工程热力学第9讲-第二部分复习-工质热力性质及热力过程计算
- 格式:ppt
- 大小:2.02 MB
- 文档页数:96
工程热力学复习知识点一、知识点基本概念的理解和应用(约占40% ),基本原理的应用和热力学分析能力的考核(约占60% )。
1.基本概念掌握和理解:热力学系统 (包括热力系,边界,工质的概念。
热力系的分类:开口系,闭口系,孤立系统 )。
掌握和理解:状态及平衡状态 ,实现平衡状态的充要条件。
状态参数及其特性。
制冷循环和热泵循环的概念区别。
理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。
2.热力学第一定律掌握和理解:热力学第一定律的实质。
理解并会应用基本公式计算:热力学第一定律的基本表达式。
闭口系能量方程。
热力学第一定律应用于开口热力系的一般表达式。
稳态稳流的能量方程。
理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。
3.热力学第二定律掌握和理解:可逆过程与不可逆过程 (包括可逆过程的热量和功的计算 )。
掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。
卡诺循环和卡诺定理。
掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。
理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。
热力系的熵方程(闭口系熵方程,开口系熵方程)。
温 - 熵图的分析及应用。
理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。
4.理想气体的热力性质熟悉和了解:理想气体模型。
理解并掌握:理想气体状态方程及通用气体常数。
理想气体的比热。
理解并会计算:理想气体的能、焓、熵及其计算。
理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。
5.实际气体及蒸气的热力性质及流动问题理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。
例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。
蒸汽的定压发生过程(包括其在p-v 和 T-s 图上的一点、二线、三区和五态)。
第二部分工质的热力性质六热力学函数与基本热力学关系式前面介绍的几个热力学基本定律都是普遍性的定律,如果不把它们与由实验得来的反映物质自身性质的本征关系结合起来,将很难得到某种特殊物质的某种特殊性质。
由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。
我们必须研究热的性质和力的性质以及其它性质之间的关系,找到由可测量表达的与物质各种性质相应的热力学函数。
这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。
6.1 状态函数的数学特性对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。
从数学上说,状态函数必定具有全微分性质。
这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。
下面我们扼要介绍全微分的一些基本定理。
设函数),(y x f z =具有全微分性质dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= (6-1) 则必然有(1) 互易关系令式(6-1)中),(y x M x z y=⎪⎪⎭⎫ ⎝⎛∂∂, ),(y x N y z x =⎪⎪⎭⎫ ⎝⎛∂∂ 则 y x x N y M ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ (6-2)互易关系与⎰=0dz 等价。
它不仅是全微分的必要条件,而且是充分条件。
因此,可反过来检验某一物理量是否具有全微分。
(2) 循环关系当保持z 不变,即0=dz 时,由式(6-1),得0=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂z xz y dy y z dx x z 则 xy z y z x z x y ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 故有 1-=⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂y z x z x x y y z (6-3)此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。
一、名词解释定值比热容:对于理想气体在较低温的范围内,比热容受温度的影响可以忽略,比热容仅与气体原子结构有关,称作定值比热容。
理想气体:理想气体是一种实际上不存在的假想气体,其分子是些弹性的、不具体积的质点,分子间相互没有作用力。
可逆过程:热力系在完成一个过程后,工质若能沿原路线返回原状态,并且使外界不留下任何痕迹的过程称作可逆过程。
熵产:热力系发生不可逆变化时,由于不可逆因素而产生的熵的变化称作熵产。
热量的作功能力损失:热量在传递和转换中,由于不可逆因素的影响使原本能转换为功的部分退化为环境状态下的无用能的部分称作热量的作功能力损失I 。
孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统。
喷管:使得气流速度提高,压力降低截面变化的管道称作喷管。
喷管的临界状态:喷管气流流速达到声速时的状态称作临界状态。
相对湿度:湿空气中水蒸气的分压力v p 与同一温度、同样总压力的饱和湿空气中水蒸气分压力()s p t 的比值,称为相对湿度ϕ。
二、单项选择题1. 绝热压缩时,若工质初态相同,终态压力相同,不可逆过程的2v 与可逆过程的s v 2关系为 A 。
A.s v v 22>B. 2v s v 2〈C.2v s v 2=D.不能确定2. 由气体参数恒定的干管向一绝热真空刚性容器内充入该种理想气体,充气后容器内的温度与干管内气体温度相比,其温度 B 。
A. 保持不变B. 升高C.降低D.无法确定3. 由卡诺定理可知,所有可逆热机的热效率 D 。
A.均相等B.均为121T T t -=η C.121T T t -=η121q q -〉 D.两个热源时均为121T T t -=η 4.任何理想气体热力过程中,焓变化量均可表示为 A 。
A.21p c dT ⎰B.q -wC.21V c dT ⎰ D.△h -pv 5.可逆定温过程由于温度不变,理想气体与外界的热量交换 B 。
A.零B.s T ∆C.2212v p v p n T R gD. 21v v n R g 8. 技术功21h h w t -=计算式使用时,适用于 C 。
第二篇工质的热力性质和热力过程知识点对比汇总表在新课内容的第一篇,就把这一部分的知识点都梳理清楚了。
由于篇幅较长,今天我就给大家简单的总结一下,不太懂的地方请多多指教。
第一篇共分三章:在新课中重点是:工质的热力性质和热力过程的实验条件、方法、计算技巧以及判断。
主要介绍了很多相关知识,我将每一章重点内容整理为下面两张表格来进行对比分析,便于大家记忆。
首先把表中最重要的公式及对应式列出来,大家可以参考我以前整理过的公式及相应知识点卡片来进行记忆,当然这只是一个大体印象而已。
在每一章后半部分会根据该考点的内容进行补充(可自行调整)、合并,这些地方都是要注意的!如有错误可以及时指正并与我联系;另外重点知识点会出现在该表格里面!由于篇幅较长,很多同学不清楚具体如何填写,我会在后面再做详细讲解哦!1.能量守恒工质的平均热容是由热量传递的速率和热交换时间决定,能量守恒是化学反应中最重要的定律,其中气体、液体、固体三者在接触时的平均热容称为工质的能量守恒,其计算公式如下:其中, d为分子总能量的平方, ma为分子质量; c为溶液温度, ma与溶液温度的平方成正比关系; ma与溶液中自由能p1之比为 v表示为液体吸热后温度变化系数; v表示溶液加热时产生的热量; h为溶液加热后温度变化系数; h为液体吸热后温度变化系数。
其中 d为溶液中所含氢原子量, v 为溶液中氧原子量。
例如:乙烷=0.15 mol/L乙烷=54.4 mg/L;乙烷与氢气配比为7:1,即1:6;对于一个混合体系,只有三种化合物配比相同并且其分子质量相等时,其化学性质才相同,因此,对于分子质量相等时,只有两种化合物配比相同时,其化学性质才相同,即:氢气=0.745 m/2 H H H H H H H H H H H H H H H H H H H H H H H H H H H FH2CO,则上述三种溶液均为同质化合物;对于同种化合物还包括:氢气与氧气组成的混合物、空气与氧气性质相同的混合物或是氢气与二氧化碳组成的混迹物等;同种化合物间是否存在质量、浓度高低、分子量大小或结构不同不影响化学反应速度等。