(完整版)二,等差等比数列性质练习题(含答案)以及基础知识点
- 格式:doc
- 大小:481.51 KB
- 文档页数:8
1高考数列知识点等差数列1.等差数列的定义:d aa n n=--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a推广: d m n a a m n )(-+=. 从而mn a a d m n --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22dn a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为的二次式且常数项为00) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列.是等差数列. (2) 等差中项:数列{}na 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中(其中A A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函的一次函 数,数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.111.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.A.﹣1 B.1C.3D.714.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.916.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24 17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或718.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.17619.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.220.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.921.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.522.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.423.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.9524.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25 C.50 D.10025.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.4A.第10项B.第11项C.第10项或11项D.第12项二.填空题(共4小题)27.如果数列{a n}满足:=_________.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=_________.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.24.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25 C.50 D.100考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:根据条件并利用等差数列的定义和性质可得a1+a10=5,代入前10项和S10 =运算求得结果.解答:解:等差数列{a n}中,a3+a8=5,∴a1+a10=5,∴前10项和S10 ==25,故选B.点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.4考点:等差数列的前n项和.专题:计算题.分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.解答:解:由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n}的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.解答:解(1)解:设等差数列{a n} 的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16①由a3•a6=55,得(a1+2d)(a1+5d)=55 ②由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴a n=1+(n﹣1)•2=2n﹣1所以a n=2n﹣1(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1两式相减得a n+1﹣a n=c n+1,由(1)得a1=1,a n+1﹣a n=2∴c n+1=2,c n=2(n≥2),即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2∴b n=<BR>于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,即S n=2n+2﹣6点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.。
等差等比数列性质以及证明知识点:1.等差数列的性质 ⑴(),m nm n a a a a m n d d m n-=+-=- ⑵在等差数列中,若p q m n +=+,则p q m n a a a a +=+,若2m p q =+,则2m p q a a a =+ ⑶若{}{},n n a b 均为等差数列,且公差分别为12,d d ,则数列{}{}{},,n n n n pa a q a b +±也为等差数列,且公差分别为1112,,pd d d d ±.⑷在等差数列中,等距离取出若干项也构成一个等差数列,即2,,n n m n m a a a ++,....,为等差数列,公差为md .⑸等差数列的前n 项和也构成一个等差数列,即n S ,232,n n n n S S S S --,...为等差数列,公差为2n d .⑹若等差数列的项数为2n ,则有1,nn S a S S nd S a +-==奇偶奇偶. ⑺等差数列的项数为奇数n ,则n n S S S a S S =+=-奇偶中间项奇偶且,11S n S n +=-奇偶. ⑻{}n a 为等差数列,()2121n n S n a -=-.⑼通项公式是n a An B =+ ()0A ≠是一次函数的形式;前n 项和公式()20n S An Bn A =+≠是不含常数项的二次函数的形式.(注当0d =时,1n S na =,1n a a =)(10)若10a >,0d <,n S 有最大值,可由不等式组10n n a a +⎧⎨⎩≥≤来确定n .若10a <,0d >,n S 有最小值,可由不等式组10n n a a +⎧⎨⎩≤≥来确定n .2.等比数列{}n a 的性质(其中公比为q ):⑴n m n m a a q -=,n q =; ⑵若p q m n +=+,则有p q m n a a a a ⋅=⋅;若2m p q =+,则有2mp q a a a =⋅; ⑶等距离取出若干项也构成一个等比数列,即n a ,n m a +,2n m a +,为等比数列,公比为m q .3.主要方法⑴解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.⑵深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键. ⑶错位相减求和法:非零的等差数列{}n a 、等比数列{}n b 构造数列{}n n a b ⋅,此数列称为差比数列,求它的前n 项和可用错位相减法.等比数列的n 项和也构成一个等比数列,即232n n n n n S S S S S --,,,为等比数列,公比为n q .通项公式:11n n m n m a a q a q --==;前n 项和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩.等比数列前n 项和公式的推导:法一:由等比数列的定义知2132121,,,,n n n n a a q a a q a a q a a q ---====, 将这n 个等式的两边分别相加得:23121()n n a a a a a a q -+++=+++,即1()n n n S a S a q -=-,整理得111(1)n n n S q a a q a a q -=-=-,当1q ≠时,1(1)(2)1n n a q S n q-=-≥,显然此式对1n =也成立; 当1q =时,1n S na =. 法二:211111n n S a a q a q a q -=++++,将上式两边同乘以q 得:231111n n qS a q a q a q a q =++++,两式相减得:11(1)n n q S a a q -=-,以下讨论同法一. 法二称为错位相减法,是数列求和中常用的一种方法.板块一 等差数列与等比数列——性质以及运用 一、 利用“下标和相等” ①等差数列3071020251.30255,.S a a a a =+++(二星)等差数列前项的和求答案:34 123181920201.24,78,.a a a a a a S ++=-++=(二星)等差数列求 510131621251.20,_______.a a a a a S ++++==(二星)等差数列则 1.421467286(二星)等差数列前项和为,末项和为,且各项和为,求项数. 211212.(){0(2),4.2.0.1.2n n n n n a a a a n S n A B C D +---+=≥-=-(二星)江西文在各项均不为零的等差数列}中,若则( )221:20,2,42(21)42,.n n n n a a a S n n n A --=∴=∴-=--=-解选2.(一星)(2015全国2文)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A. 5 B. 7 C. 9 D. 11 答案:A3.(二星)设n S 是等差数列{}n a 的前n 项和,且9420S S =+,则13S 的值为 . 解:S9-S4=a5+a6+a7+a8+a9=5a7=20,所以a7=4,S13=13(a1+a13)/2=13a7=526.(二星)(2016广州市调研)各项均为正数的等差数列{}n a 中,3694=a a ,则前12项和12S 的最小值为(D )(A )78 (B )48 (C )60 (D )72②等比数列{}2199205080371127124.0,,10160[]28,512,.n n a a a a x x a a a a a a a a a q >-+=⋅⋅=++=⋅⋅=(二星)等比数列中为方程的两根,则类似题求答案:64 243546355.0,225,n a a a a a a a a a >⋅+⋅+⋅=+=(二星)等比数列则 答案:53.1100,2,.n n n +(二星)在与之间插入个正数使这个数成等比数列求插入的个数的积 答案:略 5631323106.0,9,log log log n a a a a a a >⋅=+++=(二星)等比数列则答案:10二、利用“连续等长片段和”为等差(比) ①等差数列101001101.3021003[]100,10,.m m m S S S ===(二星)等差数列中前项和为,前项和为,前项和类似题求答案:210。
高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
基本量法求数列的通项公式11.复习 等差数列(1)定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常.数.,那么这个数列就叫等差数列, 1(2)n n a a d n --=≥d a a n n =1--d a a n n =2-1--(由定义,累加法推得通项公式)…… d a a =12-(2)通项公式1(1)n a a n d =+-(3)性质: 在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;(4)前项和公式d n n na a a n S n n 2)1(2)(11-+=+=等比数列(1)定义 : 如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,1n a +:(0)n a q q =≠ (2)通项公式11-⋅=n n q a a(3)性质:在等比数列{}n a 中,q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中(4)前项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn例1(2015年全国卷I ) n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(1)求{}n a 的通项公式:变式1:(湖北省武汉部分重点中学2020届高三起点考试)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (1)求数列{a n }的通项公式;变式2:已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式;例2已知数列{a n }的前n 项和为S n ,且2n n S a n =-.(1) 证明数列{1n a +}是等比数列,并求数列{}n a 的通项公式;变式1:(湖北省黄冈中学2019届高三数学模拟试题1)已知各项均为正数的等比数列{a n }的前n 项和为S n ,a 1=14,a 3+a 5=564.(1)求数列{a n }的通项公式;变式3:已知数列{}n a ,{}n b ,其中1,511-==b a ,且满足)3(2111---=n n n b a a ,)3(2111----=n n n b a b ,2*,≥∈n N n .(1)求证:数列{}n n b a -为等比数列,并求数列{a n }、{b n }的通项公式;例3 .已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; 变式(浙江省名校联盟2020届高三第一次联考试题)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项.数列{}n b的通项公式nn b =Νn *∈.(1)求数列{}n a 的通项公式;数列(等差、等比)知识点清单一、数列的概念1.数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
、等差等比数列基础知识点(一)知识归纳:1概念与公式:①等差数列:1 ° •定义:若数列{a n}满足a n, a n d(常数),则{a n}称等差数列;2° •通项公式:a n a i(n 1)d a k (n k)d;2 •简单性质:②中项及性质:④顺次n项和性质:偶数时这个结论不成立)⑤若{a n}是等比数列,则顺次n项的乘积:a1a2 a n,a n 1a n 2a2n , a2n 1a2n 2n2a3n组成公比这q的等比数列.②等比数列:a n ae n1 a k q n •前n项和公式:公式:Sk;3°.定义若数列{a n}满足•前n项和公式:S na n)2a n 1a n印a.q1 qna12(常数),则{a n}称等比数列;2 °a1(1 q n) (q 1),当qh 时Sn na1. q•通项公式:①首尾项性质:设数列{a n} : a i,a2,a3,,a n ,1°若{a n}是等差数列,则印a n a2 a n 1 a3 a n 2 2°若{a n}是等比数列,则a1a n a2 a n 1 a3 a n1 ° .设a, A , b成等差数列,则A称a、b的等差中项,2° •设a,G,b成等比数列,则G称a、b的等比中项,且③设p、q、r、s为正整数,且p s,1° •若{a n}是等差数列,则a p a q a r a s;2° .若{a n}是等比数列,则a p a q a r a s;1°若{a n}是公差为d的等差数列,2na k , a k,k n 1 k3n2na k组成公差为1n2d的等差数列;3n2° .若{a n}是公差为q的等比数列,2na k , a k,k n 1 k 2na k组成公差为1q n的等比数列.(注意: 当q= —1, n为4 ⑥ 若{a n }是公差为d 的等差数列,1° •若n 为奇数,则S n na 中且S 奇S 偶a 中(注:a 中指中项,即a 中a n 1,而S 奇、S 偶指所有奇数项、所有偶数项的和);2°若n 为偶数,则S 偶 S 奇 —.2(二)学习要点:1 •学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差 d 工0的等差数列的通项公式是项 n 的一次函数a n =an+b;②公差d 丰0的等差数列的前 n 项和公式项数 n 的没有常数项的二次函数 S n =an 2+bn;③公比q 丰1的等 比数列的前n 项公式可以写成“ S n =a(1-q n )的形式;诸如上述这些理解对学习是很有帮助的2•解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证 明的性质解题•3 .巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或aa-m,a,a+m )”②三数成等比数列,可设三数为“ a,aq,aq 2(或,a,aq) ”③四数成等差数列,可设四数为q“ a, a m,a 2m,a 3m(或a 3m,a m, a m,a 3m); ” ④四数成等比数列,可设四数为a,aq, aq 3), ”等等;类似的经验还很多,q[例1]解答下述问题:(I)已知1 1 1 a' b ' c成等差数列,求证/八 b cc a a b 亠(1) -JJ成等差数ab c (2) a -b c—成等比数列.2 22[解析]该问题应该选择“中项”的知识解决,山,c a ,a b成等差数列; a b c⑵(a b )(c b ) ac b(a c)2 2 2a2,2,c2成等比数列.[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,(H)等比数列的项数 n 为奇数,且所有奇数项的乘积为1 12 a c22ac a cbacb⑴ba c ab bc 2 2 c a acac2(a c)2 2(a c)b(a c)bb(a ①c),② 2 2 ab b(a c) a 2 c 2aca, aq, aq 2,aq 3(或弓, q 应在学习中总结经验1024,所有偶数项的乘积为128-.2,求项数n.4a 1 a 3 a 5 a n[解析]设公比为q,亠」」a 2a 4a n 11024 128、24.2n 1a 1 q 24-2 (1)而a 1a 2a 3nq 2(a 1 5n 2(川 a n1 ■)n352y51024 128,2352T , 将(1)代入得(22)n a i 1 2 3I q352T ,35(n 1) 2a k 1 , a k 2 ,35得,得n2等差数列{a n }中, 7.此数列中依次取出部分项组 成的数列,a k n 恰为等比数列,其中k 1 1,k 2 5,k 3 17,求数列{k n }的前n 项和. [解析]a i ,a 5,a i 7成等比数列, 2 a 5 a 1 印7 , 2(a 1 4d) a 1 (a 1d 0, a 1 2d, 16d) d(a i 2d) 0 数列{a k}的公比qa k n a1 而 a k na 13n 1 2da 5 a 13n 1 a 1a 14d3,(k n 由①,②得k n 1)d 2 3n 2d1)d{k n }的前n 项和S n21 1,3n 13 13n n 1.[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、 [例3]解答下述问题:(I)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去求原来的三数• [解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为 公式及性质是解决问题的基本功 4, 又成等比数列,原三数为 a -d, a, a+d ,则有 32) a 2 d 2d)(a d) 8a 64 0, d 8或d 亠2 26 3389公差为8得a 10或互,3 9(a d )(a d 2 (a 4) (a 32d 32a 0 16 d 22 3d 32d 9 9 (n)有四个正整数成等差数列, 10,这四个数的平方和等于一个偶数的平方,求此四数[解析]设此四数为a 15,a 5,a5,a 15(a 15),5、 已知数列a n 的前n 项和为S n , S 2n 14n 2 2n ,则此数列的通项公式为(A)a n 2n 2(B) a n8nn 1(C) a n 2(D ) a nn 26、 已知(zx)24(x y)(y z),则(A ) x, y, z 成等差数列(B ) x, y,z 成等比数列(C )丄,丄丄成等差数列x ' y ' z(D )-成等比数列x y z7、 数列a n 的前n 项和S n a n 1,则关于数列 a n的下列说法中,正确的个数有①一定是等比数列,但不可能是等差数列 ④可能既不是等差数列,又不是等比数列②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列(A) 4(B ) 3⑤可能既是等差数列,又是等比数列(C) 2 (D ) 1(a 152) (a 5)2 (a 5) (a 15) (2m)2 (m N )4a ' -500 4m (m a)(m a) 125,125 1 125 5 25,m a 与m a 均为正整数,且m a m a,m a 1 m a 2m a 125m a 25解得a 62或a12(不合),所求四数为47, 57, 67, 77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主 要方法•、等差等比数列练习题一、选择题1、 如果一个数列既是等差数列, (A )为常数数列 又是等比数列,则此数列(B )为非零的常数数列(C )存在且唯一(D )不存在2.、 在等差数列 a n 中,a i 4,且a i ,a 5,a i3成等比数列,贝Ua n 的通项公式为 (A) a n 3n 1(B ) a n n(C ) a n3n 1 或a n4 (D)a n n3或 a n 43、 已知a,b,c 成等比数列,且 x, y 分别为a ca 与b 、b 与c 的等差中项,则的值为x y4、 (B)2 (C )2(D ) 不确定互不相等的三个正数 a,b,c 成等差数列,x 是a,b 的等比中项,y 是b,c 的等比中项,那么,b 2,2y 三个数((A) (C) 成等差数列不成等比数列既成等差数列又成等比数列 (B )成等比数列不成等差数列(D )既不成等差数列,又不成等比数列11118、 数列1—,3 ,5 ,7 ,,前n 项和为()2 4 8 16 /A 、 2 1 彳 2 1 121, 21 1(A) n 1 ( B ) n —7( C ) n n - 1 (D ) n n 百—2n 2n 1 22n 2n 12A4n 2 aa9、 若两个等差数列a n 、b n 的前n 项和分别为A n 、B n ,且满足一上,则」13的值为 ()B n5n 5b s b 137 819 7(A ) -(B )(C )(D )-9720810、已知数列 a n 的前n 项和为S nn 2 5n2,则数列 a n的前10项和为()(A ) 56( B ) 58(C ) 62(D ) 6011、已知数列 a n 的通项公式a nn 5为,从 a n 中依次取出第 3, 9,27,…3n ,…项,按原来的顺序排成一个新的数列,则此数列的前 n 项和为()n(3n 13)3n10n 33n 110n 3(A )(B )3 5(C )(D ) -----------------22212、 下列命题中是真命题的是( )A •数列a n 是等差数列的充要条件是 a n pn q (p 0)n 1C •数列a n 是等比数列的充要条件 a n ab115、已知数列 a n 满足S n 1 a n ,则a n = __________416、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为解答题17、已知数列 a n 是公差d 不为零的等差数列,数列 a b n 是公比为q 的等比数列,018、已知等差数列 a n 的公差与等比数列 b n 的公比相等,且都等于d (d 0,d 1) ,a 1 d B .已知一个数列 a n 的前n 项和为S nan 2bn a ,如果此数列是等差数列 ,那么此数列也是等比数列D •如果一个数列 a n 的前n 项和S n ab n c(a 0, b 0,b1),则此数列是等比数列的充要条件是、填空题13、各项都是正数的等比数列a n ,公比q 1 a 5, a 7,a 8,成等差数列,则公比 q= _______14、已知等差数列 a n ,公差d0, a 1 ,a 5, a 仃成等比数列,则a 1a 5a 17=a ? a 6 a 181,b 2 10, b 3 46,求公比 q 及 b na 3 3b 3,a 5 5b 5,求a n , b n19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。
4.3.1.2等比数列的性质及应用要点一 等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *)(2)若p +q =s +t (p 、q 、s 、t ∈N *),则a p ·a q =s t a a 【重点总结】(1)在已知等比数列{a n }中任一项a m 及公比q 的前提下,可以利用a n =a m q n-m求等比数列中任意项a n ;(2)已知等比数列{a n }中的a m 和a n 两项,就可以使用a n a m =q n -m 求公比,其中m 可大于n ,也可小于n.要点二 等比数列的单调性已知等比数列{a n }的首项为a 1,公比为q ,则(1)当⎩⎪⎨⎪⎧ a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,等比数列{a n }为递增数列; (2)当⎩⎪⎨⎪⎧ a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,等比数列{a n }为递减数列; (3)当q=1时,等比数列{a n }为常数列(这个常数列中各项均不等于0); (4)当1<1时,等比数列{a n }为摆动数列. 【重点总结】由等比数列的通项公式可知,公比影响数列各项的符号:一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负交替.要点三 等比数列的其它性质 若{a n }是公比为q 的等比数列,则(1)若m ,p ,n (m ,n ,p ∈N *)成等差数列,则a m ,a p ,a n 成等比数列;(2)数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (3)若{b n }是公比为p 的等比数列,则{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和qp .(4)在数列{a n }中,每隔k (k ∈N *)项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为q k +1. (5)在数列{a n }中,连续相邻k 项的和(或积)构成公比为q k (或qk 2)的等比数列. 【重点总结】若数列{a n }是各项都为正数的等比数列,则数列{lg a n }是公差为lg q 的等差数列; 若数列{b n }是等差数列,公差为d ,则数列{cb n }是以c d (c>0且c ≠1)为公比的等比数列. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( )(3)当q =1时,{a n }为常数列.( )(4)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( ) 【答案】(1)√(2)×(3)√(4)×2.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 【答案】D【解析】∵q <0,a 1>0,∴所有奇数项为正、偶数项为负,故成摆动数列,选D. 3.(多选题)若数列{a n }为等比数列,则下列式子一定成立的是( ) A .a 2+a 5=a 1+a 6 B .a 1a 9=a 25 C .a 1a 9=a 3a 7 D .a 1a 2a 7=a 4a 6 【答案】BC【解析】根据等比数列的性质知BC 正确.4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 【答案】25【解析】∵a 7a 12=a 8a 11=a 9a 10=5,∴a 8a 9a 10a 11=25.题型一 等比数列性质的应用 【例1】已知{a n }为等比数列.(1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【解析】(1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14. (2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10. 【方法归纳】有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项“下标”的指导作用.【跟踪训练1】(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .【解析】(1)法一:⎩⎪⎨⎪⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.题型二 灵活设项求解等比数列【例2】已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为________________.【解析】设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,① 所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18;当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.【变式探究】本例中的条件换为“前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80”,则这4个数为__________________.【答案】1,-2,4,10或-45,-2,-5,-8【解析】由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎪⎨⎪⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.【方法归纳】巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为a q ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.题型三 等比数列与等差数列的综合应用【例3】在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3. (1)求d ,q 的值;(2)是否存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.【解析】(1)由a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧ a 1+d =b 1q ,a 1+7d =b 1q 2,即⎩⎪⎨⎪⎧1+d =q ,1+7d =q 2, 解得⎩⎪⎨⎪⎧ d =5,q =6,或⎩⎪⎨⎪⎧d =0,q =1,(舍去).(2)由(1)知a n =1+(n -1)·5=5n -4, b n =b 1q n -1=6n -1.假设存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立,则5n -4=log a 6n -1+b , 即5n -4=n log a 6+b -log a 6.比较系数,得⎩⎪⎨⎪⎧log a 6=5,b -log a 6=-4,所以⎩⎪⎨⎪⎧a =615,b =1.故存在a =615,b =1,使得对任意n ∈N *,都有a n =log a b n +b 成立.【解题关键】 (1)联立方程组可求.(2)假设存在,由(1)得出方程,注意比较系数可求a ,b. 【方法归纳】求解等差、等比数列综合问题的技巧(1)理清各数列的基本特征量,明确两个数列间各量的关系.(2)发挥两个数列的基本量a 1,d 或b 1,q 的作用,并用好方程这一工具. (3)结合题设条件对求出的量进行必要的检验.【跟踪训练2】已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n, 若a 1,a k ,S k +2成等比数列,求正整数k 的值。
等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。
等差数列一.等差数列知识点: 知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k kS S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 64 5. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。
数列知识梳理1.等差数列: 2.等比数列: 法1:代入通项公式 法1:代入通项公式=n a d n a )1(1-+ =n a 11-n q a或 =n a B An +法2:化入前n 项和公式 法2:化入前n 项和公式=n S d n n na 2)1(1-+ =n S )1(,1)1(1≠--q qq a n或=n S 2)(1n a a n + 或=n S )1(,11≠--q q q a a n 或=n S Bn An +2 或=n S )1(,1=q na 法3:等差中项: 法3:等比中项:ba Ab A a +=2,,则成等差数列如果三个数ba Ab A a +=2,,则成等差数列如果三个数法4:两项定理:d n m a a n m )(-=- 法4:两项定理:n m nmq a a -= 法5:序号定理: 法5:序号定理:qp n m a a a a q p n m +=++=+则如果,qp n m a a a a q p n m =+=+则如果,法6前n 项和定理: 法6前n 项和定理:)()(2,,232232n n n n n n n n n n S S S S S S S S S S -+=---即也是等差数列如果)()(,,2322232n n n n n n n n n n S S S S S S S S S S -⋅=---即也是等比数列如果法7:奇数项和奇S 、偶数项和偶S 定理: 法7:(删) (1)前n 项的和偶奇S S S n +=;(2)当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; (3)当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n(其中中a 是等差数列的中间一项)法8:是递增的等差数列⇔>0d 法8:是递增的等比数列⇔>1q是递减的等差数列⇔<0d 是递减的等比数列⇔<<10q 是常数数列⇔=0d 是常数数列⇔=1q是跳动的等比数列⇔<0q 法9:{}{}1212,,,--=n n n n n n n n T S b a T S n b a 则项和分别为的前等差数列法103.不是等差也不是等比(这样的数列题一般会给出一条式子)的运算法则 法1:赋值 步骤: ①令n =1,算出=1a ……(注意11a S =!)② 令n = n - 1,得出一条新式,然后将原式与新式相减,算出=n a ……③检验:令n=1,=n a …,是否等于1a ?④结论:⎩⎨⎧≥-==-2,1,11n S S n S a n n n比较建议用下列格式 步骤:将式子调为 =nS① 令n=1, =1S 得出 ②当n ≥2, =--1n n S S 计算, =⇒-=-n n n n a S S a 1根据③检验:令n=1,=n a …,是否等于1a ?④结论:⎩⎨⎧≥-==-2,1,11n S S n S a n n n 法2:替换12n n S a a a =+++1--=n n n S S a法3:常见的运算式的运算法则 (1)形如da a n n =-+1:{}是等差数列数列n a(2)形如q a a nn =+1:{}是等比数列数列n a (3)形如:)(1n f a a n n =-+:累加法: =-=12,1a a n 得出令=-=23,2a a n 得出令…………………=--=-1,1n n a a n n 得出令将以上各式相加,算出 =n a(4)形如:)(1n f a a nn =+累乘法: ==12,1a a n 得出令==23,2a a n 得出令 …………………=-=-1,1n na a n n 得出令 将以上各式相乘,算出 =n aqpa a n n +=+1)5(形如构造法:套用公式)1()1(1-+=-++p q a p p q a n n得出p p qa p qa n n =-+-++111得出⎭⎬⎫⎩⎨⎧-+1p q a n 是等比数列 n n n n a pa a a 11)6(++=-形如取倒法:每一项都除以1-n n a a得出p a a n n =--111 得出⎭⎬⎫⎩⎨⎧n a 1是等差数列 例如:4114111=-⇒=----n n n n n n a a a a a a (7)裂项运算=+)1(1n n 111+-n n=+-)12)(12(1n n )121121(21+--n n ()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦=+ba 1)(1b a ba --4. 求证数列{}n a 是等差数列:法则:1--n n a a 计算,n n a a -+1计算,结果等于常数,就可证5. 求证数列{}n a 是等比数列:法则:1-n n a a 计算,nn a a 1+计算,结果等于常数,就可证 6. 数列求和: 步骤:第1步:写出数列的通项公式 第2步:赋值列式(不计算):12n n S a a a =+++第3步:选择方法法一:等差数列法二:等比数列求和:法三:错位相减法:形如数列{(An+B)q n})10(≠≠q q 且常用此法,基本步骤:第①步:列方程:⎩⎨⎧+++++=+++++=--)2()1(13211321 n n n n n n qa qa qa qa qa qS a a a a a S ,第②步:作差: (1)-(2)得:n nn qa q q q A a S q -++++=-)()1(321 ,第③步:化简,2121)1()1(1q q Aq q qa a S n n n --+--=-. 法四:裂项相消法:把数列的通项拆成两项的差,使求和时出现的一些正负相互抵消,于是前n 项的和变成首尾两项或少数几项的和. 如:; ①()11111n n n n =-++;②()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;③()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;1a b=-;⑤()()!11! 1! 1+-=+n n n n法五:公式法:(自然数和公式) ①()()222121126n n n n ++++⋅⋅⋅+=②()223331124n n n +++⋅⋅⋅+=;7、给出一组数(图):求通项公式法则:观察法:(1)留意是否为等差、等比数列。
高中数学常见题型解法归纳及反馈检测第38讲二等差等比数列的性质【知识要点】n — n一、等差数列的通项公式 a n = a A +(n-l)d = a m +(n-m)d (WG N= — ---- . a n = dn+ (%-〃),n — m当d HO 时,它是一个一次函数;等比数列的通项公式:色=即/1=4詡5(49工0)./? n Y]二、等差数列的前n 项和公式:S” =-(a t +%) =,吗般已知①时,用公式S” =-(a l +色), 已知〃时,用公式S n = na x +—(/?-1)6?;2S” = na A +~ (1 - — - —)n = An 2 + Bn,当d 丰0时,它是关于n 的二次函数.由于其常数2 2 2项为零,所以其图像过原点.na xq = 1^£沖・1-q三、等差数列错误!未找到引用源。
中,如果错误味找到引用源。
,则错误!未找到引用源。
,特殊地,错误! 未找到引用源。
时,则错误!未找到引用源。
,错误!未找到引用源。
是错误!未找到引用源。
的等差屮项.等比数列错误!未找到引用源。
中,如果错误!未找到引用源。
,则错误!未找到引用源…特殊地,错误!未 找到引用源。
时,贝U 错误味找到引用源。
,错误!未找到引用源。
是错误!未找到引用源。
的等比中项.四、等差数列被均匀分段求和后,得到的数列仍是等差数列,即错误!未找到引用源。
成等差数列. 等比数列被均匀分段求和后,得到的数列仍是等比数列,即错误!未找到引用源。
成等比数列. 【方法讲评】【例1】己知等差数列错误!未找到引用源。
中,错误!未找到引用源。
,求错误!未找到引用na A q = 1 吐£2 或S” = 等比数列的前斤项和公式:s n =<【解析】由题得力=壬字二貯=2【点评】对于等差数列的性质勺厂二弘+⑺・要注意灵活运用,提高解题效n-m率.知道了等差数列中的两项,就可以求出数列的公差.等差数列的首项是相对的,可以把其屮的某些项看 作是首项. 【例2]已知等比数列错误!未找到引用源。
高考难点:等差等比数列的性质考点解析:等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容. 例1、已知函数f (x )=412-x (x <-2).(1)求f (x )的反函数f --1(x ); (2)设a 1=1,11+n a =-f --1(a n )(n ∈N *),求a n ;(3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25m成立?若存在,求出m 的值;若不存在,说明理由. 解:(1)设y =412-x ,∵x <-2,∴x =-214y +, 即y =f --1(x )=-214y+(x >0) (2)∵411,14122121=-∴+=++nn nn a a a a ,∴{21na }是公差为4的等差数列,∵a 1=1, 21na =211a +4(n -1)=4n -3,∵a n >0,∴a n =341-n .(3)b n =S n +1-S n =a n +12=141+n ,由b n <25m ,得m >1425+n ,设g (n )= 1425+n ,∵g (n )= 1425+n 在n ∈N *上是减函数,∴g (n )的最大值是g (1)=5,∴m >5,存在最小正整数m =6,使对任意n ∈N *有b n <25m成立.例2、设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0.3,lg3=0.4)解法一:设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得.设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+lg3)-21n (n -1)lg3=(-23lg )·n 2+(2lg2+27lg3)·n可见,当n =3lg 3lg 272lg 2+时,S n 最大. 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大. 解法二:接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31,∴数列{lg a n }是以lg108为首项,以lg 31为公差的等差数列,令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5.5. 由于n ∈N *,可见数列{lg a n }的前5项和最大.一、选择题1.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若3231510=S S ,则lim ∞→n S n 等于( ) 32 B. 32A.- C.2 D.-2二、填空题2.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是_________.3.等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________.4.已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则ycx a +=_________. 三、解答题5.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1、S 2、…、S 12中哪一个值最大,并说明理由.6.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列a 1b ,a 2b ,…,a n b ,…为等比数列,其中b 1=1,b 2=5,b 3=17.(1)求数列{b n }的通项公式;(2)记T n =C 1n b 1+C 2n b 2+C 3n b 3+…+C nn b n ,求nn nn bT +∞→4lim. 7.设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2·b 4=a 3,分别求出{a n }及{b n }的前n 项和S 10及T 10.8.{a n }为等差数列,公差d ≠0,a n ≠0,(n ∈N *),且a k x 2+2a k +1x +a k +2=0(k ∈N *) (1)求证:当k 取不同自然数时,此方程有公共根; (2)若方程不同的根依次为x 1,x 2,…,x n ,…,求证:数列11,,11,1121+++n x x x 为等差数列.难点磁场解法一:将S m =30,S 2m =100代入S n =na 1+2)1(-n n d ,得: ⎪⎪⎩⎪⎪⎨⎧=-+=-+1002)12(22302)1(11d m m ma d m m ma 2102)13(33,2010,4013212=-+=∴+==d m m ma S m m a md m 解得解法二:由]2)13([32)13(33113dm a m d m m ma S m -+=-+=知,要求S 3m 只需求m[a 1+2)13(d m -],将②-①得ma 1+ 2)13(-m m d =70,∴S 3m =210.解法三:由等差数列{a n }的前n 项和公式知,S n 是关于n 的二次函数,即S n =An 2+Bn (A 、B 是常数).将S m =30,S 2m =100代入,得⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎩⎪⎨⎧=⋅+=+m B m A m B m A Bm Am 1020 1002)2(30222,∴S 3m =A ·(3m )2+B ·3m =210 解法四:S 3m =S 2m +a 2m +1+a 2m +2+…+a 3m =S 2m +(a 1+2md )+…+(a m +2md )=S 2m +(a 1+…+a m )+m ·2md =S 2m +S m +2m 2d .由解法一知d =240m,代入得S 3m =210. 解法五:根据等差数列性质知:S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,从而有:2(S 2m -S m )=S m +(S 3m -S 2m )∴S 3m =3(S 2m -S m )=210解法六:∵S n =na 1+2)1(-n n d , ∴n S n =a 1+2)1(-n n d ∴点(n , nS n )是直线y =2)1(dx -+a 1上的一串点,由三点(m ,m S m ),(2m ,mS m22),(3m , m S m 33)共线,易得S 3m =3(S 2m -S m )=210.解法七:令m =1得S 1=30,S 2=100,得a 1=30,a 1+a 2=100,∴a 1=30,a 2=70∴a 3=70+(70-30)=110 ∴S 3=a 1+a 2+a 3=210 答案:210 课后训练一、1.解析:利用等比数列和的性质.依题意,3231510=S S ,而a 1=-1,故q ≠1,① ②∴3213232315510-=-=-S S S ,根据等比数列性质知S 5,S 10-S 5,S 15-S 10,…,也成等比数列,且它的公比为q 5,∴q 5=-321,即q =-21.∴.321lim 1-=-=∞→q a S n n 答案:B二、2.解析:解出a 、b ,解对数不等式即可. 答案:(-∞,8) 3.解析:利用S 奇/S 偶=nn 1+得解. 答案:第11项a 11=29 4.解法一:赋值法. 解法二:b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ),y c x a + =)1(41)1(21)1(2122222q q a q q a q q a xy cx ay ++++=+=2.答案:2三、5.(1)解:依题意有:⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯+=>⨯+==+=0212131302111212,12211311213d a S d a S d a a 解之得公差d 的取值范围为-724<d <-3. (2)解法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,在S 1,S 2,…,S 12中S k为最大值的条件为:a k ≥0且a k +1<0,即⎩⎨⎧<-+≥-+0)2(0)3(33d k a d k a∵a 3=12,∴⎩⎨⎧-<-≥122123d kd d kd ,∵d <0,∴2-d 12<k ≤3-d 12∵-724<d <-3,∴27<-d12<4,得5.5<k <7.因为k 是正整数,所以k =6,即在S 1,S 2,…,S 12中,S 6最大.解法二:由d <0得a 1>a 2>…>a 12>a 13,因此,若在1≤k ≤12中有自然数k ,使得a k ≥0,且a k +1<0,则S k 是S 1,S 2,…,S 12中的最大值.由等差数列性质得,当m 、n 、p 、q ∈N *,且m +n =p +q 时,a m +a n =a p +a q .所以有:2a 7=a 1+a 13=132S 13<0,∴a 7<0,a 7+a 6=a 1+a 12=61S 12>0,∴a 6≥-a 7>0,故在S 1,S 2,…,S 12中S 6最大.解法三:依题意得:)(2)212()1(221n n d d n d n n na S n -+-=-+= 222)]245(21[,0,)245(8)]245(21[2dn d d d d n d --∴<----=最小时,S n 最大; ∵-724<d <-3,∴6<21(5-d24)<6.5.从而,在正整数中,当n =6时,[n -21 (5-d24)]2最小,所以S 6最大. 点评:该题的第(1)问通过建立不等式组求解属基本要求,难度不高,入手容易.第(2)问难度较高,为求{S n }中的最大值S k ,1≤k ≤12,思路之一是知道S k 为最大值的充要条件是a k ≥0且a k +1<0,思路之三是可视S n 为n 的二次函数,借助配方法可求解.它考查了等价转化的数学思想、逻辑思维能力和计算能力,较好地体现了高考试题注重能力考查的特点.而思路之二则是通过等差数列的性质等和性探寻数列的分布规律,找出“分水岭”,从而得解.6.解:(1)由题意知a 52=a 1·a 17,即(a 1+4d )2=a 1(a 1+16d )⇒a 1d =2d 2,∵d ≠0,∴a 1=2d ,数列{n b a }的公比q =11154a da a a +==3, ∴n b a =a 1·3n -1① 又n b a =a 1+(b n -1)d =121a b n + ②由①②得a 1·3n -1=21+n b ·a 1.∵a 1=2d ≠0,∴b n =2·3n -1-1.(2)T n =C 1n b 1+C 2n b 2+…+C n n b n =C 1n (2·30-1)+C 2n ·(2·31-1)+…+C nn (2·3n -1-1)=32(C 1n +C 2n ·32+…+C n n ·3n )-(C 1n +C 2n +…+C nn )=32[(1+3)n -1]-(2n -1)= 32·4n -2n +31, .32)41()43(211)41(31)21(32lim 1324312432lim 4lim 11=-⋅++-=-⋅++-⋅=+∴-∞→-∞→∞→n n nn n n n n n n n n n n b T 7.解:∵{a n }为等差数列,{b n }为等比数列,∴a 2+a 4=2a 3,b 2·b 4=b 32,已知a 2+a 4=b 3,b 2·b 4=a 3,∴b 3=2a 3,a 3=b 32, 得b 3=2b 32,∵b 3≠0,∴b 3=21,a 3=41.由a 1=1,a 3=41,知{a n }的公差d =-83,∴S 10=10a 1+2910⨯d =-855.由b 1=1,b 3=21,知{b n }的公比q =22或q =-22, ).22(32311)1(,22);22(32311)1(,221011010110-=--=-=+=--==q q b T q q q b T q 时当时当8.证明:(1)∵{a n }是等差数列,∴2a k +1=a k +a k +2,故方程a k x 2+2a k +1x +a k +2=0可变为(a k x +a k +2)(x +1)=0,∴当k 取不同自然数时,原方程有一个公共根-1.(2)原方程不同的根为x k =kk k k k a da d a a a 2122--=+-=-+ .21}11{)(2122)2(21111,211111为公差的等差数列是以常数-+∴-=-=-=---=+-+-=+∴+++k k k k k k k k k x d d d a a d a d a x x d a x。
等比数列复习资料题数列专题(三):等比数列知识点等比数列的基本观点和等差数列的差别与联系1.等比数列等差数列an 1a nqa n 1and 或 a nan 1d定义:q 或a nan 1公比: q公差:d递加数列 : a 1 0, q 1 a 1 0, 递加数列: d 0 单一性:0, 0 q则反之0 递减数列 : a 11递减数列: d 通项公式:a n a 1q n 1a n a 1n1 d① 等比中项:若成等比数列①等差中项:若 a, A,b 呈是等差数列a, A, ba b性质:则A2ab则A ②若 m n p q,则 a m a na p a q2 ②若 m n p q,则 a m a n a p a q① 定义法: a n1 等差数列的判断: ②等差中项法:③通项公式法: 2.① 定义法: a n2 等比数列的判断:a n 1 ②等比中项法:a n 1d n 2,且 n N * 或 a n 1 a nd 数列 a n 为等差数列 2a n a n1a n 1 (n 2, 且 n N * )数列 a n 为等差数列a n kn b(k,b 为常数 ) 数列 a n 为等差 数列 q n2, 且 n N *或an 1q数列 a n 为等比数列a na n2a n1a n 1 ( n 2,且 n N * )数列 a n 为等比数列注意: ① a n 1a n d (d 为常数, n N * ) 对随意的 n N *恒建立,不可以几项建立就说a n 为等差数列。
②an 1q(q 为常数, n N * ) 对随意 的n N * 恒建立,不可以几项建立就说 a n 为等比数列。
a n①假如两个数呈等差数列,则可设为 1 等差数列的假定 ②假如三个数呈等差数列,则可设为③假如四个数呈等差数列,则可设为a d ,a d;a d ,a, a d ;a 3d, a d , a d ,a 3d.①假如两个数呈等比数列,则可设为a类比,aq;3.q2 等比数列的假定②假如三个数呈等比数列,则可设为 a,a,aq;qa a3③假如四个数呈等比 数列,则可 设为 q 3 , q , aq, aq .考点一 等比数列的通项公式:利用方程的思想求出等比数列的首项a 1 和公比 qa n a 1q n 1例 11( 2013 北京高考)等比数列a n 知足 a 2a 4 20, a 3 a 5 40,则公比 q _________a 1 q a 1 q 320① 方程①q a 1 q 2a 1 q 420qa 12解:a 1 q 2 a 1q 440②a 1 q 2 a 1 q 440 q 2等比数列复习资料题2( 2014江苏高考)已知等比数列a n的各项均为正数,且a,a62a 4,则a6________21 a8分析:① 运用解方程的思想,求首项a1和公比 q②若求出首项 a1和公比 q很麻烦,数字很大或很难办理时,有时需要整体代换解: a8a6 2a4a1q 7a1 q52a1 q3q4q 2 2 q 4q 2q22a6a2 q 44 2 021舍q加强练习:1已知等比数列a n的公比为正数,且 a2a69a4, a21,则 a1A. 3B.3C.1D.1 332已知等比数列a n中,且 a6 a234, a6a230, 则 a4A. 8B.16C.8D.163已知等比数列a n中,知足a1,2,则a32 a3 a54a6A.1B.1C.2D.1244已知等比数列a n中,且 a1a2324, a3a436, 则 a5a6________ 5已知等比数列a n中,且 a5a627, a7a881,则 a3a4________①等比中项 :成等比数列,则G2;考点二等比数列的性质a,G, b ab②若 m n p q,则 a m a n a p a q例 22014天津高考设 a n是首项为 a1 , 公差为 1 的等差数列,S n为其前 n项和,若S1, S2, S4成等比数列,则a1A 2B2C 1D1 22分析:利用等比中项的性质。