自卸车是利用发动机动力驱动液压举升机构,将车厢倾斜一定角度从而达到自动卸货,并依靠箱货自重使其复位的专用汽车。
高位自卸汽车设计计算说明书目录第1章问题的提出 (1)1.1 项目背景 (1)1.2 设计要求 (4)第2章设计方案的选择 (5)2.1高位自卸汽车工作过程 (5)2.2 方案选择流程 (6)2.3 举升机构设计 (6)2.3.1 平行四边形举升机构 (6)2.3.2 剪式举升机构 (7)2.3.3 双剪式举升机构 (8)2.3.4 平行四边形举升机构 (9)2.4 倾斜机构设计 (10)2.4.1连杆滑块机构 (11)2.4.2 液压缸直推机构 (12)2.4.3 滑块倾斜机构 (12)2.4.4 曲柄摇杆翻转机构 (13)2.5 后厢门启闭机构设计 (14)2.5.1 重力直接打开机构 (15)2.5.2 摇块顶开机构 (15)2.5.3 四级连杆机构 (16)2.5.4 滑轨打开机构机构 (17)2.6 机构的组合 (17)第3章机构设计尺寸设计 (19)3.1 方案一尺寸设计 (19)3.1.1举升机构的尺寸设计 (19)3.1.2倾斜机构尺寸设计 (21)3.1.3后厢门启闭机构尺寸设计 (24)3.1.4 机构组合 (25)3.2 方案二尺寸设计 (26)3.2.1举升机构的尺寸设计 (26)3.2.2倾斜机构尺寸设计 (27)3.2.3后厢门启闭机构尺寸设计 (30)3.2.4 机构组合 (31)第4章机构运动分析 (31)4.1 三维模型的建立 (31)4.1.1 部分零件图 (31)4.1.2 装配体 (34)4.2 机构运动分析 (37)4.2.1 组合方案一运动分析 (37)4.2.2 组合方案二运动分析 (41)第5章机构动力分析 (46)5.1 组合方案一动力分析 (46)5.1.1 机构受力分析 (46)5.1.2 动力仿真分析 (48)5.2组合方案二动力分析 (54)5.2.1 机构受力分析 (54)5.2.2 动力仿真分析 (56)第6章方案比较与评价 (61)第7章设计工作总结 (62)7.1机械设计的目的: (62)7.2机械设计的步骤: (62)7.3设计中需要注意的几个问题: (63)7.4机械设计的基本原则: (63)7.5本次设计效果分析与改进意见 (64)第9章收获与体会 (64)第10章致谢 (65)参考文献 (66)附录 (67)附件一:部分零件图和装配体展示 (67)附录二:Adams运动分析和动力分析界面 (71)附录三:组合机构简图(见A3图纸) (72)第1章问题的提出1.1 项目背景自卸汽车是常用的运输机械,车厢配有自动倾卸机构的汽车,又称为翻斗车、工程车,由汽车底盘、液压举升机构、取力机构和货厢组成。
矿用自卸车转向设计计算说明书设计:陈琼校核:审核:批准:目录一、转向系统相关参数 (2)二、最小转弯半径计算 (3)三、理论转角和实际转角关系 (4)四、转向阻力矩计算 (5)五、转向机的选择计算 (5)六、转向动力缸的选择计算 (8)七、转向油泵的匹配计算 (9)1、转向机理论流量计算2、动力缸理论流量计算3、油泵排量计算4、油泵的选择八、转向升缩轴升缩量计算 (13)九、动力缸行程计算 (14)十、转向系的运动校核 (17)设计原则本车转向系统的设计应使得整车具有良好的操纵稳定性,转向轻便性,并使得上述性能达到国外同类车型的先进水平,保证车辆行驶安全性。
一、转向系统相关参数表一整车参数前轮胎采用14.00-25,轮辋偏置距207.5mm,负荷下静半径为640mm,满载下前胎充气压力850kpa二、最小转弯半径:对于只用前桥转向的三轴汽车,由于中轮和后轮的轴线总是平行的,故不存在理想的转向中心。
计算转弯半径时,可以用一根与中、后轮轴线等距离的平行线作为似想的与原三轴汽车相当的双轴汽车的后轮轴线。
图一转弯半计算图最小转弯半径R=9975+(2471-2100)/2=10160.5mm二、理论转角和实际转角关系图2 内外轮实际转角关系图图3 内外轮理论转角关系图根据图2和图3得出表二数据表二外轮转角(°) 0 5 10 15 20 25 27.3 阿克曼理论内轮转角(°) 0 5.1 10.6 16.4 22.8 30.7 34.1由上图可见在外轮转角在0°—27.3°范围内,实际转角关系与阿克曼转角关系较接近,与阿克曼理论值差值在2°以内,转向桥梯形臂符合设计要求。
四、转向力计算1.转向阻力矩计算转向时驾驶员作用到转向盘上的手力与转向轮在地面上回转时产生的转向阻力矩有关。
影响转向阻力矩的主要因素有转向轴的负荷、轮胎与地面之间的滑动摩擦系数和轮胎气压。
西南交通大学机械综合设计I设计说明书设计题目:高位自卸汽车学生姓名:陈楷 20XX0996谭万秋 20XX0999丁翀 20XX0991刘栋 20XX1000仇振宇 20XX0986 所在班级:机械09级7班指导老师:谢进20XX年06月目录第一章问题的提出 (4)1.1项目背景 (4)1.2设计技术要求 (5)第二章方案的比较 (6)2.1整体设计 (6)2.1.1构想 (6)2.1.2设计中需要考虑的问题 (7)2.2举升机构的比较 (7)2.2.1方案一:平行四边形举升机构 (7)2.2.2方案二:液压缸直推举升机构 (8)2.2.3方案三:滑槽举升机构 (9)2.2.4方案四:双平行四边形举升机构 (10)2.2.5:双剪式举升机构 (11)2.3倾斜机构的比较 (11)2.3.1方案一:液压缸直推倾斜机构 (12)2.3.2方案二:液压缸连杆倾斜机构 (12)2.3.3方案三:摇块倾斜机构 (13)2.3.4方案四:“之”字形倾斜机构 (14)2.3.5方案五:滑块倾斜机构 (15)2.4车厢联动打开机构的比较 (16)2.4.1方案一:重力直接打开机构 (16)2.4.2方案二:摇块顶开机构 (16)2.4.3方案三:滑块打开机构 (17)2.4.4方案四:摇杆打开机构 (18)2.5机构综合 (18)2.5.1第一套方案的确定 (18)2.5.2第二套方案的确定 (19)2.5.3第三套方案的确定 (20)第三章机构尺寸设计 (21)3.1滑槽举升机构 (21)3.1.1 滑槽举升机构(摇杆式)的引入 (21)3.1.2 摇杆式举升机构的几何尺寸设计 (22)3.1.3 滑槽举升机构(摇块式)的引入 (24)3.1.4 摇块式举升机构的几何尺寸设计 (25)3.2倾斜机构的设计 (30)3.2.1 倾斜机构的引入 (30)3.2.2 倾斜机构的分析计算 (30)3.3车厢联动打开机构设计 (32)3.3.1 车厢联动打开机构导入 (33)3.3.2 车厢联动打开机构的分析计算 (34)3.4关键尺寸的优化 (34)3.5机构的运动分析 (34)第四章第二套方案的设计 (41)4.1行平四边形举升机构 (41)4.1.1平行四边形举升机构的引入 (41)4.1.2双平行举升机构的几何尺寸设计 (43)4.1.3建立坐标系 (50)4.2翻转机构的设计分析 (50)4.2.1翻转机构的分析计算 (51)4.2.2建立坐标系 (51)4.3后厢门的启闭机构的设计 (52)4.3.1 后厢门的启闭机构导入 (52)4.3.2 后厢门的启闭机构的分析计算 (53)4.4机构的运动分析 (53)第五章第三套方案的设计 (61)5.1双剪式举升机构 (61)5.1.1双剪式举升机构的引入 (61)5.1.2 双剪式举升机构的几何尺寸设计 (62)5.2滑块倾斜翻转机构设计 (66)5.2.1滑块倾斜翻转机构的引入 (66)5.2.2滑块倾斜翻转机构的尺寸计算 (67)5.3重力开启后厢门打开机构设计 (69)5.4机构总图 (70)5.5模拟仿真分析 (70)5.5.1滑块的特性曲线 (70)5.5.2箱体的特性曲线 (73)5.5.3夹板的特性曲线 (75)第六章三套方案的比较 (78)结束语 (79)致谢 (80)................................................................................................................................... 错误!未定义书签。
8*4双前轴转向系统设计校核第一部分8*4自卸汽车的双转向系统校核根据《4048D/QX3340自卸汽车底盘(欧四)设计任务书》及客户的要求,伊朗4048D欧四自卸汽车底盘为双转向前桥,转向系统采用循环球液压助力转向系统,第二转向前桥采用液压缸助力,一、二桥轴距为1950mm。
转向桥初步采用陕西汉德车桥生产的曼系列吨盘式制动前轴,具体参数见表1;转向垂臂初步选用中国重汽豪沃A7双转向系统,具体尺寸见图1;转向器采用ZF公司生产的图号为的转向器,转向油泵采用ZF公司生产的图号为的叶片泵;转向油罐采用株洲湘火炬生产的产品。
表1 曼系列吨盘式制动前桥图1重汽豪沃A7双转向系统布置图一、对一、二桥转向运动干涉进行校核根据转向系统的布置,用作图法分别作出转向节臂球销中心A点绕摆动中心O’和转向垂臂下端球销中心的运动轨迹圆弧JJ’、KK’,测量在板簧动、静挠度范围内的最大误差值,从以上结果可以看出一、二桥的转向节臂轨迹误差都在10mm以内,符合要求。
二、分别计算出一、二桥的内外转角关系1、根据作图可得出两主销中心线延长线到地面交点之间的距离K=2、校核梯形臂的长度根据经验,梯形臂长度m一般取(~)K故m=(~)*K=(~)*=~m=是符合要求的3、初步选择梯形底角θ0根据式tgθ0=(4*L)/(3*K),可以得出一桥梯形底角θ0为°,二桥梯形底角为°根据计算出的梯形底角与实际车桥的梯形底角有较大的差异,建议采用作图法或计算的方法进行校核。
4、校核梯形底角a、用作图法作出第一桥梯形底角为77°时,内外转角关系图2b、用作图法作出第二桥梯形底角为72°时,内外转角关系图3c、根据第一、二桥内外转角的关系分别作出一、二桥转向梯形的实际特性曲线图4由以上曲线可以看出:转向梯形的实际特性曲线在0~30°范围内比较接近理论转向梯形特性曲线。
d、用同样的方法作出转向梯形底角为°时一、二桥转向梯形实际特性曲线图5由以上曲线可以看出:当梯形底角采用°时,第一、二桥转向梯形的实际特性曲线在0~30°范围内与理论转向梯形特性曲线偏离较大。
中型车辆整车设计[摘要] 汽车设计过程中相当重要的工作是汽车的总体布置设计,整车性能的好坏主要取决于总体布置设计的合理性。
本文首先主要根据所设计汽车的用途和使用条件,参考同级汽车的国内外资料,选择其整车型式及主要的尺寸参数,再根据已有数据进行发动机及各主要总成的选型,并确定其主要技术参数,在此基础上对汽车进行总成的布置。
最后,对汽车的动力性和燃油经济性进行计算校核,结果显示,该车能较好地满足动力性和经济性要求,符合设计要求。
[关键词] 总体布置;结构参数;设计计算Overal Design for Middle-sized VehiclesAbstract: The design of general layout is quite important in the process of automabile design, the vehicle performance mostly depends on the rationality of general layout. In this paper, firstly, according to the uses and the application conditions of designed vehicle and reference information for the same level of vehicles at home and abroad, choose the entire vehicle pattern and the main technical parameter. Secondly, choose the engine and other main assembly according to the existing data, then determine their technical parameter, and carry on gerneral layout. Finally, calculate the power performance and fuel economy of the vehicle, and the results show that the car can meet the requirements of power performance and fuel economy, namely the design meet the requirements.Keywords:general layout; structure parameter; design calculation目录引言 (5)第1章概述 (6)1.1 整车总布置设计的任务 (6)1.2 设计原则、目标 (7)1.3 已知参数 (7)1.4 设计方案的拟定 (7)第2章汽车形式及主要参数的选择 (8)2.1 轴数 (8)2.2 驱动形式 (8)2.3 布置形式 (8)2.4 轮胎选择 (9)2.5 汽车主要尺寸的确定 (10)2.5.1 轴距 (10)2.5.2 前轮距和后轮距 (10)2.5.3 前悬和后悬 (11)2.5.4 货车车箱尺寸 (11)2.5.5 外廓尺寸 (12)2.6 整车质量参数估算 (12)2.6.1 空车状态下整车质量、轴荷分配 (12)2.6.2 满载状态下整车质量、轴荷分配 (13)2.6.3 整备质量利用系数 (13)第3章发动机选型 (14)3.1 发动机基本形式的选择 (14)3.2 主要性能指标的选择 (15)3.2.1 发动机最大功率、最大转矩及其相应转速 (15)3.2.2 发动机的比功率和比转矩 (17)3.3 传动系参数的选择 (18)3.3.1 最小传动比的选择 (18)3.3.2 最大传动比的选择 (18)第4章底盘的总体布置 (20)4.1 整车布置得基准线—零线的确定 (20)4.2 各部件的布置 (21)4.2.1 发动机的布置 (21)4.2.2 传动系的布置 (22)4.2.3 转向装置的布置 (22)4.2.4 悬架的布置 (22)4.2.5 油箱和蓄电池的布置 (22)第5章设计计算校核 (22)5.1质心高度的估算 (22)5.1.1 车架质量的估算 (23)5.1.2 车厢质量的估算 (24)5.2 汽车稳定性的验算 (25)5.3 汽车动力性能计算 (26)5.3.1 发动机不同转速下汽车各挡速度的计算 (27)5.3.2 发动机不同转速下各挡所受空气阻力的计算 (28)5.3.3 发动机不同转速下汽车各挡驱动力的计算 (30)5.3.4 滚动阻力的计算 (31)5.4 动力性参数 (33)5.4.1 直接档动力因数 (33)5.4.2 Ⅰ档动力因数 (34)5.4.3 汽车最大爬坡度 (34)5.4.4 汽车最小转弯直径 (34)5.5 汽车燃油经济性计算 (36)5.6 计算校核总结 (38)6 结论 (39)致谢语 .................................................. 错误!未定义书签。
本科毕业设计(论文)学科专业机械设计制造及其自动化班级机064班姓名指导教师辅导教师目录第1章前言 (1)第2章总体设计 (2)概述 (2)选择确定总体参数 (2)装载机底盘部件型式设计 (11)第3章牵引计算 (3)柴油机与变矩器联合工作的输入与输出特性曲线 (23)确定档位及各档传动比 (28)运输工况牵引特性曲线 (31)求出各档最高车速并分析牵引特性 (34)第4章总体布置 (36)估计各部件重量,并确定位置坐标 (36)各部件位置 (36)求出平衡重 (39)进行桥荷计算,应满足桥荷的要求 (40)验算轮胎载荷 (43)第5章行星动力换档变速箱设计 (44)传动比的确定 (44)传动简图设计 (46)配齿计算 (48)离合器设计 (57)结构设计 (59)第6章有限元分析 (68)有限元分析方法概述 (68)Pro/MECHANICA分析方法 (73)基于Pro/MEGINEER特征的建模 (74)变速箱输入轴的静力学有限元分析 (76)本节小结 (80)毕业设计小结 (81)参考文献 (83)L BK2.2coszaK——铲斗开始提升物料时的剪切阻力)剪切阻力需通过实验确定,如对于块度的已松散岩石(花岗岩)所示;用线性插值法可由斗宽=28KN/m ——动臂开始提升时,铲斗刃运动方向与地面°。
=28KN/m=30°代入上式计算掘起阻力N=***28* cos30为轮胎的附着系数=hf P P hhP GfP G f——装载机空载附着重量,取96KNh——额定附着重量利用系数,它是相应于h=。
f ——滚动阻力系数,依参考书【1】表P K =96*+96*=马力54.72386.852700.7=装载机上所用的油泵有:作业泵(供工作装置液、转向泵(供置身液压缸用)力换档速箱和变矩器冷却用)等。
档速度取变而改变的性能称为变矩器的可透性,有以下几种类型:B n =常数且B M 随i 的减小而增大为正透穿; B n =常数且B M 不随i 的变化而变化,其值为恒值;B n =常数且B M 随i 的减小而减小为负透穿。
第一章前言从我国重型汽车发展来看,20世纪60年代至80年代是非常缓慢的。
改革开放以后,通过走引进和自主研发相结合的道路,我国汽车工业“缺重”的局面逐步得到改观。
但由于各方面因素的影响,重型汽车市场一直处于低迷徘徊的态势。
直至1998年之后,在中、轻型货车市场一路下滑时,重型销量却有了可喜的回升。
此后,在国家连续几年加大投资,实行积极的财政政策等一系列宏观调控措施的带动下,重货市场呈逐年走高态势,并进入全面发展时期,全局性增长成为目前重货市场的显著特性。
从分车型的销售态势上看,重货继续保持去年以来的超高速增长,当月销量已经超过中型载货车,成为一个历史的转折点。
随着国内基础设施建设需要的不断增加,自卸车产量近年来一直保持较高产销量,在专用车综合产量中保持第一位置,但在种类、型式、材料运用方面与国外还有一定的差距。
自卸车的快速增长主要原因是固定资产投资强劲增长,巨大的投资规模奠定了自卸车市场需求基础;自卸车品种增加,不仅适应和满足施工需求,同时向运输市场发展;国家经济的快速发展,带动了相关行业的快速发展,巨大的资源消耗,成为我国重型车和重型专用车发展的原动力。
我国重型汽车市场继续保持着高速发展的状态,重型汽车市场发展速度大大超过其他车型的增长速度。
目前,市场强劲的增长势头尚未减弱迹象。
促进重型汽车市场的主要原因;1.积极的财政政策继续为国民经济发展提供了宽松的财政金融环境,融资和信贷更加便利,扩大了人们的资金来源。
2.国民经济保持了较高的发展速度,去年前6个月达到9.6%,公路运输业快速发展,西部大开发,基础设施建设,房产业的繁荣进一步扩大了对重型汽车的需求。
3.治理超限超载运输和严厉打击走私,取缔非法拼装车的政策措施促进了重型汽车市场的健康发展。
4.主要重型汽车生产企业以市为导向,开发出一批适销对路的产品,带动了重型汽车市场的快速发展。
综上:大力发展重型自卸车产业,抢先发展重型自卸汽车能为公司及行业发展赢得好的效益和发展先机。
目录第一章绪论 (1)1.1、项目的提出 (1)1.2、轻量化自卸车设计要点 1.2.1 轻量化自卸车底盘的选取.............................................................................2 1.2.2 专用汽车设计的主要工作是总体布置和专用工作装置匹配.....................2 1.2.3 针对专用汽车品种多、批量少的生产持点.................................................2 1.2.4 可靠性.............................................................................................................2 1.2.5 液压系统设计要点.. (2)1.3、国内外自卸汽车的发展概况 (3)第二章轻型自卸车主要性能参数的选择 (5)2.1自卸车底盘的选取 (5)2.2整车技术参数的确定 (6)2.2.1整车技术参数表 (6)2.2.2 容积利用系数 2.2.3 质心位置 (7)第三章自卸车车厢的结构与设计 (11)3.1自卸汽车车厢的结构形式 (11)3.1.1车厢的结构形式 (11)3. 1.2车厢选材 (11)3. 2车厢的设计规范及尺寸确定 (11)3. 2.1车厢尺寸设计 (11)错误!未找到引用源。
(12)错误!未找到引用源。
(17)错误!未找到引用源。
(17)错误!未找到引用源。
(17)第一章绪论1.1、项目的提出专用自卸车是装有液压举升机构,能将车厢卸下或使车厢倾斜一定角度,货物依靠自重能自行卸下或者水平推挤卸料的专用汽车。
自卸汽车主要运输砂、石、土、垃圾、建材、煤炭、矿石、粮食、化肥和农产品等散装货物。
它具有以下多种分类方式:a、按用途分类:公路运输的普通自卸车;非公路运输的重型自卸车,主要用于矿区装卸作业与大中型土建工程。
b、按装载质量级别分类:轻型自卸车(一般小于3.5吨);中型自卸车(4吨-8吨);重型自卸车(大于8吨)。
c、按传动类型分类:机械传动、液力机械传动和电动三种类型。
d、按卸货方式分类:有后倾式、三面倾卸式、底卸式,以及货厢升高后倾式等多种形式,其中以后倾式应用最广。
e、按倾卸机构分类:直推式与杠杆举升式自卸车,直推式又可细分为单缸式、双缸式、多级式等;杠杆式又可细分为杠杆前置式、杠杆后置式、杠杆中置式等。
f、按车厢结构分类:一面开启式、三面开启式与无后栏板式。
轻量化自卸车是随着现代经济不断发展的必然产物,其装载重量在30t左右。
国家和地方均出台专门的法规对农用车尺寸、排放、车速等各方面性能进行规范,从而促进了轻量化自卸车的健康发展。
自 2001年11月10日起,中国正式成为WT0成员国,国内市场逐渐开放。
传统自卸车作为一种运输量大、性能卓越的运输工具,在广大城市的沙场、矿山、工地及般的十木工程等的运输作业中得到了广泛的应用。
但随着经济的发展,传统自卸车也暴露出了质量利用系数低、环境污染大、维修难等诸多缺点,因此轻量化自卸车是经济发展的必然产物。
轻量化自卸车具有载货量大、整车重量低等优点,并且采用先进的国IV 底盘更加节能环保。
在如今竞争激励的市场,开发轻量化自卸车将对公司的未来发展具有重大意义。
1.2、轻量化自卸车设计要点1.2.1 轻量化自卸车底盘的选取根据市场调研报告反馈的用户需求,选用底盘并在功率匹配、动力输出、传动方式、外形尺寸、轴载质量、购置成本等方面进行分析比较,优选出一种基本型汽车底盘作为专用汽车改装设计的底盘。
1.2.2 专用汽车设计的主要工作是总体布置和专用工作装置匹配设计时既要保证专用功能满足其性能要求,也要考虑汽车底盘的基本性能不受到影响。
在必要时,可适当降低汽车底盘的某些性能指标,以满足实现某些专用工作装置性能的要求。
1.2.3 针对专用汽车品种多、批量少的生产持点专用汽车设计应考虑产品的系列化,以便根据不同用户的需要而能很快的进行产品变型。
对专用汽车零部件的设计, 应按“三化”的要求进行,最大限度地选用标难件,或选用已经定型产品的零部件,尽量减少自制件和外协件。
1.2.4 可靠性轻量化自卸车可能会在很恶劣的环境下工作,其使用条件复杂,要了解和掌握国家及行业相应的规范和标准,使专用汽车有良好的适应性,工作可靠。
1.2.5 液压系统设计要点液压系统选用本公司已用的产品,但选用时仍需考虑以下要点:a.较好免维护性轻量化自卸车主要应用场所是沙场、矿山、工地等,这些场所沙尘肆虐,工作环境恶劣, 自卸机构的维护条件较差,甚至有时根本谈不上什么维护。
因此需要自卸机构在设计时就要考虑到油缸的免维护性。
b.良好的动力性举升机构作为自卸车卸料时的动力来源,为保证卸料顺利完成,要求其必须具有良好的动力性能。
轻量化自卸车由于其特定的使用环境和用户群体决定了它经常处于超载状态,这就要求举升机构要具有一定的过载系数。
c.平稳性要求举升机构在倾卸货物时具有较好的平稳性,不得有较大的动力冲击,降低冲击力对机构各部件的损伤概率,保证机构的使用寿命。
d.卸料性轻量化自卸车举升机构应达到的卸料目标是:①在较短的时间内使货箱举升一定的角度,即举升机构将货箱举升到最大举升角所需的时间(对此国家规定了时间限值);②货箱被举升机构举升到最大转角时,货物应顺利地倾卸完毕(即最大举升角达到货物的安息角)。
e.紧凑性轻量化自卸车在结构设计时应考虑到其机构的紧凑性。
1.3、国内外自卸汽车的发展概况我国专用车市场“蛋糕”将越做越大,去年以来,我国专用车市场取得较好的经营业绩,全国395家改装车企业改装汽车23. 06万辆,销售23. 05万辆。
客车改装量最大,共改装103492万辆,占总量的44. 88%;载货汽车44870辆,占总量的19.46%; 自卸汽车27125辆,占总量的11. 76%;厢式、罐式等专用车销售40966辆,占总量的17. 77%。
今年1~8月份,各类专用车销售均有较大增幅,乐观估计今年全年专用车产销将达30万辆。
通过数字来看,去年一年销售专用车达23万辆,结合我国道路、经济等实际情况,应该说数量还是比较可观的。
但是问题就在于395家改装企业才生产23万辆。
可以看、出,我国汽车改装企业和汽车制造一样,存在着规模小、技术落后、生产点过多等问题。
从改装车生产分布地区来看,也存在较大不均衡性,江苏、河北、安徽、河南等8 个省去年产量之和约占总产量的75%,其他21个省仅占总产量的25%。
地域的不均衡性也显示出专用车市场前景看好。
目前,我国改装车市场最大销售量约25万辆左右,改装量最大的除了客车外,主要有厢式车、罐式车、自卸车等主要车型。
但是总体来看,这些专用车均存在技术附加值低、工艺较落后等问题。
从品种来看,我国改装车品种较少,仅有400多个品种。
那么,未来改装车市场到底是什么市场呢?肯定地说,应该向多品种、高、精、尖方向发展。
这种发展方向除了我国公路条件改善外,还和我国公路货物运输市场息息相关。
目前,我国公路货运市场的主体依然是以个体户为主,公路货运甚至还谈不上物流管理,具有运输成本高、随意性大、服务没有保证等特点。
随着我国加入世界贸易组织,这种格局将要逐步被打破。
我国汽车工业保护期只有五年,但是公路货运市场却可以向外资开放,跨国物流公司正虎视眈眈盯着中国公路货运这块大市场,这场战斗谁是赢者,不言自明。
集团化货运市场对卡车的个性化要求将越来越高,同时需求数量也将越来越大,可以毫不夸张地说,未来的卡车发展方向将是专用车。
美国等发达国家专用车市场十分巨大,专用车具有品种多、技术含金量高等特点。
就专用车品种而言,美国就有5000多个品种,甚至很多专用车己经被电子化,装有电脑、卫星导航等系统。
确切地说,我国专用车市场最终是向多品种、高精尖的方向发展。
尤其是随着我国公路运输主体的逐渐变化,将加快产品结构的变化和技术的升级。
我国自卸汽车生产始于上世纪60年代初,经过40多年的发展,尤其是在上世纪80年代以后通过技贸结合与合作生产方式,从国外引进若干先进的自卸汽车制造技术,并在此基础上形成以若干大型汽车制造厂为主体的机械传动式自卸汽车生产企业集团。
公路用自卸汽车的装载质量从2~20t、矿用自卸汽车装载质量从20~154t以基本形成完整的自卸汽车系列,为我国自卸汽车的腾飞打下了坚实的基础。
当然除普通自卸汽车以外,专用自卸汽车的生产也得到了一定的发展,尤其是新世纪以来,随着我国社会经济和交通环境的改善,各行业对专用汽车尤其是工程系列专用汽车的需求越来越大。
专用汽车将跟更加注重行业化、专用化、系列化。
国外自卸汽车生产始于上世纪30年代,比我国早30多年在其后70多年的发展过程中,其结构不断改进,整车性能已有很大提高。
为提高自卸汽车的科技含量,追求高附加值,各国更是不断釆用先进技术,其主要表现以下几个方面:全面提高自卸汽车内在质量和使用性能;在制造加工方面,自卸汽车朝着底盘生产专业化、零部件生产专业化、工艺专业化和辅助生产专业化方向发展;广泛采用计算机辅助设计,以提高设计的质量和缩短设计研制的周期;在材料配置上,将更多地采用高强度铝合金、不锈钢、工程塑料和聚合材料等。
目前,自卸汽车以形成自己独特的结构与车型系列。
第二章轻型自卸车主要性能参数的选择首先,轻量化自卸车的设计应进行一系列的市场调研和同类车型资料的收集分析,摸清产品主要技术经济指标,了解有关设计法规等。
在此基础上拟定设计原则,协调使用、制造与经济三方矛盾,处理好产品技术先进性与工艺继承性、零部件通用化程度以及生产成本的辩证关系,然后进入具体技术设计阶段。
在技术设计阶段,首先进行自卸车结构选型,确定举升机构类型与货厢结构形式,然后选择自卸车总布置主要参数。
2.1自卸车底盘的选取根据市场调研报告和客户需求,经过专项小组的评审最终决定采用已有的国IV底盘。
2.2整车技术参数的确定2.2.1整车技术参数表2.2.2 容积利用系数V η即单位容积装载质量,它取决于常运货物的种类,通常堆装部分的体积约占货厢体积的三分之一。
确定的原则是既要充分利用汽车额定载重能力;又要避免在运输高比重货物时出现严重超载。
对普通自卸车常取 31650kg/m =V η。
2.2.3 质心位置质心位置对汽车附着性能和稳定性能等能产生重要影响,因此是一项重要指标。
质心位置又分为空载质心与满载质心两种状况。
设计时应力求使改装自卸车的质心位置尽量接近原车质心。
质心计算公式如下:①上装部分轴荷分配计算(力矩方程式)基本计算公式A 已知条件底盘整备质量G 1 =14989kg底盘前轴负荷g 1=6500kg底盘后轴负荷Z 1=4250kg上装部分质心位置L 2=858mm货物部分质心位置L 3=858mm上装部分质量G 2=3980kg整车装载质量G 3(含驾驶室乘员)=12056kg装载货物质心位置L 3=958mm轴距)(21l l lB 上装部分轴荷分配计算(力矩方程式)例图1g 2(前轴负荷)×121l l +(例图1)=G 2(上装部分质量)×L 2(质心位置) 122221)()()(l l L G g +⨯=上装部分质心位置上装部分质量前轴负荷 则后轴负荷222g G Z -=代入数据得 g 2=715kg Z 2=3265kg ②载质量轴荷分配计算g 3(前轴负荷)×)21(1l l +=G 3×L 3(载质量水平质心位置) 133321)()()(l l L G g +⨯=装载货物水平质心位置整车装载质量载质量前轴负荷 则后轴负333g G Z -=代入数据得 g 3=2165kg Z 3=9835kgD 空车轴荷分配计算g 空(前轴负荷)=g 1(底盘前轴负荷)+g 2(上装部分前轴轴荷) Z 空(后轴负荷)=Z 1(底盘后轴负荷)+Z 2(上装部分后轴轴荷) G 空(整车整备质量)=空空Z g + 代入数据得 g 空(前轴负荷)=7215kgZ 空(后轴负荷) =7515kgE 满车轴荷分配计算g 满(前轴负荷)=g 空+g 3Z 满(后轴负荷)=Z 空+Z 3 G 满(满载总质量)=g 满+Z 满 代入数据 g 满(前轴负荷)=9380kg ≤1300kgZ 满(后轴负荷)=17350kg ≤18000kgG 满(满载总质量)=26730kg ≤31000kg符合陕汽集团的改装要求。