针对中国干旱地区粮食生产的可持续发展研究(IJEM-V1-N6-12)
- 格式:pdf
- 大小:243.78 KB
- 文档页数:7
干旱应对保障农业可持续发展的重要措施干旱是一种全球性的自然灾害,对农业生产造成了巨大的影响。
农业作为世界各国的经济命脉和人民的口粮保障,在面对干旱的挑战时,需要采取一系列的措施来保障可持续发展。
本文将讨论干旱应对保障农业可持续发展的重要措施,包括科学灌溉、节水农业技术、气候适应性作物栽培以及政府政策支持等。
一、科学灌溉科学灌溉是解决农业干旱问题的关键措施之一。
传统的农业灌溉方式往往存在着浪费水资源的问题。
科学灌溉通过对农田的土壤水分状态进行实时监测,根据作物的需水量进行合理的灌溉。
灌溉技术的现代化和智能化也可以通过自动化系统实现,减少人工操作对于水资源的浪费。
科学灌溉不仅可以提高水资源的利用率,也能够保证农田的地温湿度,为作物生长提供良好的生态环境。
二、节水农业技术与科学灌溉相辅相成的是节水农业技术的推广与应用。
节水农业技术包括雨水收集利用、滴灌、喷灌、膜技术、抗旱作物等。
雨水收集利用是一种重要的方式,通过收集雨水供给作物灌溉,减少对地下水和地表水资源的依赖。
滴灌和喷灌技术可以精准地将水分送达到作物根区,减少水分蒸发和浪费。
膜技术则可以通过抑制土壤水分蒸发,提高水分的利用效率。
抗旱作物是指那些能够在干旱环境下正常生长的作物,通过培育和推广抗旱作物品种,提高农作物对干旱的适应性,进而保证农业的可持续发展。
三、气候适应性作物栽培随着全球气候变化的加剧,农作物对于气候的适应性成为农业发展的关键问题。
采用气候适应性作物的栽培可以增加农作物对干旱的抵抗能力,提高其产量和品质稳定性。
例如,干旱地区适宜种植耐旱性强的玉米或者小麦,而在湿润地区适宜种植耐湿性强的水稻或者棉花。
选择适宜的作物品种是气候适应性作物栽培的重要因素之一,遗传改良技术可以通过选育出适应干旱的新品种,为干旱地区提供更多种植选择。
四、政府政策支持政府在干旱应对方面的政策支持不可或缺。
政府可以加大资金投入,支持科研机构对农业水资源的利用和干旱应对技术的研发。
㊀山东农业科学㊀2024ꎬ56(1):164~173ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.01.022收稿日期:2023-03-27基金项目:国家重点研发计划项目(2022YFD1500602-1)ꎻ国家现代农业产业技术体系项目(CARS-06-14.5-B16)作者简介:王晓东(1996 )ꎬ男ꎬ研究实习员ꎬ主要从事高粱栽培与育种工作ꎮE-mail:1009124737@qq.com通信作者:肖继兵(1976 )ꎬ男ꎬ研究员ꎬ主要从事旱作农业研究ꎮE-mail:xiaojb2004@126.com高粱抗旱性研究进展王晓东ꎬ李俊志ꎬ窦爽ꎬ肖继兵ꎬ辛宗绪ꎬ吴宏生ꎬ朱晓东(辽宁省旱地农林研究所ꎬ辽宁朝阳㊀122000)㊀㊀摘要:干旱是限制植物生产力和威胁粮食安全的重要因素之一ꎮ高粱(SorghumbicolorL.Moench)是全球主粮和饲料作物ꎬ因其具有较强的抗旱性和能够在恶劣的环境条件下生存而广泛种植于干旱半干旱地区ꎬ在作物抗旱领域中具有重要的研究价值ꎮ深入解析干旱胁迫下高粱的形态和生理特性㊁鉴定和筛选抗旱品种㊁挖掘相关抗旱基因ꎬ对推动高粱抗旱育种进程㊁提高品种抗旱性㊁提高产量具有重要意义ꎮ本文从干旱胁迫对高粱生长的影响㊁高粱对干旱胁迫的生理响应㊁高粱耐旱性鉴定方法和鉴定指标㊁高粱抗旱性分子生物学和提高高粱抗旱性方法5个方面对高粱抗旱性研究进展进行综述ꎬ并对高粱抗旱性研究方向进行展望ꎬ以期为进一步研究高粱抗旱的形态㊁生理特性及分子机制奠定基础ꎮ关键词:高粱ꎻ干旱胁迫ꎻ生理响应ꎻ分子生物学ꎻ鉴定ꎻ抗旱性中图分类号:S514㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)01-0164-10ResearchProgressonDroughtResistanceofSorghumWangXiaodongꎬLiJunzhiꎬDouShuangꎬXiaoJibingꎬXinZongxuꎬWuHongshengꎬZhuXiaodong(LiaoningInstituteofAgriculture&ForestryinAridAreasꎬChaoyang122000ꎬChina)Abstract㊀Droughtisoneoftheimportantfactorsthatlimitplantproductivityandthreatenfoodsecurity.Asaglobalstaplefoodandforagecropꎬsorghum(SorghumbicolorL.Moench)hasgoodcharacteristicsindroughtresistancealongwithabilitiestosurviveinharshenvironmentsꎬandiswidelyplantedinaridandsemi ̄aridareasꎬwhichgiveitimportantresearchvaluesinthefieldofcropdroughtresistance.Itisofgreatsignifi ̄canceinacceleratingbreedingprocessofdrought ̄resistantvarietiesandincreasingdroughtresistanceandyieldofsorghumtofurtheranalyzethemorphologicalandphysiologicalcharacteristicsunderdroughtstressꎬidentifyandscreentheexcellentdrought ̄resistantvarietiesꎬanddigoutdrought ̄resistantgenes.Inthispaperꎬthere ̄searchprogressindroughtresistanceofsorghumwasreviewedfrominfluencesofdroughtstressonsorghumgrowthꎬphysiologicalresponsesofsorghumtodroughtstressꎬidentificationmethodsandindexesꎬmolecularbiologyꎬandimprovementmethodsꎬandtheprospectofresearchdirectionofdroughtresistanceinsorghumwasproposedꎬinordertolayafoundationforfurtherstudyofthemorphologicalandphysiologicalcharacteris ̄ticsandmolecularmechanismsofdroughtresistanceinsorghum.Keywords㊀SorghumꎻDroughtstressꎻPhysiologicalresponseꎻMolecularbiologyꎻIdentificationꎻDroughtresistance㊀㊀干旱是限制作物生产发展的最重要因素之一ꎬ有发生范围广㊁频次高㊁持续时间长等特点[1-2]ꎮ目前ꎬ世界上有三分之一以上总陆地面积的干旱和半干旱地区ꎬ我国现有干旱㊁半干旱和亚湿润干旱区近300万km2ꎬ占国土总面积近四成[3]ꎮ其中ꎬ绝大部分是因为缺乏灌溉条件而以雨养农业为主ꎬ其作物产量占全国总产量的比重较小ꎮ选育耐旱性强的作物品种是保证干旱地区高产稳产的重要举措ꎮ干旱可能会发生在作物生长发育的各个阶段ꎮ然而ꎬ在干旱和半干旱地区ꎬ作物生长季开始和结束时发生干旱的可能性较高ꎮ生长季节开始时的干旱胁迫严重影响植物的生长发育ꎮ如果干旱发生在作物开花期或灌浆期ꎬ可能会导致产量严重下降或歉收[4]ꎮ高粱(SorghumbicolorL.Moench)是禾本科一年生草本植物ꎬ主要种植于热带㊁亚热带和温带的干旱半干旱区ꎬ也是我国主要的杂粮作物之一ꎬ是重要的酿用㊁食用㊁饲用㊁帚用作物ꎬ同时也是全球仅次于水稻㊁玉米㊁小麦㊁大豆种植面积的第五大粮食作物ꎮ高粱具有很强的抗旱㊁耐涝㊁耐盐碱㊁耐瘠薄㊁耐高温等抗逆特性[5]ꎮ高粱不同品种间抗旱能力存在较大差异ꎮ近些年从多个方面开展了高粱抗旱性遗传和抗旱品种选育相关研究[6-7]ꎮ本文综述干旱胁迫对高粱生长的影响㊁高粱耐旱性鉴定方法和鉴定指标ꎬ以及高粱对干旱的生理响应ꎬ并从转录组分析㊁抗旱QTL定位和全基因组关联分析方面进行梳理和整合ꎬ并对高粱抗旱性的分子调控机制㊁鉴定体系及抗旱性品种选育进行展望ꎬ以期为后人开展相关研究提供理论参考ꎮ1㊀干旱胁迫对高粱生长的影响1.1㊀干旱胁迫对高粱种子萌发和幼苗生长的影响水分缺乏使植物发育迟缓ꎬ干旱胁迫达到一定阈值时ꎬ会显著抑制种子萌发和幼苗生长[8]ꎮ王志恒等[9]研究了高粱萌发阶段受干旱胁迫的响应特性ꎬ发现随着干旱胁迫程度的增加ꎬ高粱种子的发芽率㊁发芽势等显著降低ꎬ种子残留干重逐渐增加ꎬ干物质转移㊁转化效率逐渐下降ꎬ根冠比逐渐增大ꎬ比根重逐渐减小ꎮ长期干旱胁迫降低幼苗的苗高㊁叶长ꎬ幼苗地上部和根的鲜重不同程度的下降[10]ꎮ1.2㊀高粱萌发期及苗期的抗旱性研究大多数农作物在种子萌发㊁幼苗形成和开花阶段对干旱胁迫较为敏感ꎬ干旱胁迫下萌发期和苗期表现出耐旱性是作物生长发育的前提ꎮ对高粱萌发期和苗期耐旱性的研究发现ꎬ高粱萌发期和苗期的耐旱性是不一致的ꎮ张笑笑[11]对73份高粱品种进行萌发期和苗期耐旱性鉴定ꎬ初筛结果发现萌发期和苗期都抗旱的品种5份ꎬ苗期抗旱品种10份ꎬ田间和室内采用多重表型分析最终得到苗期抗旱品种1份ꎮ郝培彤等[12]在20%PEG干旱胁迫下评价21份饲草高粱材料的耐旱性ꎬ筛选出萌发期耐旱和苗期耐旱材料各3份ꎬ萌发期和苗期共同耐旱材料1份ꎮ由此可见ꎬ高粱品种萌发期和苗期耐旱性是不同的ꎬ萌发期耐旱品种苗期不一定耐旱ꎬ苗期耐旱品种萌发期也可能不耐旱ꎮ针对高粱萌发期和苗期耐旱性ꎬ许多学者是分开进行研究的ꎬ而在大田干旱生产条件下ꎬ种子从萌发阶段就已经受到干旱胁迫的影响ꎮ因此研究植物的耐旱性ꎬ应该从种子萌发到苗期进行不间断的干旱胁迫处理ꎬ这样可以更加全面地反映出植物在萌发期和苗期对干旱胁迫的各种反应ꎮ1.3㊀干旱胁迫对高粱光合作用的影响Zhang等[13]研究发现ꎬ在干旱胁迫处理后ꎬ高粱叶片叶绿素总含量及叶绿素a㊁叶绿素b含量降低ꎬ且叶绿素a的降低幅度显著大于叶绿素bꎮ干旱胁迫下叶绿素含量降低主要是由于叶绿素生物合成下降ꎬ从而导致叶绿素加速分解ꎮ植物进行光合作用时ꎬ要保证充足的光照ꎬ然而光照过强ꎬ会造成叶片吸收的光能超出同化所需ꎬ进而造成光抑制或者光破坏[14]ꎮ因此植物会通过植物激素㊁外源物质等来减缓由于光能过多引起的光抑制ꎬ促进光合活性ꎬ避免PSⅡ系统受到破坏[15]ꎮ张姣等[16]的研究表明ꎬ干旱胁迫下ꎬ高粱叶片的净光合速率(Pn)㊁气孔导度(Gs)㊁最大光化学效率(Fv/Fm)㊁光化学淬灭系数(qP)㊁电子传递速率(ETR)出现不同程度的下降ꎬ初始荧光(Fo)与对照组相比有所升高ꎬZhang等[13]也得出相同的结论ꎮ说明干旱胁迫会使光合相关酶活性丧失ꎬ导致光能过剩而产生积累ꎬ通过热耗散等途径消耗多余的光能ꎬ可以让作物适应干旱胁迫环境ꎮ干旱胁迫导致光合作用能力下降主要原因是非气孔限制[17]ꎮ王祁等[18]的研究还发现ꎬ在轻度干旱胁迫下ꎬ高粱叶片PSⅡ系统结构和功能损伤较小ꎬ然而在重度胁迫下ꎬ叶片PSⅡ系统遭到破坏ꎬ进而发生光抑制现象ꎮ光合作用的强弱可以直接反映出植物抵御干旱胁迫的能力ꎬ保证叶绿素含量的稳定㊁保护光合相关酶活性ꎬ可抵561㊀第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王晓东ꎬ等:高粱抗旱性研究进展御干旱胁迫对其光合作用的影响ꎮ2㊀高粱对干旱胁迫的生理响应2.1㊀有机渗透调节干旱胁迫下ꎬ植物细胞通过调节可溶性物质的浓度来维持细胞内外渗透压平衡ꎬ进而应对干旱胁迫带来的影响ꎮ参与渗透调节的物质可分为两类ꎬ第一类是外界环境提供的无机离子ꎬ第二类是胞内合成的有机溶质ꎮ第二类渗透调节物质主要包括甜菜碱㊁脯氨酸㊁糖和糖醇等有机化合物[19]ꎮ近些年来ꎬ可溶性蛋白㊁可溶性糖㊁脯氨酸等渗透调节物质被广泛研究ꎮ脯氨酸的积累可以使许多植物应对渗透胁迫反应ꎬ作为一种相容的渗透剂ꎬ其可以提高细胞或组织的保水能力ꎬ同时可以作为碳水化合物的来源ꎻ作为一种酶的保护剂ꎬ也可以减轻蛋白质变性ꎬ具有很强的抗氧化能力ꎮ张玉霞等[20]用聚乙二醇溶液模拟干旱胁迫ꎬ结果表明饲用高粱品种脯氨酸含量与对照组相比显著升高ꎮ王艳秋等[21]研究发现ꎬ干旱胁迫下高粱叶片的脯氨酸含量显著增加ꎬ且其显著性较大ꎬ是高粱调节适应干旱胁迫的重要指标ꎮ可见ꎬ脯氨酸在干旱胁迫下至关重要ꎬ但是也有不同观点:董喜存等[22]的研究发现ꎬ在不同程度干旱胁迫下ꎬ甜高粱品种叶片脯氨酸含量变化趋势并不一致ꎮ因此认为ꎬ单纯测定脯氨酸含量不能准确反映抗旱性ꎬ可以将其作为一种抗旱胁迫下的保护性反应ꎮ可溶性糖主要包括葡萄糖㊁蔗糖㊁果糖和半乳糖ꎮ可溶性糖既可以为植物生长发育提供能量ꎬ并且具有信号功能ꎬ又是植物生长发育的重要调节因子[23]ꎮ何玮等[24]研究不同干旱胁迫下甜高粱叶片可溶性糖含量的变化时发现ꎬ轻度干旱胁迫下可溶性糖含量先下降然后突然升高ꎬ再下降之后突然升到最高ꎻ在重度干旱胁迫下ꎬ可溶性糖含量先下降ꎬ然后升到最高ꎬ再下降ꎮ总体表明ꎬ在受到干旱胁迫时ꎬ高粱叶片可溶性糖含量整体呈升高趋势ꎮGill等[25]研究不同非生物胁迫下高粱可溶性糖含量变化的结果表明ꎬ干旱胁迫下总的可溶性糖含量呈升高趋势且高于对照ꎬ其中果糖含量始终高于葡萄糖和蔗糖ꎮ此外ꎬ在干旱胁迫下ꎬ可溶性糖还可以作为蛋白质渗透保护剂而发挥作用ꎮ可溶性蛋白含量的变化可以直接反映植物渗透调节能力的大小ꎬ它不仅可以提高细胞的保水能力ꎬ而且可以有效地保护生物膜以及细胞的生命物质ꎮ荣少英等[26]研究不同高粱品种在不同干旱条件下可溶性蛋白的变化时发现ꎬ甜高粱㊁普通高粱和对照相比可溶性蛋白含量随着干旱胁迫的加剧呈上升趋势ꎮ有研究[27-28]表明ꎬ在逆境胁迫下ꎬ膜质过氧化产物丙二醛抑制蛋白质的生物合成ꎻ长时间重度干旱使植物体内分解代谢加剧ꎬ导致大量可溶性蛋白分解ꎮ2.2㊀抗氧化防御系统活性氧具有很强的氧化能力ꎮ植物在进行有氧代谢的过程中会产生活性氧ꎬ低浓度的活性氧可以作为信号分子参与调控植物非生物胁迫反应[29-30]ꎮ抗氧化防御系统具有维持植物体内活性氧平衡的功能[31]ꎮ该系统包括两大类ꎬ一类是非酶促抗氧化物质ꎬ其中最为重要的是水溶性抗坏血酸(Asc)ꎬ其次是谷胱甘肽(GSH)ꎬ还有脂溶性生育酚㊁类胡萝卜素等ꎻ另一类是酶促抗氧化剂ꎬ包括超氧化物歧化酶(SOD)㊁过氧化物酶(POD)和过氧化氢酶(CAT)[32]ꎮ植物抗氧化调控系统中ꎬ提高酶活性和抗氧化物的表达量是作物抵御逆境胁迫的关键因素ꎮ陈敏菊等[33]研究发现ꎬ高粱幼苗叶片SOD和CAT活性因干旱胁迫的强度不同而存在差异ꎬ土壤含水量在55%~60%时SOD活性逐渐升高ꎬ随着干旱程度加剧ꎬSOD活性逐渐下降ꎻCAT活性在土壤含水量为40%~60%时高于对照ꎬ随着干旱加剧活性逐渐降低ꎻPOD活性的变化规律和SOD一致ꎮ这表明轻度干旱胁迫可以提高高粱幼苗叶片抗氧化酶活性ꎮ卢峰等[34]研究高粱幼苗不同生长阶段受到干旱胁迫时酶活性的变化情况表明ꎬ胁迫6㊁8㊁12㊁24d时SOD活性显著高于对照ꎬ干旱胁迫12d时酶活性达到峰值ꎬPOD活性的变化和SOD基本一致ꎮ说明高粱幼苗在受到干旱胁迫时ꎬ通过提高叶片保护酶活性来抵御其危害ꎮ2.3㊀激素调节植物激素参与干旱胁迫调节ꎮ通过外源激素来提高作物的抗旱性是现阶段重要的科学途径之一[35-36]ꎮ细胞分裂素通过促进细胞分裂ꎬ延缓植物叶片中叶绿素的降解来提高植物的抗旱性[37]ꎮ661山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀生长素可以正向调控四种抗氧化酶(SOD㊁CAT㊁POD㊁GR)活性来降低干旱胁迫对植株的抑制作用ꎻ同时生长素可以通过调节根生物量㊁增加根的分支来提高水分吸收效率进而提高抗旱性[38]ꎮ脱落酸(ABA)对植物在逆境胁迫下的应答起着关键作用ꎬ其参与气孔的开关ꎬ保卫细胞的通道活动ꎬ调节转录钙调蛋白的表达ꎬ诱导相关基因的表达[39]ꎮ植物在受到干旱胁迫时ꎬ也可以通过减少赤霉素的方式来适应胁迫环境[40]ꎮ关于干旱胁迫下植物激素调节机制ꎬ国内外对水稻㊁小麦等作物的报道较多ꎬ逆境胁迫下高粱中植物激素的作用机制还需进一步探讨和研究ꎮ高粱的抗旱性在生理上涉及到三个方面:第一是干旱胁迫下需要维持高的含水量ꎬ维持高粱水分平衡ꎬ通过增加脯氨酸㊁可溶性糖㊁可溶性蛋白质等物质含量提高渗透调节能力ꎬ维持细胞或者组织持水ꎬ进而维持膨压ꎻ第二是干旱胁迫下保证其基本的生理功能ꎬ通过激素调节㊁酶活性提高等来维持高粱正常的生理功能ꎻ第三是干旱胁迫解除时高粱含水量和生理功能的恢复能力ꎮ做好以上三点ꎬ可以有效地抵御干旱胁迫带来的负面影响ꎮ3㊀高粱耐旱性鉴定方法及鉴定指标因为各个时期的耐旱机制不同ꎬ一般将高粱耐旱性鉴定分为萌发期㊁苗期和全生育期鉴定ꎮ萌发期是作物在干旱胁迫条件下能否完成生长周期的关键时期[41]ꎬ对高粱群体结构和数量起着决定性作用ꎮ高粱萌发期抗旱性鉴定多采用聚乙二醇(PEG)㊁葡萄糖溶液等模拟干旱胁迫环境进行ꎬ通过种子发芽率㊁萌发抗旱指数等反映高粱的抗旱性ꎮ其中PEG-6000是目前被广泛应用的鉴定萌发期抗旱性较为理想的溶液ꎮ陈冰嬬等[41]使用15份保持系㊁18份恢复系和8份杂交种ꎬ通过PEG-6000水溶液模拟干旱胁迫环境ꎬ筛选出1份恢复系和1份保持系萌发期抗旱性亲本材料ꎻ通过抗旱性因子分析ꎬ认为萌发抗旱指数㊁根长和剩余干物质量可以作为高粱萌发期抗旱性筛选的鉴定指标ꎮ候文慧等[42]利用15%的聚乙二醇溶液进行干旱胁迫处理ꎬ采用隶属函数分析方法对8个饲用高粱萌发期抗旱性进行排序ꎬ得出SU9002为抗旱性最强的材料ꎬBJ0602为抗旱性最为敏感的材料ꎻ并利用主成分和聚类分析方法ꎬ对萌发期5个抗旱指标进行分析ꎬ结果表明ꎬ发芽指数和发芽率可以作为饲用高粱萌发期抗旱性评价的指标ꎮ采用聚乙二醇等高渗溶液不仅方法简单ꎬ而且排除了外界环境的干扰ꎬ可以获得更加准确的数据ꎬ有效地缩短了鉴定周期ꎬ提高鉴定效率ꎮ苗期是高粱整个生长发育阶段的关键时期之一ꎬ其生长好与坏直接影响着最终的产量和品质ꎬ因此ꎬ苗期抗旱性鉴定尤为重要ꎮ高粱苗期抗旱性鉴定方法可以分为三种ꎮ第一种较为常见的是使用PEG-6000溶液模拟干旱胁迫环境ꎮ赵晓倩[43]采用25%PEG-6000对259份高粱品种进行干旱胁迫处理ꎬ筛选出极抗旱品种14份㊁极敏感品种33份ꎬ并通过主成分分析方法对9个指标进行分析ꎬ结果表明ꎬ苗高㊁成活率㊁根冠比㊁根长和根鲜重可以作为评价高粱苗期抗旱性的指标ꎮ第二种是干旱复水法ꎬ是指在干旱胁迫后进行复水处理ꎬ用复水后的恢复能力指标评价高粱抗旱性ꎮ刘婷婷等[44]利用盆栽控水法对8个高粱品种幼苗进行干旱复水处理ꎬ通过研究生物量㊁水势㊁渗透式㊁光合参数等生理指标的变化情况来分析不同高粱品种的抗旱能力以及干旱适应能力和旱后复水恢复能力的关系ꎬ分析鉴定出了一份抗旱性强的品种辽杂21和旱后复水能力强的品种Moench.cv.Gadambaliaꎮ干旱胁迫时维持较高的叶片净光合速率和相对含水量有助于其提高干旱复水能力ꎬ因此ꎬ叶片净光合速率和相对含水量可以作为筛选高粱苗期抗旱性的生理指标ꎮ第三种是反复干旱法ꎬ是指通过高粱苗期连续两次干旱胁迫控水ꎬ以材料存活率为评价指标的一种鉴定方法ꎬ适用于大批量的品种鉴定ꎮ李舒凡[45]通过反复干旱法ꎬ对200份高粱品种进行苗期耐旱性鉴定ꎬ将叶片与根系的长势作为抗旱性的评价指标ꎬ能够从存活的质量上区别品种的抗旱性差异ꎬ进一步提高了筛选抗旱性品种的准确性ꎮ对高粱苗期抗旱性的鉴定只能反映出营养生长阶段的情况ꎬ需要结合生殖生长阶段的抗旱性ꎬ对不同品种抗旱能力进行综合评价ꎮ作物全生育期抗旱性鉴定对于抗旱新品种的选育㊁抗旱机制的研究以及抗旱基因的挖掘有着重要意义ꎬ共有两种鉴定方式ꎮ一种是通过人工761㊀第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王晓东ꎬ等:高粱抗旱性研究进展控制水分和环境ꎬ通过干旱棚㊁人工气候箱等模拟干旱环境ꎬ研究各个生育期干旱胁迫对籽粒产量和品质的影响ꎮ汪灿等[46]通过在干旱棚内设置两个处理对50份酒用高粱材料进行成株期抗旱性鉴定ꎬ测定了成株期8个农艺性状ꎬ筛选出两个成株期酒用高粱抗旱性强的品种粱丰141-3和粱丰247-3ꎻ通过主成分㊁灰色关联度分析ꎬ认为分蘖数㊁穗粒数和单株粒重可作为酒用糯高粱资源成株期抗旱性评价指标ꎮ另一种是自然环境法ꎬ设置干旱和水地两个处理ꎬ操作简便ꎬ没有设备的要求ꎬ测定的结果更具说服力ꎬ但受环境因素影响较大ꎬ需要多年的试验数据进行支撑ꎮ袁闯等[47]采用自然环境法ꎬ设置灌水和干旱两个处理ꎬ通过测定高粱成熟期株高㊁穗重㊁千粒重㊁产量等10个性状ꎬ对22份不同品系的甜高粱进行成熟期耐旱性鉴定ꎬ筛选出3份抗旱品种和2份抗旱敏感性品种ꎻ通过主成分分析和逐步线性回归分析ꎬ认为千粒重㊁单株粒重㊁穗粒数和穗茎粗可以作为甜高粱成熟期抗旱性的评价指标ꎮ现阶段ꎬ高粱各抗旱指标评价鉴定基本都是局限于某一个时期ꎬ因此ꎬ需要综合高粱生长发育每个时期的指标来进行综合分析ꎬ建立综合指标评价体系ꎬ以提高高粱品种抗旱性鉴定的可靠性和真实性ꎮ4㊀高粱抗旱性分子生物学研究现阶段ꎬ国内外对于高粱抗旱性鉴定㊁抗旱生理生化以及干旱对农艺性状影响的研究已趋于完善ꎬ并且对于以基因为基础的转基因和分子标记技术也广泛应用到抗旱性分子遗传研究领域ꎬ通过转录组分析㊁QTL定位和全基因组关联分析(GWAS)构建分子遗传图谱ꎬ挖掘抗旱相关基因是高粱抗旱性分子遗传研究的发展方向ꎮ4.1㊀转录组分析转录组分析对于研究未知基因功能和特定调节基因的作用机制起着关键作用[48]ꎮ近年来新一代的转录组测序技术(RNA-seq)应运而生ꎬ它可以研究作物在干旱胁迫下的基因表达模式㊁分析抗旱分子机制㊁确定候选基因并进行功能注释[49]ꎮDugas等[50]通过渗透胁迫和脱落酸对高粱植物的转录组进行了分析ꎬ利用转录组测序技术揭示高粱的抗旱机制和基因筛选ꎮZhang等[51]使用转录组测序方法对干旱胁迫下高粱的叶和根进行转录组分析ꎬ鉴定出了差异表达基因ꎬ通过富集(GO)分析出耐旱性相关转录因子ꎮ王志恒等[52]用PEG-6000对甜高粱进行干旱胁迫ꎬ对高粱幼苗进行转录组测序分析并建立包含cDNA的文库ꎬ对差异表达基因进行GO富集分析和KEGG分析ꎬ发现有两个代谢通路与干旱胁迫响应相关ꎬ这两个通路都属于遗传信息代谢通路ꎮ表明甜高粱通过激活与干旱胁迫相关的蛋白表达和与碳水化合物相关的基因表达而增强渗透调节能力来响应干旱胁迫ꎮXu等[53]对两个抗旱性不同的高粱品种进行转录组分析ꎬ运用转录组测序技术确定了候选基因并进行了基因功能注释ꎬ分析了代谢通路ꎮ转录组测序技术促进了基因功能和表达水平的研究ꎬ通过分析干旱胁迫下基因的表达网络和富集通路ꎬ挖掘相关的新基因ꎬ可为今后进一步揭示干旱胁迫调节机制提供理论支撑ꎮ4.2㊀抗旱基因QTL定位植物的抗旱性是受多基因控制的数量性状ꎬ遗传复杂ꎮ干旱对作物的影响程度变化较大ꎬ常规育种方法费时㊁费力ꎬ难以选育优质的抗旱品种ꎮ随着分子生物学的发展ꎬQTL分析被广泛应用到分子遗传领域ꎮ赵辉[54]利用籽粒高粱654和甜高粱LTR108组成244个RIL群体ꎬ并构建了分子遗传连锁图谱ꎬ利用QTL定位分析耐旱性相关性状ꎬ分别在1㊁4㊁6㊁7染色体上检测出3㊁1㊁1㊁3个与抗旱系数相关的QTLs位点ꎬ并且在LG-1㊁LG-6㊁LG-7上定位到5个影响株高的QTLsꎮHaussmann等[55]用IS9830和N13与E36-1分别构建226个RIL群体ꎬ通过构建遗传图谱ꎬ发现标记分别位于10个连锁群和12连锁群中ꎬ利用复合区间作图检测到的3个性状的QTL数量在5个到8个之间ꎬ解释了31%和42%的遗传变异ꎮSakhi等[56]对107份孕穗期的高粱材料进行干旱胁迫处理ꎬ使用10条染色体上98个SSR标记位点的基因型数据对23对性状进行关联分析ꎬ鉴定出9个QTL与8个抗旱性状相关ꎮ持绿性是高粱干旱胁迫耐受性的一个组成部分ꎮSukumaran等[57]对Tx436(非持绿性)和00MN7645(持绿性)构建重组自交系进行遗传定位ꎬ利用全基因组单标记扫描和复合区间影射互补方法ꎬ检测到了15个与抗旱性状相关的QTLꎻ在1号染色体上发现了籽粒产量QTLꎬ解释了8%~16%的表型变异ꎬ861山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀在第2㊁6㊁9号染色体上发现了开花时间QTLꎬ解释了6%~11%的表型变异ꎬ在3㊁4号染色体上发现了持绿性QTLꎬ解释了8%~24%的表型变异ꎮ有关高粱QTL定位的研究可为后续高粱抗旱基因的精细定位㊁挖掘抗旱性相关基因和分析抗旱性机理奠定基础ꎮ4.3㊀全基因组关联分析(GWAS)GWAS是对多个个体在全基因组范围内进行遗传标记多态性检测ꎬ将基因型和表型进行关联并应用到寻找遗传图谱和挖掘性状相关候选基因的一种方法ꎮ近年来ꎬ为解析高粱抗旱性的遗传基础ꎬXin等[58]研究354份甜高粱在两种不同干旱处理下的株高性状ꎬ并将基于株高的平均生产力㊁干旱指数和胁迫耐受指数作为表型数据ꎬ结合甜高粱再测序获得的6186个SNPsꎬ使用三种不同的数量性状遗传模型进行GWAS分析ꎬ结果表明ꎬ在GLM㊁MLM和FarmCPU下分别检测到49㊁5个和25个耐旱相关的遗传位点ꎬ发现2个耐干旱的候选基因ꎬ其中ꎬSb08g019720.1基因与Athali ̄anaEFMTF基因同源ꎬ而Sb01g037050.1基因与玉米bZIPTF基因同源ꎮ高奇[59]用401份甜高粱材料进行干旱胁迫处理ꎬ并通过三个与干旱相关的性状筛选出耐旱评价指标并作为表型数据ꎬ利用高粱全基因组SNP标记ꎬ对三个性状耐旱指数进行全基因组关联分析ꎬ检测到两个株高性状基因可能是耐旱候选基因ꎮ赵晓倩[43]对259份高粱的7个苗期耐旱性相关性状进行全基因组关联分析ꎬ检测到102个显著的SNP位点ꎬ筛选出7个抗旱候选基因ꎮ通过全基因组关联分析揭示耐旱候选基因可为后续基因功能验证和高粱耐旱分子机制研究奠定基础ꎮ5㊀提高高粱抗旱性的方法5.1㊀传统育种方法传统的育种方法包括杂交育种㊁回交育种㊁系统选育㊁混合选育等ꎬ其中较为常见的是杂交育种ꎮ杨伟等[60]通过母本不育系7501A和父本恢复系RHMC386进行组配杂交ꎬ选育出优质抗旱高粱新品种潞杂9号ꎮ杨婷婷等[61]研究发现ꎬ以不育系SX605A为母本㊁以恢复系SX870为父本杂交育成高粱品种晋杂31号ꎮ其选育过程中ꎬ亲本都是通过杂交再连续多代自交得到的稳定品种ꎬ都具有很强的抗旱性ꎬ通过该方法可以提高选育品种的抗旱性ꎮ李继洪等[62]同样用不育系亲凡A为母本㊁以恢复系苏丹草黑壳3号为父本杂交选育出抗性强的品种吉草3号ꎮ由此可见ꎬ选育抗旱性强的不育系和恢复系是提高高粱杂交种耐旱性的重要途径ꎮ5.2㊀施加外源物质通过对高粱施加外源营养元素㊁生长调节剂以及进行种子引发等都可以提高其抗旱性ꎮAhmed等[63]发现硅营养对高粱的生长和生理参数有显著影响ꎬ通过在干旱胁迫条件下对高粱进行施加硅营养处理ꎬ可以提高耐旱基因型品种(系)的叶片水势㊁叶面积指数㊁蒸腾速率和SPAD值ꎬ同时在硅处理下净同化和相对生长量表现出最大值ꎮ张瑞栋等[64]分别用聚乙二醇(PEG)㊁KCl㊁CaCl2和水杨酸(SA)对高粱种子进行引发处理ꎬ显示其可以促进干旱胁迫下种子萌发率ꎬ促进胚根和胚芽的伸长ꎮ其原因可能是引发处理提高了胚芽内抗氧化酶活性ꎬ同时促进糖代谢ꎬ增加脯氨酸含量ꎬ解决了干旱胁迫下发芽率低㊁胚根胚芽生长受抑制的问题ꎬ进而提高高粱萌发期的抗旱性ꎮTounekti等[65]的研究也得到一致的结果ꎮKamali等[66]研究发现ꎬ使用固氮菌和丛枝菌根真菌(AMF)的高粱比不使用的受干旱胁迫程度较轻ꎬ固氮菌和丛枝菌根真菌可以减少高粱电解质渗漏和丙二醛含量ꎬ通过提高花青素㊁类胡萝卜素㊁黄酮㊁生长素(IAA)等物质含量和抗氧化酶活性来缓解干旱胁迫的影响ꎮKamali等[67]同时也发现细菌和丛枝菌根真菌也可以通过增加光合色素㊁可溶性蛋白等物质含量提高高粱渗透调节能力ꎬ继而应对干旱胁迫环境ꎮShehab等[68]研究发现ꎬ脱落酸(ABA)和茉莉酸甲酯(MeJA)可以减轻干旱胁迫引起的负面效应ꎬ降低干旱胁迫下高粱中氰化氢(HCN)的含量ꎮ植物生长调节剂(PGRs)改善高粱抗旱性归因于可溶性蛋白㊁丙二醛㊁活性氧㊁过氧化氢等的积累减少ꎬ光合参数的改善以及抗氧化酶活性的变化ꎬ进而提高其抗旱能力ꎬ特别在甜高粱中尤为明显ꎮ5.3㊀转基因方法植物抗旱性是受多基因控制的数量性状ꎬ其中包括参与调控植物活性氧㊁可溶性糖㊁抗氧化酶㊁叶绿素和ABA信号转导等生理生化过程的基961㊀第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王晓东ꎬ等:高粱抗旱性研究进展。
干旱和复水对不同抗旱型谷子品种苗期生理指标的影响作者:张明飞迟悦王慧颖相吉山王韶婉于龙君田佳和周明旭朱天浩来源:《赤峰学院学报·自然科学版》2023年第09期摘要:为了了解不同抗旱型谷子品种抗旱性差异的生理基础,本研究以5个极抗旱和5个极弱抗谷子品种为实验材料,对其进行PEG干旱胁迫和复水处理,分别测定超氧化物歧化酶(SOD)、过氧化物酶(POD)和丙二醛(MDA)含量变化。
结果表明,干旱胁迫前,不同抗旱型谷子品种的SOD、POD酶活性差异不显著;极弱抗型谷子的MDA含量略高于极抗旱谷子。
干旱胁迫后,极抗旱型谷子的SOD酶活性显著高于极弱抗型谷子,极弱抗型谷子的MDA含量显著高于极抗旱型谷子,不同抗旱型谷子品种间POD酶活性差异不显著。
复水处理后,极抗旱型谷子的SOD酶活性仍大于极弱抗型谷子,不同抗旱型谷子的POD酶活性水平下降,但仍高于胁迫前,极弱抗型谷子的MDA含量显著高于极抗旱型谷子。
关键词:谷子;干旱胁迫;复水处理;生理指标中图分类号:Q945;S515 文献标识码:A 文章编号:1673-260X(2023)09-0039-04谷子(Setaria italica L.)起源于我国黄河流域,属于禾本科植物黍亚科(Panicoideae)黍族(Paniceae)狗尾草属(Setaria)[1],在我国有8700多年的栽培史。
谷子是C4植物,具有生育期短、基因组小、营养丰富、适应性广等特点,是禾本科研究的模式作物,是我国北方的主要杂粮作物之一,分布在北方的干旱、半干旱地区。
干旱是众多非生物胁迫中严重影响农作物生长、代谢和产量的关键因素之一[2]。
植物在遭受干旱胁迫时,细胞内外渗透势、叶面卷曲、萎蔫程度等均受影响,在植物形态上表现显著并且激发包括超氧自由基(O2-)、过氧化氢等活性氧(reactiveoxygenspecies,ROS)的产生。
活性氧的产生会导致脂类、核酸以及糖类物质的损伤[3]。
摘要:可持续发展不仅是我国经济发展的正确道路,同时也是我国西北干旱地区农业发展的正确道路。
就实际情况而言,我国西北干旱地区的农业发展还存在很多的问题。
本文就我国西北干旱地区农业发展缓慢的原因,探究实现我国西北干旱地区农业可持续发展的对策。
关键词:西北干旱地区;农业;可持续发展;研究一、我国西北干旱地区农业发展缓慢的原因1.水资源缺乏。
由于西北地区的地理位置和环境,导致西北地区降雨量少,如黄土高原、陕西关中、新疆、青海等地区;同时,降雨量不足的西北地区,雨水蒸发量还很大,地表和地下水资源都很缺乏,这对农业的发展无疑是致命的打击。
2.环境问题严重,自然灾害多。
西北干旱地区的环境存在很多水土流失、土地沙漠化等问题;而且由于自然森林资源遭到破坏、水质污染严重等问题,就更给西北干旱地区带来了频繁的自然灾害。
这也是制约西北干旱地区农业发展的原因之一。
3.观念落后,规模单一。
以为西北地区的交通、科技等本就不发达,所以农业的发展都还停留在单一经营的局面,加之,很多农户的经营理念落后、经营方式落后、经营品种单一等,农业的发展一直处于停滞不前的状态。
另外,西北地区的农业跟缺乏跟中东部等发达地区的合作和交流,导致其农业的发展具有局限性。
4.基础设施薄弱,资金缺乏。
由于我国的发展战略是重点发展东部,因此,我国西北地区的发展一直就处于比较落后的状态。
虽说改革开放后,西北地区有所发展,但跟东部地区相比还是有一定的差距。
另外,西北地区对农业的投资也明显弱于对工业的投资,这就导致西北干旱地区的农业基础设施薄弱,发展自然也就缓慢了。
二、实施我国西北干旱地区农业可持续发展的对策(一)加强对农业发展的投资长期以来,我国对农业的投资都相对比较少,这就造成农业的发展很难有明显的成效,对于西北干旱地区的农业而言更是如此。
因此,西北地区的政府应该加强对农业发展的投资。
可以从三个方面着手:(1)注重农业资源的合理利用,避免产生污染,破坏土地的质量。
收稿日期:联系方式:全球高温干旱对粮食生产和市场的影响分析与展望王盛威,张永恩,邸佳颖(中国农业科学院农业信息研究所/农业农村部农业监测预警技术重点实验室北京100081)摘要:在气候变化的大背景下,极端高温、海洋热浪和部分区域农业与生态干旱的频率、强度、持续时间和影响范围都在增加。
2023年以来,欧洲以及阿根廷、印度、澳大利亚、美国等多国多地都出现了异常高温或旱情。
总体来看,2022/23年度,全球粮食生产和市场受干旱影响不大,国际粮价总体保持继续回落走势,主要是因为全球粮食产量已经基本形成,其中,小麦、大豆产量均创历史新高,稻米产量虽有下降但仍居高位,玉米产量有所下降。
预计2023/24年度全球粮食产量仍将处于高位,市场价格有望走低,但不确定性依然较大,主要是厄尔尼诺极端天气可能出现,届时全球极端暖、极端旱、极端湿的事件都将明显增加,中国也可能出现长时间高温及降水天气。
未来需密切跟踪主产国极端天气变化情况,加强极端天气对国内外粮食生产和市场影响的分析与研判。
关键词:粮食生产;高温干旱;厄尔尼诺;展望开放科学(资源服务)标识码(OSID):Impact Analysis and Outlook of Global High Temperatureand Drought on Grain Production and MarketWang Shengwei,Zhang Yongen,Di Jiaying(Agricultural Information Institute,Chinese A cademy of Agricultural Sciences;Key Laboratory ofAgricultural Monitoring and Early Warning Technology,Ministry of Agriculture and Rural A ffairs,Beijing 100081)In the context of climate change,the frequency,intensity,duration,and impact of extremehigh temperatures,ocean heatwaves,and agricultural and ecological droughts in some regions are increasing.Since 2023,many countries and regions such as Europe,Argentina,India,Australia,and the United States have experienced abnormal high temperatures and/or droughts.Overall,in 2022/23,global grain production and markets were not significantly affected by drought,and international grain prices maintained the declining trend.This is mainly because global grain production has been largely materialized,with wheat and soybean yields reaching historic highs,and rice production also remaining high despite a decline,while corn production declining moderately.It is expected that global grain production will remain at a high level in 2023/24,thus likely leading to market prices decrease.However,there is still significant uncertainty,mainly due to the possible occurrence of El Ni o,which would2023-06-18王盛威,E-mail :********************。
粮食生产与可持续发展世界粮食日的重要议题粮食生产与可持续发展世界粮食日的重要议题粮食是人类生活的基本需求之一,是使社会得以稳定发展的重要支撑。
然而,随着全球人口的不断增长和资源的有限性,保证粮食生产的可持续发展成为了世界各国面临的重要议题。
每年的10月16日被联合国粮食及农业组织正式宣布为世界粮食日,旨在加强对粮食生产与可持续发展的重要性的认识。
下文将从资源利用、气候变化与环境保护、农业创新等角度探讨粮食生产与可持续发展的重要议题。
一、资源利用保证粮食生产的可持续发展,首先需要合理利用有限的资源。
土地、水和能量是农业生产中必不可缺的要素,但目前都面临着严重的压力。
为了提高粮食生产的效率和可持续性,推动农业的绿色发展,各国需要加强土地资源的保护与管理,合理规划农田的利用方式,提高土地的肥力和水分保持能力。
同时,要注重水资源的合理利用,推广精细灌溉技术,减少水资源的浪费。
此外,应积极推动农业生产和供应链中的节能减排,降低农业对能源的依赖,以减少对环境的不利影响。
二、气候变化与环境保护气候变化对粮食生产的影响日益显现,极端天气事件的增加频率不仅给农业生产带来了巨大困扰,也影响着粮食的质量和产量。
为了应对这一挑战,各国要加强对气候变化的研究和监测,及时采取适应措施,例如推广耐旱、耐寒、抗灾的新品种,提高对自然灾害的应对能力。
同时,要注重环境的保护,保护生态系统的完整性,防止土地的退化和水源的污染。
只有在环境可持续的基础上,才能实现粮食生产的可持续发展。
三、农业创新农业创新是保证粮食生产持续发展的重要手段。
现代科技的应用能够提高农业生产的效率和产量,降低对资源的依赖。
例如,遗传改良技术可以培育出高产、抗病虫害的新品种,作物科学管理技术可以提高作物的利用率,无人机和遥感技术可以实现精准农业管理。
此外,数字化技术的应用也能够提高农业生产的智能化水平,促进农业现代化的发展。
各国应加大对农业科技研究和创新的投入,引导农民积极采用新技术,提高农业生产的可持续性。
干旱胁迫对水稻产量和干物质积累的影响【摘要】干旱是影响水稻生长和产量的重要因素之一。
本文通过文献综述和实验结果分析,探讨了干旱胁迫对水稻产量和干物质积累的影响。
研究发现,干旱胁迫会导致水稻产量显著降低,同时也会影响水稻的干物质积累。
通过机制分析,发现干旱胁迫会影响水稻的生理代谢过程,导致生长减缓和养分吸收能力下降。
水稻在干旱胁迫下会采取一系列适应策略,如增强根系生长和提高抗旱胁迫的相关基因表达。
在本文对干旱胁迫对水稻产量和干物质积累的综合影响进行了评价,并展望了未来的研究方向,为进一步探讨干旱胁迫下水稻生长的机制和改良措施提供了参考。
【关键词】水稻、干旱胁迫、产量、干物质积累、影响机制、适应策略、改良措施、综合影响评价、研究展望1. 引言1.1 研究背景水稻是我国的主要粮食作物之一,其产量直接关系到国家粮食安全和农民的经济收入。
全球气候变化日益显著,干旱是一种常见的自然灾害,也是水稻生产中常见的胁迫因素之一。
干旱胁迫会严重影响水稻的生长发育,导致产量减少和干物质积累受限。
深入研究干旱胁迫对水稻产量和干物质积累的影响,探讨其影响机制和适应策略,以及改良措施的研究对于提高水稻产量和抗逆能力具有重要意义。
随着科技的不断发展和研究方法的不断创新,人们对于干旱胁迫对水稻的影响有了更深入的认识。
目前关于干旱胁迫对水稻产量和干物质积累的综合影响的研究还较为有限,存在一定的研究空白和挑战。
有必要开展更深入的研究,从根本上揭示干旱胁迫对水稻的影响机制,探讨水稻在干旱胁迫下的适应策略,并提出有效的改良措施,为提高水稻产量、改善水稻抗逆能力和保障粮食安全提供科学依据。
1.2 研究意义干旱是全球范围内的一个严重自然灾害,对农作物的生长和产量造成了严重影响。
水稻作为世界上主要粮食作物之一,其受干旱胁迫的情况尤为突出。
研究表明,干旱胁迫会导致水稻的产量减少,干物质积累减缓,从而影响粮食供应和农业生产。
深入研究干旱对水稻产量和干物质积累的影响,探讨影响机制以及寻找适应策略和改良措施,对于提高水稻抗旱能力和生产性能,保障粮食安全具有重要意义。
中国农业旱灾承灾体脆弱性诊断与区域可持续发展
1中国旱灾的分布规律?
中国旱灾格局呈现出西部旱灾少,东部旱灾多,中部旱灾重,北方重于南方的空间分异规律。
2.承灾体的脆弱性对灾区起什么影响作用?
承灾体脆弱性的高低会起到“放大”或“缩小”灾情的作用。
诊断农业旱灾系统脆弱性,主要是对农业系统易于遭受干旱影响,导致作物减产、农民收入减少、食物短缺和再生产能力下降的性质做出判断和评价,降低承灾体的脆弱性是抗灾减灾的重要途径。
1中国旱灾的特点
中国旱灾频繁、范围广、持续时间长,是造成农业经济损失最严重的气象灾害
2全国受旱面积和受旱成灾面积呈上升趋势的背景
近50年来,随着社会经济发展和人口膨胀,水资源短缺现象日趋严重,在全球变暖和北方干旱化的背景下,全国受旱面积和受旱成灾面积呈上升趋势
3. 探讨农业旱灾承灾体脆弱性形成有什么意义?
探讨农业旱灾承灾体脆弱性形成和区域可持续发展的对策,可以为农业旱灾的防御和政府减灾决策提供科学依据
4农业旱灾脆弱性的评价的意义
依据对农业旱灾脆弱性的评价,明确建立农业旱灾的预警模型,以正确指导区域政府和社会系统提高防御农业旱灾的能力。
由此可以看出,
在农业旱灾灾情形成过程中,客观评价其脆弱性的作用,对全面理解农业旱灾灾情形成机制,为防御和减轻农业旱灾有着十分重要的作用。
5.人类的资源开发会与自然灾害产生有什么关系?
人类对自然资源开发利用不仅获得财富,同时也诱发灾害,而且还可能放大或缩小灾
情,提出了人类适应灾害的“调整模型”。
I.J. Engineering and Manufacturing, 2011, 6, 80-86Published Online December 2011 in MECS ()DOI: 10.5815/ijem.2011.06.12Available online at /ijemA Study on Sustainable Development of Grain Production Coping withRegional Drought in ChinaFengying Xu, Zhen Chen, Changyou Li, Ce Xu, Jieyu Lu, Yi OuKey Laboratory of Key Technology on Agricultural Machine and Equipment Ministry of Education, (South China Agricultural University), Guangzhou 510642, P.R. ChinaAbstractThe sustainable development of grain production is a necessary condition for Chinese rapid economic development, which is directly related to people's livelihood and national security. This paper analyzed the frequent occurrence causes of regional drought in China, emphatically enumerated the North-South imbalance of precipitation distribution in time and space, the excessive tillage and grazing and vegetation damage, the hydro-agricultural infrastructure aging and the rapid urbanization diverted for agricultural water resources, which impact the sustainable development of grain production, then proposed some countermeasures coping with frequently regional drought crisis: strengthen the protection of forest vegetation, the scientific planning of planting structure, and the balance regulation of urban industrial water and grain irrigation water, surface water and ground water and of the water allocation between the administrative region, and solve the discharge of sewage purification and desalination technologies, thus establish an integrated balance system of total supply and regional control of grain irrigation water, so as to continuously perfect the durable and stable supply of grain in China.Index Terms: Grain production; regional drought; sustainable development; water resources; grain irrigation water.© 2011 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science.1.IntroductionAs the saying going, people regard food as their prime want, food is the most basic material for human life. The sustainable development of grain production is the essential condition for rapid economic development, which is directly related to people's livelihood and national safety [1-2]. William Engdahl In the book "Seeds of Destruction: The Hidden Agenda of Genetic Manipulation" has ever sharply presented that "Control oil and you * Corresponding author.E-mail address: xu_fy@control nations; control food and you control the people." [2]. Because of the large population base in China, the sustainable development of self-sufficiency in grain production has an important social significance. Nowadays, Chinese population is approximately 1.3 billion, it is supposed that the direct and indirect consumption dosage of per-capita were 400-500 kilograms, the requirement of annual grain would reach 5 million tons and it only could be balanced the Chinese grain production [3]. With the increase of urbanization speed, the area of farmland in China continues to decline and it is approaching the red line of the farmland’s area that is about 18 billion, plus the frequent occurrence of regional drought, which has a great impact on the sustainable development of Chinese grain production [4]. Grain production volume has fluctuated on the balance line of about 5 million tons for many years. With the increase of population, if China has 1.6 billion people, the requirements of Chinese grain will reach 640-800 million tons [5], the gap between requirement and provision showed that Chinese grain production need rising steadily 30% to 60% in our country based on the total grain production at present, which will make a greatly rigid pressure on the existing grain production of our country and make a higher request for the grain unit yield [6].In present, although there is great progress of in unit yield increasing effect and plants of the grains in china, the potential of sustainable development has been restricted deeply because of the resource environment, especially by the lack of agricultural water resources. From 1980 to now, agricultural water represented in water use in entire country was dropping yearly, huge amounts of farmland water was replaced by the urban industry and water for life and the drought area in agriculture is in accelerating trend [7-8]. Fig.1 showed the contrast of average grain output, arable land and annual average dry area. There is huge loss because of the drought in grains, and it makes a reduction in production of 15 billion to 20 billion kilograms and it accounts for about 5% in the average production of the whole country.As the aggravation of global warming, the ecological area of grain farmland worsens deeply such as the lack of irrigation water in grain, the pollution in water getting serious, more and more droughts in different areas and the continuous reduction of production. In present, the areas in droughts in our country reach 0.5 billion mu, is 3 times of that in 50’s in last century [8-9]. There are huge pressure in water for irrigation and fighting the droughts in terms of the grain production system of weak foundation. To make sure the sustainable development in grains, to decrease the loss of grain production in drought areas, and to solve the difficult problems in self-support and self- provision in the future, we will discuss the causes by the frequently droughts in areas to restrict the sustainable development in grains and give the four safeguard measures which need to be valued in terms of the above causes.Fig.1 Contrast of annual average grain yield, annual average cultivated area and annual average dry area.2.The Cause Analysis of Regional Drought Restricting Grain Production and SustainableDevelopmentA. Imbalance of The Temporal and Spatial Distribution of Farmland and Water RecourseOur country is a country that has serious regional water shortage problem. Available freshwater and farmland resources space-time distribution is extremely coordination, and inter-annual variability. At present, the amount of the available surface water and the groundwater freshwater is totally to 11,000 billion cubic meters, including groundwater resource for 2000 billion cubic meters. The per-capita water resource is only 800 cubic meters [9-10]. 70-90% of our country annual precipitation concentrates in June to September.The total annual precipitation become varies greatly and the extreme dry climate occurs frequently. The atmospheric circulation, sea-land position and terrain, hypsography and other factors influence the precipitation. China water resources distribution form a pattern that the south is rich and the north is poor. In the Yangtze river basin and the south of its cultivated land only accou nt for the country’s cultivated land38%, but their water resources account for the national water resources more than 81%. However Huai river basin and its northern region water resources only account for the national water resources 19%, In the northern food planting area whose water and soil resources allocation proportion is very unbalanced, agricultural water is very scarce. More than half of cultivated area half is in arid and semiarid, the water resources per capita is only 300 cubic meters, which is only more than 20-80 cubic meters of the minimum water requirement per mu rice and wheat [11]. Because of the extreme lack of agricultural production of irrigation water resources, food production process is undue dependent on groundwater resource, it has led to the transition of the transition of resources of the groundwater exploitation and result in the over mining in groundwater resources. In present, groundwater resources have been exploit to 80 billion cubic meters and they are represented 40% of available groundwater resources. This phenomenon leads to many problems such as soil salinization and land collapse etc., and the grain production sustainable development suffers the serious challenges [12-13].B. The Serious Degeneration of The Regional Ecological Environment in The RuralThe area of forest per capita is only 1/3 while grass area per capita is 1/2 in our country of the average level in the world. In recent years, because of the over logging, cultivation and herding, deforestation, the grassland and forest in our country has been roughly destroyed, it aggravates the land load and destroys the native vegetation in agricultural ecological area. Currently, there are 440khm2 woodland being transferred to non-woodland in our country every year, 1654khm2forestland transfer to non-forest land, shrubbery and open forest. The degeneration of lawn is about 2 million hectare, the area of degeneration reaches up to 85 % [9-10]. The over destroy of the native vegetation lead to the declining in natural water storage and regulation ability noticeably. It also changes the conditions of raining in microclimate in areas and the self-restraint ability of vegetation surface is decreasing. What’s more, the drought disaster in areas takes place frequently and he avily and it forms a vicious circle. The water loss and soil erosion is more and more heavily, as the area of it come to 3.56 million square kilometer, it represents 37% of nation total areas and the soil erosion is about 5 billion tons every year while the degeneration rate of arable land is over 40%[9,12]. The ecological imbalance in huge acreage and soil erosion has worsened the ecological environment in rural areas obviously and it may accelerate the desertification eventually.In recent years, over exploit in lakes and wetlands to supply the lacking grain arable land has worsen the ecological environment in grain production areas. The lakes and wetlands are storehouse of water in river basins; they take the responses of storing and divulge rivers, adjusting the balance of discharge of stream in river basins, and to achieve the irrigation and controlling flood in grain production. Because of the inadequacy exploit and farming, the lakes and wetlands have degenerated totally now. From the establish of our country, there were more than one third lakes put under the plough, and it reached more than 13 thousand square hectares and about 1000 lakes died out due to the exploit. The sluice volume of lakes exploit has decreased more than 50 billion cubic meter, it is as 1.3 times as the whole sluice volume of five potable water lakes while as 5.8 times as storage capacity of The Three Yangtze River Gorges. The decline of storage capacity in natural lakes decreases the ability of drought storage and adjustment and it also increases the pressure and costs of rural artificial water conservancy facilities [15-16].C. The Weakness of Irrigation and Regulation Capacity of farmland water conservancy worksWater conservancy is always called “the life vein of grain production”. In China, rural infrastructure facilities on water conservancy have lacked updating maintenance for years, which resulted in poor ability at combating drought. In recent years, more funds were put into the water conservancy, but as they were chiefly used in some economical project construction such as the hydroelectricity, it was still a seriously inadequate input for the rural infrastructure facilities repairing and replenishing. Currently, about 55% of cultivated lands don’t have irrigation facilities yet in China, and some irrigation facilities, which are being in use, were mostly built in the 1950s-1960s. Being restricted by economic and technological conditions at that time, some irrigation projects were low standard and with insufficient supporting [17]. After several decades of running, because of long time soil erosion and loss of large-scale dredging, many reservoirs and irrigations have already been aged, gross disrepair, heavy silting, pervious and overgrown. A marked drop in irrigation ability of agricultural water conservancy facilities greatly influenced the drought-relief measures for grain production under the frequent area drought disaster.D. Occupancy of Urban Industrial and Living Water to The Agricultural Irrigation WaterWith the rapid development of China economy, the process of urbanization was changing up and now it has been up to 40%. Due to the consistently enhanced urbanization level, the urban industrial and living water consumption increased sharply, and lots of agricultural water was occupied by the various ways. From 1980 to 2004, including the sharing groundwater usage, the agricultural water could only keep within 350 billion cubic meters for years. The proportion of agricultural water demand has decreased from 80.4% in 1980 to 66.4% in 2004 g[17-18]. Compared to the remarked drop of the agricultural consumption rate, urban industrial and living water consumption have significantly increased 3.3 times, as shown in Fig. 2. While urban industrial and living water consumption increased sharply, it brought enormous quantities of drainage and sewage. Every year, the raw sewage from city or industrial and mining enterprises amounted to 30-40 billion cube meters. The less cleaned and treated sewage has not only polluted 20%-30% water bodies of seven great rivers and five great lakes seriously, but decreased the quantity and quality of agricultural irrigation water and aggravated the already serious lack of water resource. In China, the existing grain production has been appearing seriously in an unfavorable condition that lacked technology and competed badly in water resource using. In the presence of the continuous exploding area drought, the whole society has already paid dearly for it.3.SolutionsA.Spatial Allocation and Management of Water ResourcesAfter years of the policy support, the yield per unit increasing technique and the application of water-saving irrigation in our country’s grain production has been got a large achievement. However, there still exist some shortages, such as the unmatched relationship between the responsibility and the benefit of space-allocation, the inadequate standards of the water resources’ utilization, and the uncertain management of country’s laws and regulations, and so on [18-19]. These problems have been hanging by governments at all levels, scientists and technicians for the past many years. The uninterrupted exploding of regional droughts has intensified the difficulties of grain irrigation water space-allocation and management, which became bottleneck for the sustainable development of country’s grain production. In order to ensure the sustainable development of grain production, applications of irrigation water resource should be reformed: planning and dispatching the surface and ground water resources scientifically; allocating the municipal water, industrial water and agricultural water reasonably. And most importantly, focusing on tackling the shortage of water for resource in the north area and water for quality in the south: encouraging economizing water; increasing coefficient of the repeated cycle utilization of municipal water and industrial water; increasing the proportion of the water pollution purifiedtreatment and utilization of seawater desalinization to guarantee the quantity and quality of agricultural water resource.Fig.2 Contrast between urban industrial and living water and agricultural irrigation water.B. Vigorous Recondition of Rural Water Conservancy FacilitiesTo solve the regional arid, the rural water conservancy facilities, which is what grain production depend on, should be put into much favorable inputs. Designing, planning and maintaining the rural conservancy facilities already had reasonably through the power of country, local governments, enterprises and scientific research, and then gathering manpower and material resources to dredge slit and refit facilities in villages every three or five years. Digging deep reservoirs, dredging water channel and irrigation channel; constructing underground water-saving system in arid and semi-arid area, updating and replenishing underground water system in time to form a full-control circle system, thus the comprehensive water storage and transfusion capability of natural waters and artificial water conservancy facilities can be promoted. Based on above, constantly strengthening the protection of the forest and lawn vegetation, resuming the original lakes and marshes, protecting the regional ecological environment and decreasing the fees of artificial water conservancy facilities.C. Development of The Water Saving Irrigation Agriculture and Processing TechniqueDeveloping the water-saving irrigation technique is an important way to solve the shortage of irrigation water when the droughts come. It should actively transform the irrigation from extensive type to intensive type in grain production, and then combine with science and technology to develop comprehensive water-saving technique to increase the coefficient of agricultural irrigation water utilization from 0.3-0.4 to 0.5-0.6 and coefficient of natural precipitation to 10%-30% [20-23]. It can greatly elevate the grain production space. Nowadays, under the background of lacking capital and technique, household contract in our country is in need of immediate helps and demonstrations from governments and enterprises to lower the investment risks in the application of water-saving technique.D. Forecast and Guidance of The Grain Planting Construction on Solving The Regional DroughtLower technological level and la gging science and technology are the characteristics of our country’s rural grain production. Farmers are more at the mercy of the forces of nature [24-25]. However, because the capability of weather predicting is weak, it’s relatively blind for them to ch oose the grain planting construction. In order to avoid the large impact caused by the regional arid, in the pre-production, the research powers from multi-departments can be concentrated to make forecasts and guidance on the construction. By concentrating the scientific and technological advantages of state scientific research units, meteorological department, hydraulic monitoring and agricultural department efficiently, it can predict and guide farmers to adjust the planting construction. In times of regional drought, introducing the drought resistance crop not only can guarantees the total supply of grain production, but also adjust the variety and the structure of the grain supply. They all help to achieve the sustainable development with the multi-variety grains condition.4.ConclusionsBased on our growing population, the problem solution of self-sufficiency and stable of grain supply is the important content of public security and persistent development. There are many reasons that result in frequent droughts in regions and huge reductions in grains such as temporal-spatial distribution imbalance in the precipitation from the south to north, over farming and grazing and damage in vegetations, the aging and lifting silt of agricultural water conservancy works and the rapid development of urbanization. In this situation, it produces enormous pressure in the sustainable development in grains production and becomes the most bottleneck problem of the social stability and rapid development in our country. Facing the situation of poor agricultural technology and capital, frequent regional droughts as well as weak grain production, it is need to use the domestic recourse, synthesize various techniques; solve the problem of regional frequent drought; protect the forest and vegetation; adjust the structure of the plant; balance the distribution of industrial water, irrigation water, surface water, underground water resources and the administrative regional water; improve the level of sewage purification and sea water desalination engineering technology and make our country strengthen national sustainable grain production ability when the regional drought happen. This is an arduous and urgent project, and it demands values from all circles and practices to be prefect gradually.AcknowledgmentThis work is supported by NSFC Grant #31071583 to F.Y.XU.References[1]Li Yue, E Liu. "Food tsunami" to alert Chinese food security. China National Conditions and Strength.2009, no.1, pp.8-11 (in Chinese).[2]Frederick William Engdahl. The Environmental Food Crisis, Intellectual Property Right Press. 2009.[3]Yuemin Hu. China's policy options of food security for 1.3 billion population, Popular Tribune. 2006, no.1,pp.28-30 (in Chinese).[4]Zhiming Feng, Baoqin Liu, Yanzhao Yang. A Study of the Changing Trend of Chinese Cultivated LandAmount and Data Reconstructing: 1949-2003.Journal of Natural Resources. 2005,no.1, pp.35-42.[5]China Statistical Yearbook 2009. China Statistical Publishing House. 2009.[6]Hongbing Lai. The output volatility and structural analysis of Chinese grain. Journal of AgrotechnicalEconomics. 2009, no.5, pp.91-96 (in Chinese).[7]Jun Wang. Utilizable Precipitation Variations and Its Effects on Runoff in the Upper Reaches of the YellowRiver Since 1986. Journal of Irrigation and Drainage. 2009, no.4, pp.107-110.[8]Dalu Fan. Strategy for China’s Grain Security in The 21’St Century Based on The Reality of Shortage InWater Resources. Journal of Southwest Agricultural University. 2000, Vol.22, no.3, pp.273-277.[9]Ai Wang, Lianxi Sheng, Ke Li.et al. Analysis of present situation of water resources and countermeasuresfor sustainble development in China. Journal of Water Resources and Water Engineering. 2008,Vol.19, no.3, pp.10-14.[10]X uefeng Wang, Zhongjing Wang, Shujun Zhang.et al. The Stage Division and Characteristic Analysis ofWater Use. Journal of Irrigation and Drainage, 2009, Vol.27, no.5, pp.25-29.[11]H uiyan Gao. Research on Optimization Model for Cropping Structure and Agricultural Water Resources inWell Irrigation Area in North China Plain, Agricultural University of Hebei, 2005.[12]X iangfu Li, Shaoli Wang, Shuxing Fang. et al. Study on the Movement and Controlling of Soil Salts inYinbei Region. Irrigation and Drainage, 2001, no.3, pp.41-44.[13]Y ushun Zhang, Guoqiang Pan. Irrigation Water Quota for Staple Crops in Henan. Journal of Irrigation andDrainage, 2009, no.5, pp.67-69.[14]Y uejin Peng. Urbanization impact on water demand. 2002 conference proceedings of water resources andwater environment carrying capacity. 2002.Weihai in Shan dong province (in Chinese).[15]Z higuang Li, Current condition and dynamic changes of soil erosion in China. China Water Resources,2009, no.7, pp.8-11.[16]C hunman Zhang, Peiqing Liu, Hailei Bu. Mathematical Model of Non-steady Water-sand Movable Bed ofSedimentation Reservoir. Journal of Irrigation and Drainage. 2009, Vol.28, no.4, pp.96-99.[17]K eshan Peng. Plagued the 21st century economic development in China's water problems. Social ScienceFront.1999, no.1 (in Chinese).[18]D adao Lu, Danian Ye, Shimou Yao. Comprehensive measures to be adopted for curbing the aggressive styleand space out of control trend on urbanization. Science News, 2007, no.8, pp.4-9 (in Chinese).[19]J iabin Lin, Water Resources Management Structure in Japan. China Water Kesources. 2002, no.10, pp.160-163.[20]X iangzhen Chen, Exploring new finance mechanism for developing irrigation and drainage & water supplyfacilities in Fujian Province. China Water Resources, 2008, no.17, pp.34-35.[21]H ongyuan Fang, Shengwei Gan, Yingying Yu. Regional drought characteristics in China and somecountermeasures. Advances In Science and Technology of Water Resources. 2005,Vol.25, no.5, pp.16-19. [22]T ianxiang Zheng, Xiangru Tang, Xiwen Luo. Effect of Water-saving Irrigation on the Yield Formation ofPrecision Hill-direct-seeding Rice [J]. Journal of Irrigation and Drainage, 2009, no.5, pp.99-101. [23]D i Xu, Shihong Gong. Technical supporting system for water saving orientated rehabilitation of largeirrigation districts. Journal of Hydraulic Engineering, 2007,Vol.38, no.7, pp.806-811.[24]Z hang Yuan, Yuexian Xu, Aijun Liu. Recent Changes of the Planting Structure of Cash Crops in China.Review of China Agricultural Science and Technology, 2005, Vol.7, no.5, pp.39-45.[25]X iling Zhao, Hao Feng, Pute Wu. Research Progress and R & D Focus of Modern Rainwater HarvestingTechnology. Journal of Irrigation and Drainage, 2009, Vol.28, no.4, pp.1-5.。