18学年高中物理第一章电磁感应章末复习课检测粤教版选修3_2
- 格式:doc
- 大小:554.02 KB
- 文档页数:12
高中物理学习材料(鼎尚**整理制作)第二学期高二年级物理(选修3-2)第一章《电磁感应》试题第一部分 选择题(共60分)一、单项选择题(共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项正确,选错或不答的得O 分。
) 1、下面说法正确的是A 、自感电动势总是阻碍电路中原来电流增加B 、自感电动势总是阻碍电路中原来电流变化C 、电路中的电流越大,自感电动势越大D 、电路中的电流变化量越大,自感电动势越大2、如右图示,用均匀导线做成的正方形线框,每边长为0.2米,正方形的一半放在和纸面垂直向里的匀强磁场中,当磁场以每秒10T 的变化率增强时,线框中点a 、b 两点电势差是:A 、Uab =0.1vB 、Uab =-0.2vC 、Uab =0.2vD 、Uab =-0.1v3、如图,匀强磁场存在于虚线框内,矩形线圈竖直下落。
如果线圈受到的磁场力总小于其重力,则它在1、2、3、4位置时的加速度关系为A 、a 1>a 2>a 3>a 4B 、a 1=a 3 >a 2>a 4C 、a 1=a 3>a 4>a 2D 、a 4=a 2>a 3>a 14、如图,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是 A 、同时向两侧推开 B 、同时向螺线管靠拢C 、一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D 、同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断5、“磁单极子”是指只有S 极或N 极的磁性物质,其磁感线的分布类似于点电荷的电场线分布.物理学家们长期以来一直用实验试图证实自然界中存在磁单极子,如图所示的实验就是用于检测磁单极子的实验之一。
abcd 为用超导材料制成的闭合回路,该回路旋转在防磁装置中,可认为不受周围其他磁场的作用。
设想有一个S 极磁单极子沿abcd 的轴线从左向右穿过超导线圈,那么回路中可能发生的现象为A 、回路中无感应电流B 、回路中形成持续的abcda 流向的感应电流C 、回路中形成持续的adcba 流向的感应电流D 、回路中形成先abcda 流向后adcba 流向的感应电流6、如图,一闭合直角三角形线框以速度v 向右匀速穿过匀强磁场区域。
第一章电磁感应第一节电磁感应现象第二节产生感应电流的条件A级抓基础1.如图所示实验装置中用于研究电磁感应现象的是( )解析:选项A是用来探究影响安培力的大小因素的实验;选项B是研究电磁感应现象的实验,导体棒在磁场中做切割磁感线运动时观察电流表是否会产生感应电流;选项C是用来探究安培力与电流、磁感应强度的大小关系的实验,选项D是奥斯特实验,证明通电导线周围存在磁场.答案:B2.如图所示,线圈平面与条形磁铁的轴线垂直,现将线圈沿轴线由B点平移到A点,穿过线圈磁通量的变化情况是( )A.不变B.变小C.变大D.先变大,后变小解析:线圈在N极和S极附近时,磁场较强,磁感线较密,穿过线圈的磁感线较多,磁通量较大,而远离条形磁铁磁极附近,磁场变弱,磁感线较疏,穿过线圈的磁通量较小.故线圈在A处的磁通量比较大.线圈从B到A的过程中磁通量逐渐增大,C正确.答案:C3.如图所示,在水平匀强磁场中竖直放置一矩形线圈,线圈平面与磁场垂直,线圈绕其底边转过90°至水平位置的过程中,穿过线圈的磁通量的变化情况是( )A.变大B.变小C.先变大后变小D.先变小后变大解析:线圈在实线位置时,线圈与磁场垂直,穿过线圈的磁通量最大;线圈在虚线位置时,磁感线与线圈平行,没有磁感线穿过线圈,穿过线圈的磁通量为零,则当线圈由实线位置绕其底边转过90°至水平位置的过程中,穿过线圈的磁通量逐渐变小.故选B.答案:B4.如图所示,稳定的匀强磁场中有一金属圆环垂直于磁场放置,电键S可控制圆环的闭合与断开,下列各情况中能使圆环产生感应电流的是( )A.S闭合后一段时间B.S闭合后,磁场变强C.S闭合,再断开后一段时间D.S闭合后,环在磁场内平移解析:当穿过闭合回路的磁通量发生变化时,闭合回路中有感应电流产生,故选B.答案:B5.如图所示的器材可用来研究电磁感应现象,其中L1为原线圈,L2为副线圈.(1)在给出的实物图中,将实验仪器连成完整的实验电路.(2)闭合开关之前,应使滑动变阻器的滑动头P处于____端(选填“左”或“右”).解析:(1)探究电磁感应现象实验电路分两部分,电源、开关、滑动变阻器、原线圈组成闭合电路,电流计与副线圈组成另一个闭合电路;电路图如图所示.(2)由电路图可知,闭合开关之前,应使滑动变阻器的滑动头P处于右端,此时滑动变阻器接入电路的阻值最大.答案:(1)见解析(2)右B级提能力6.如图所示,在纸面内放有一条形磁铁和一个圆线圈时,下列情况中能使线圈中产生感应电流的是( )A.将磁铁在纸面内向上平移B.将磁铁在纸面内向右平移C.将磁铁绕垂直纸面的轴转动D.将磁铁的S级转向纸外,N极转向纸内解析:当在纸面内放有一条形磁铁和一个圆线圈时,圆线圈的磁通量为零,将磁铁在纸面内向上、向右平移,以及将磁铁绕垂直纸面的轴转动过程中,圆线圈的磁通量始终为零,磁通量没有变化,线圈中不能产生感应电流,A、B、C错;将磁铁的S极转向纸外,N极转向纸内的过程中,圆线圈的磁通量发生变化,线圈中产生感应电流,D对.答案:D7.磁通量是研究电磁感应现象的重要物理量,如图所示,通有恒定电流的导线MN与闭合线框共面,第一次将线框由1平移到2,第二次将线框绕cd边翻转到2,设先后两次通过线框的磁通量变化分别为ΔΦ1和ΔΦ2,则( )A.ΔΦ1>ΔΦ2B.ΔΦ1=ΔΦ2C.ΔΦ1<ΔΦ2D.无法确定解析:设线框在位置1时的磁通量为Φ1,在位置2时的磁通量为Φ2,直线电流产生的磁场在1处比在2处强,若平移线框,则ΔΦ1=Φ1-Φ2,若转动线框,磁通量是从线框的正反面穿过的,一正一负,因此,ΔΦ2=Φ1+Φ2,根据分析知:ΔΦ1<ΔΦ2,选项C正确.答案:C8.(多选)如图所示,表示了闭合回路的一部分导体在磁场中运动的情况.其中不会产生感应电流的是( )解析:产生感应电流的条件必须是穿过闭合电路的磁通量发生变化,题图中已经是闭合回路了,只要使得闭合回路的磁通量发生变化即可,闭合回路的一部分导体做切割磁感线运动时,闭合回路的磁通量一定发生变化,即产生感应电流,A、D导体切割磁感线,产生感应电流,B、C导体没有切割磁感线,没有感应电流,故B、C正确.答案:BC9.(多选)如图所示,通电直导线MN与闭合的矩形金属线圈abcd彼此绝缘,它们处于同一水平面内,直导线与线圈的对称轴线重合,直导线中电流方向由M到N.为了使线圈中产生感应电流,可行的方法是( )A.减弱直导线中的电流强度B.MN不动,使线圈上下平动C.MN不动,使线圈向右平动D.MN不动,使线圈向左平动解析:要使闭合线圈中产生感应电流,则穿过线圈的磁通量发生变化,在导线的右方的磁场是垂直向里,导线的左侧是垂直向外的,根据对称性可知,穿过线圈的磁通量为零,只减弱导线中的电流,磁通量仍为零,不可能产生感应电流,A错误;保持MN不动,使线圈上下平动,线圈中的磁通量为零,不产生感应电流,MN不动,使线圈向右平动或者使线圈向左平动,穿过线圈的磁通量发生变化,有感应电流产生,故C、D正确.答案:CD10.如图所示,环形金属软弹簧套在条形磁铁的中心位置,若沿其半径向外拉弹簧,使其面积增大,则穿过弹簧的磁通量将________(选填“增大”或“减小”或“不变”).解析:注意弹簧套所在处存在两个方向的磁场,即磁铁的内部磁场和外部磁场,它们各自产生正负不同的磁通量,总的磁通量等于两者绝对值之差.当拉大弹簧面积时,内部磁场的磁通量不变,而外部磁场的磁通量却增大,故Φ=|Φ内|-|Φ外|应减小.答案:减小11.矩形线框abcd的边长分别为l1、l2,可绕它的一条对称轴OO′转动,匀强磁场的磁感应强度为B,方向与OO′垂直,如图所示,初位置时线圈平面与B平行.求:图甲图乙(1)初位置时穿过线框的磁通量Φ0为多少?(2)当线框绕轴沿甲图所示方向转过60°时,磁通量Φ1为多少?这一过程中磁通量的变化量ΔΦ1为多少?(3)当线框绕轴沿图示方向由图乙中的60°位置再转过60°时,磁通量Φ2为多少?这一过程中ΔΦ2=Φ2-Φ1为多少?解析:(1)当处于图甲所示位置时,从俯视图图乙可以看出没有磁感线穿过矩形线框,故Φ0=0.(2)当绕轴(从上往下看)沿逆时针方向转动60°到a′d′位置时,线框与B的夹角为60°.所以Φ1=B·S sin 60°=32Bl1l2,ΔΦ1=Φ1-Φ0=32Bl1l2.(3)当再由a′d′位置逆时针转动60°到a″d″位置时,线框与B的夹角为120°,所以Φ2=B·S sin 120°=32Bl1l2,ΔΦ2=Φ2-Φ1=32Bl1l2-32Bl1l2=0.答案:(1)0 (2)32Bl1l232Bl1l2(3)32Bl1l20。
习题课:法拉第电磁感应定律的应用 ——两个公式的对比及电荷量的计算[学习目标] 1.理解公式E =n ΔΦΔt 与E =BLv 的区别和联系,能够应用这两个公式求解感应电动势.2.理解电磁感应电路中电荷量求解的基本思路和方法.一、E =n ΔΦΔt和E =BLv 的比较应用例1 如图1所示,导轨OM 和ON 都在纸面内,导体AB 可在导轨上无摩擦滑动,若AB 以5m/s 的速度从O 点开始沿导轨匀速右滑,导体与导轨都足够长,磁场的磁感应强度为0.2T .问:图1(1)3s 末夹在导轨间的导体长度是多少?此时导体切割磁感线产生的感应电动势多大? (2)3s 内回路中的磁通量变化了多少?此过程中的平均感应电动势为多少?答案 (1)53m 53V (2)1532Wb 523V解析 (1)夹在导轨间的部分导体切割磁感线产生的电动势才是电路中的感应电动势. 3s 末,夹在导轨间导体的长度为:l =vt ·tan30°=5×3×tan30°m=53m此时:E =Blv =0.2×53×5V =53V (2)3s 内回路中磁通量的变化量ΔΦ=BS -0=0.2×12×15×53Wb =1532Wb3s 内电路产生的平均感应电动势为: E =ΔΦΔt =15323V=523V.E =BLv 和E =nΔΦΔt本质上是统一的,前者是后者的一种特殊情况.当导体做切割磁感线运动时,用E =BLv 求E 比较方便;当穿过电路的磁通量发生变化时,用E =n ΔΦΔt 求E 比较方便.二、电磁感应中的电荷量问题例2 面积S =0.2m 2、n =100匝的圆形线圈,处在如图2所示的磁场内,磁感应强度B 随时间t 变化的规律是B =0.02t T ,R =3Ω,C =30μF ,线圈电阻r =1Ω,求:图2(1)通过R 的电流方向和4s 内通过导线横截面的电荷量; (2)电容器的电荷量.答案 (1)方向由b →a 0.4C (2)9×10-6C解析 (1)由楞次定律可求得电流的方向为逆时针,通过R 的电流方向为b →a ,q =I Δt =E R +r Δt =n ΔBS Δt R +r Δt =n ΔBSR +r=0.4C.(2)由E =n ΔΦΔt =nS ΔBΔt=100×0.2×0.02V =0.4V ,I =E R +r =0.43+1A =0.1A , U C =U R =IR =0.1×3V =0.3V , Q =CU C =30×10-6×0.3C =9×10-6C.1.求解电路中通过的电荷量时,一定要用平均感应电动势和平均感应电流计算.2.设感应电动势的平均值为E ,则在Δt 时间内:E =n ΔΦΔt ,I =E R,又q =I Δt ,所以q =n ΔΦR.其中ΔΦ对应某过程磁通量的变化,R 为回路的总电阻,n 为电路中线圈的匝数.针对训练 如图3所示,空间存在垂直于纸面的匀强磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B .一半径为b (b >a ),电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.当内、外磁场同时由B 均匀地减小到零的过程中,通过导线环截面的电荷量为( )图3A.πB |b 2-2a 2|RB.πB b 2+2a 2RC.πB b 2-a 2RD.πBb 2+a 2R答案 A解析 开始时穿过导线环向里的磁通量设为正值,Φ1=B πa 2,向外的磁通量则为负值,Φ2=-B ·π(b 2-a 2),总的磁通量为它们的代数和(取绝对值)Φ=B ·π|b 2-2a 2|,末态总的磁通量为Φ′=0,由法拉第电磁感应定律得平均感应电动势为E =ΔΦΔt,通过导线环截面的电荷量为q =ER·Δt =πB |b 2-2a 2|R,A 项正确.1.如图4所示,将一个闭合金属圆环从有界磁场中匀速拉出,第一次速度为v ,通过金属圆环某一截面的电荷量为q 1,第二次速度为2v ,通过金属圆环某一截面的电荷量为q 2,则( )图4A .q 1∶q 2=1∶2B .q 1∶q 2=1∶4C .q 1∶q 2=1∶1D .q 1∶q 2=2∶1 答案 C解析 由q =I ·Δt =ΔΦΔtR·Δt 得q =ΔΦR=B ·SR,S 为圆环面积,故q 1=q 2. 2.物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量.如图5所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n ,面积为S ,线圈与冲击电流计组成的回路电阻为R .若将线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q ,由上述数据可测出被测磁场的磁感应强度为( )图5A.qR SB.qR nS C.qR 2nSD.qR2S答案 C解析 q =I ·Δt =ER ·Δt =nΔΦΔtRΔt =n ΔΦR =n 2BS R,所以B =qR2nS.3.可绕固定轴OO ′转动的正方形线框的边长为L ,不计摩擦和空气阻力,线框从水平位置由静止释放,到达竖直位置所用的时间为t ,此时ab 边的速度为v .设线框始终处在竖直向下、磁感应强度为B 的匀强磁场中,如图6所示,试求:图6(1)这个过程中回路中的感应电动势; (2)到达竖直位置瞬间回路中的感应电动势.答案 (1)BL 2t(2)BLv解析 (1)线框从水平位置到达竖直位置的过程中回路中的感应电动势E =ΔΦΔt =BL2t .(2)线框到达竖直位置时回路中的感应电动势E ′=BLv .一、选择题(1~5题为单选题,6~8题为多选题)1.如图1所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )图1A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案 B解析 线圈中产生的感应电动势E =n ΔФΔt =n ·ΔB Δt ·S =n ·2B -B Δt ·a 22=nBa22Δt ,选项B 正确.2.如图2所示,将一半径为r 的金属圆环在垂直于环面的磁感应强度为B 的匀强磁场中用力握中间成“8”字形(金属圆环未发生翻转),并使上、下两圆环半径相等.如果环的电阻为R ,则此过程中流过环的电荷量为( )图2A.πr 2BRB.πr 2B2RC .0 D.34-πr 2B R答案 B解析 流过环的电荷量只与磁通量的变化量和环的电阻有关,与时间等其他量无关,ΔΦ=B πr 2-2·B π⎝ ⎛⎭⎪⎫r 22=12B πr 2,因此,电荷量为q =ΔΦR =πr 2B 2R .3.如图3甲所示,矩形导线框abcd 固定在变化的磁场中,产生了如图乙所示的电流(电流方向abcda 为正方向).若规定垂直纸面向里的方向为磁场正方向,能够产生如图乙所示电流的磁场为( )图3答案 D解析 由题图乙可知,0~t 1内,线框中的电流的大小与方向都不变,根据法拉第电磁感应定律可知,线框中的磁通量的变化率相同,故0~t 1内磁感应强度与时间的关系是一条斜线,A 、B 错.又由于0~t 1时间内电流的方向为正,即沿abcda 方向,由楞次定律可知,电路中感应电流的磁场方向向里,故0~t 1内原磁场方向向里减小或向外增大,因此D 项符合题意. 4.如图4所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中.两板间有一个质量为m ,电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场B 的变化情况和磁通量的变化率分别是( )图4A .正在增强;ΔΦΔt =dmgqB .正在减弱;ΔΦΔt =dmgnqC .正在减弱;ΔΦΔt =dmgqD .正在增强;ΔΦΔt =dmgnq答案 B解析 电荷量为q 的带正电的油滴恰好处于静止状态,电场力竖直向上,则电容器的下极板带正电,所以线圈下端相当于电源的正极,由题意可知,根据安培定则和楞次定律,可得穿过线圈的磁通量在均匀减弱;线圈产生的感应电动势:E =n ΔΦΔt ;油滴所受电场力:F =q Ed,对油滴,根据平衡条件得:q E d =mg ;所以解得线圈中磁通量的变化率的大小为ΔΦΔt =dmgnq.故B正确,A 、C 、D 错误.5.如图5甲所示,有一面积为S =100cm 2的金属环,电阻为R =0.1Ω,环中磁场的变化规律如图乙所示,且磁场方向垂直纸面向里,在t 1到t 2时间内,通过金属环的电荷量是( )图5A .0.01CB .0.02CC .0.03CD .0.1C答案 A解析 由法拉第电磁感应定律知金属环中产生的感应电动势E =ΔΦΔt ,由闭合电路欧姆定律知金属环中的感应电流为I =E R .通过金属环的电荷量q =I ·Δt =ΔΦR=100×10-4×0.2-0.10.1C =0.01 C .故A 正确.6.如图6所示,三角形金属导轨EOF 上放有一金属杆AB ,在外力作用下,使AB 保持与OF 垂直,从O 点开始以速度v 匀速右移,该导轨与金属杆均为粗细相同的同种金属制成,则下列判断正确的是 ( )图6A .电路中的感应电流大小不变B .电路中的感应电动势大小不变C .电路中的感应电动势逐渐增大D .电路中的感应电流逐渐减小 答案 AC解析 设金属杆从O 开始运动到如题图所示位置所经历的时间为t ,∠EOF =θ,金属杆切割磁感线的有效长度为L ,故E =BLv =Bv ·vt tan θ=Bv 2tan θ·t ,即电路中感应电动势与时间成正比,C 选项正确;电路中感应电流I =E R =Bv 2tan θ·tρlS.而l 等于闭合三角形的周长,即l =vt +vt ·tan θ+vt cos θ=vt (1+tan θ+1cos θ),所以I =Bv tan θ·Sρ1+tan θ+1cos θ是恒量,所以A 正确.7.如图7所示是测量通电螺线管内部磁感应强度的一种装置:把一个很小的测量线圈放在待测处(测量线圈平面与螺线管轴线垂直),将线圈与可以测量电荷量的冲击电流计G 串联,当将双刀双掷开关K 由位置1拨到位置2时,测得通过测量线圈的电荷量为q .已知测量线圈的匝数为n ,面积为S ,测量线圈和G 串联回路的总电阻为R .下列判断正确的是( )图7A .在此过程中,穿过测量线圈的磁通量的变化量ΔΦ=qRB .在此过程中,穿过测量线圈的磁通量的变化量ΔΦ=qRnC .待测处的磁感应强度的大小为B =qR nSD .待测处的磁感应强度的大小为B =qR2nS答案 BD解析 由E =n ΔΦΔt ,E =IR ,q =I Δt ,得q =n ΔΦR ,得ΔΦ=qRn ,B 正确;ΔΦ=2BS ,得B=qR2nS,D 正确. 8.如图8所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列说法正确的是( )图8A .感应电流方向不变B .CD 段直导线始终不受安培力C .感应电动势最大值E m =BavD .感应电动势平均值E =14πBav答案 ACD解析 在闭合回路进入磁场的过程中,通过闭合回路的磁通量逐渐增大,根据楞次定律可知感应电流的方向始终为逆时针方向,A 正确.根据左手定则可判断,CD 段受安培力向下,B 不正确.当半圆形闭合回路一半进入磁场时,这时有效切割长度最大为a ,所以感应电动势最大值E m =Bav ,C 正确.感应电动势平均值E =ΔΦΔt =14πBav ,D 正确. 二、非选择题9.如图9甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d =0.5m .右端接一阻值为4Ω的小灯泡L ,在CDEF 矩形区域内有竖直向上的匀强磁场,磁感应强度B 按如图乙规律变化.CF 长为2m .在t =0时,金属棒ab 从图示位置由静止在恒力F 作用下向右运动到EF 位置,整个过程中小灯泡亮度始终不变.已知ab 金属棒电阻为1Ω,求:图9(1)通过小灯泡的电流; (2)恒力F 的大小; (3)金属棒的质量.答案 (1)0.1A (2)0.1N (3)0.8kg解析 (1)金属棒未进入磁场时,电路总电阻R 总=R L +R ab =5 Ω 回路中感应电动势为:E 1=ΔΦΔt =ΔBΔtS =0.5 V 灯泡中的电流为I L =E 1R 总=0.1 A. (2)因灯泡亮度不变,故在t =4 s 末金属棒刚好进入磁场,且做匀速运动,此时金属棒中的电流I =I L =0.1 A恒力大小:F =F 安=BId =0.1 N.(3)因灯泡亮度不变,金属棒在磁场中运动时,产生的感应电动势为E 2=E 1=0.5 V 金属棒在磁场中的速度v =E 2Bd=0.5 m/s 金属棒未进入磁场时的加速度为a =v t=0.125 m/s 2故金属棒的质量为m =Fa=0.8 kg.10.如图10所示,面积为0.2m 2的100匝线圈A 处在磁场中,磁场方向垂直于线圈平面.磁感应强度B 随时间变化的规律是B =(6-0.2t ) T ,已知电路中的R 1=4Ω,R 2=6Ω,电容C =30μF ,线圈的电阻不计,求:图10(1)闭合S 一段时间后,通过R 2的电流大小及方向.(2)闭合S 一段时间后,再断开S ,S 断开后通过R 2的电荷量是多少?答案 (1)0.4A 由上向下通过R 2 (2)7.2×10-5C解析 (1)由于磁感应强度随时间均匀变化,根据B =(6-0.2t ) T ,可知⎪⎪⎪⎪⎪⎪ΔB Δt =0.2T/s ,所以线圈中感应电动势的大小为E =n ΔΦΔt =nS ·⎪⎪⎪⎪⎪⎪ΔB Δt =100×0.2×0.2V =4V. 通过R 2的电流大小为I =ER 1+R 2=44+6A =0.4A 由楞次定律可知电流的方向自上而下通过R 2.(2)闭合S 一段时间后,电容器充电,此时两板间电压U 2=IR 2=0.4×6V =2.4V.再断开S ,电容器将放电,通过R 2的电荷量就是电容器原来所带的电荷量Q =CU 2=30×10-6×2.4C =7.2×10-5C.11.如图11所示,固定在水平桌面上的金属框架edcf 处在竖直向下的匀强磁场中,金属棒ab 在框架上可无摩擦滑动,此时adcb 构成一个边长为l 的正方形,金属棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B 0.图11(1)若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持金属棒静止.求金属棒中的感应电流,在图上标出感应电流的方向.(2)在上述(1)情况中,始终保持金属棒静止,当t =t 1时需加的垂直于金属棒的水平拉力为多大?(3)若从t =0时刻起,磁感应强度逐渐减小,当金属棒以恒定速度v 向右做匀速运动时,可使金属棒中不产生感应电流.则磁感应强度应怎样随时间变化(写出B 与t 的关系式)?答案 (1)kl 2r 见解析图 (2)(B 0+kt 1)kl 3r(3)B =B 0l l +vt解析 (1)感应电动势E =ΔΦΔt=kl 2. 感应电流I =E r =kl 2r, 由楞次定律可判定感应电流方向为逆时针,如图所示.(2)t =t 1时,B =B 0+kt 1,F =BIl ,所以F =(B 0+kt 1)kl 3r. (3)要使金属棒中不产生感应电流,则应保持总磁通量不变, 即Bl (l +vt )=B 0l 2,所以B =B 0l l +vt.。
高中物理学习材料桑水制作第一章 电磁感应(时间:90分钟 满分:100分)一、单选题(本题共6小题,每小题4分,共24分)1.竖直平面内有一金属环,半径为a ,总电阻为R ,磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a ,电阻为R 2的导体棒AB 由水平位置紧贴环面摆下(如图1所示).当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )图1A .2BavB .BavC.2Bav 3D.Bav 3答案 D解析 由推论知,当导体棒摆到竖直位置时,产生的感应电动势E =BLv 中=B ·2a ·12v=Bav ,此时回路总电阻R 总=R 4+R 2=3R 4,这时AB 两端的电压大小U =E R 总·R 4=Bav 3,D 项正确. 2.如图2所示,光滑的水平桌面上放着两个完全相同的金属环a 和b ,当一条形磁铁的S 极竖直向下迅速靠近两环中间时,则( )图2A .a 、b 均静止不动B .a 、b 互相靠近C .a 、b 互相远离D .a 、b 均向上跳起答案 C3. 如图3所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )图3A .W 1<W 2,q 1<q 2B .W 1<W 2,q 1=q 2C .W 1>W 2,q 1=q 2D .W 1>W 2,q 1>q 2答案 C解析 设线框长为l 1,宽为l 2,第一次拉出速度为v 1,第二次拉出速度为v 2,则v 1=3v 2.匀速拉出磁场时,外力所做的功恰等于克服安培力所做的功,有W 1=F 1·l 1=BI 1l 2l 1=B 2l 22l 1v 1R ,同理W 2=B 2l 22l 1v 2R,故W 1>W 2;又由于线框两次拉出过程中,磁通量的变化量相等,即ΔΦ1=ΔΦ2,由q =ΔΦR,得q 1=q 2. 4. 如图4所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面.一导线框abcdefa 位于纸面内,框的邻边都相互垂直,bc 边与磁场的边界P 重合.导线框与磁场区域的尺寸如图所示.从t=0时刻开始,线框匀速横穿两个磁场区域.以a →b →c →d →e →f 为线框中的电动势E 的正方向,以下四个E-t 关系示意图中正确的是 ( )图4答案 C解析 楞次定律或右手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1 s ~2 s 内,磁通量不变化,感应电动势为0,A 选项错误;2 s ~3 s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确.5. 两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图5所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止.则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是( )图5A .磁感应强度B 竖直向上且正增强,ΔΦΔt =dmg nqB .磁感应强度B 竖直向下且正增强,ΔΦΔt =dmg nqC .磁感应强度B 竖直向上且正减弱,ΔΦΔt =dmg (R +r )nRqD .磁感应强度B 竖直向下且正减弱,ΔΦΔt =dmgr (R +r )nRq答案 C解析 油滴静止说明电容器下极板带正电,线圈中电流自上而下(电源内部),由楞次定律可以判断,线圈中的磁感应强度B 为向上的减弱或向下的增强.又E =n ΔΦΔt① U R =R R +r·E ② qU R d=mg ③ 由①②③式可解得:ΔΦΔt =mgd (R +r )nRq6.在如图6所示的电路中,a 、b 为两个完全相同的灯泡,L 为自感线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )图6A.合上开关,a先亮,b逐渐变亮;断开开关,a、b同时熄灭B.合上开关,b先亮,a逐渐变亮;断开开关,a先熄灭,b后熄灭C.合上开关,b先亮,a逐渐变亮;断开开关,a、b同时熄灭D.合上开关,a、b同时亮;断开开关,b先熄灭,a后熄灭答案 C解析合上开关S后,电流由零突然变大,电感线圈产生较大的感应电动势,阻碍电流的增大,故I b>I a,随电流逐渐增大至稳定过程,电感的阻碍作用越来越小,故合上开关,b 先亮,a逐渐变亮;开关S断开后,虽然由于电感L产生自感电动势的作用,灯a、b回路中电流要延迟一段时间熄灭,且同时熄灭,故选C.二、双选题(本题共4小题,每小题6分,共24分)7.如图7所示,用恒力F将闭合线圈自静止开始(不计摩擦)从图示位置向左加速拉出有界匀强磁场,则在此过程中( )A.线圈向左做匀加速直线运动 B.线圈向左运动且速度逐渐增大C.线圈向左运动且加速度逐渐减小 D.线圈中感应电流逐渐减小图7答案BC解析加速运动则速度变大,电流变大,安培力变大.安培力是阻力,故加速度减小.故选B、C项.8.如图8所示,粗细均匀的电阻丝绕制的矩形导线框abcd处于匀强磁场中,另一种材料的导体棒MN可与导线框保持良好接触并做无摩擦滑动.当导体棒MN在外力作用下从导线框左端开始做切割磁感线的匀速运动一直滑到右端的过程中,导线框上消耗的电功率的变化情况可能为( )图8A.逐渐增大 B.先增大后减小C.逐渐减小 D.先增大后减小,再增大,接着再减小答案BD解析导体棒MN在框架上做切割磁感线的匀速运动,相当于电源,其产生的感应电动势相当于电源的电动势E,其电阻相当于电源的内阻r,线框abcd相当于外电路,等效电路如下图所示.由于MN的运动,外电路的电阻是变化的,设MN左侧电阻为R1,右侧电阻为R2,导线框的总电阻为R=R1+R2,所以外电路的并联总电阻:R 外=R 1R 2/(R 1+R 2)=R 1R 2/R由于R 1+R 2=R 为定值,故当R 1=R 2时,R 外最大.在闭合电路中,外电路上消耗的电功率P 外是与外电阻R 外有关的.P 外=⎝ ⎛⎭⎪⎫E R 外+r 2·R 外=E 2(R 外-r )2R 外+4r可见,当R 外=r 时,P 外有最大值,P 外随R 外的变化图象如右图所示.下面根据题意,结合图象讨论P 外变化的情况有:(1)若R 外的最大值R max <r ,则其导线框上消耗的电功率是先增大后减小.(2)若R 外的最大值R max >r ,且R 外的最小值R min <r ,则导线框上消耗的电功率是先增大后减小,再增大,接着再减小.(3)若是R 外的最小值R min >r ,则导线框上消耗的电功率是先减小后增大.综上所述,B 、D 正确.9.如图9所示,用细线悬吊一块薄金属板,在平衡位置时,板的一部分处于匀强磁场中,磁场的方向与板面垂直,当让薄板离开平衡位置附近做微小的摆动时,它将( )图9A.做简谐振动 B.在薄板上有涡流产生C.做振幅越来越小的阻尼振动 D.以上说法均不正确答案BC解析本题考查涡流的产生.由于电磁感应现象,薄板上出现电流,机械能减少,故正确答案为B、C.10.如图10所示,相距为d的两水平虚线分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m.将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为v0,cd边刚穿出磁场时速度也为v0.从ab边刚进入磁场到cd边刚穿出磁场的整个过程中( )图10A.线框一直都有感应电流B.线框有一阶段的加速度为gC.线框产生的热量为mg(d+h+L)D.线框做过减速运动答案BD解析从ab边进入时到cd边刚穿出有三个过程(四个特殊位置)如图由Ⅰ位置到Ⅱ位置,和由Ⅲ位置到Ⅳ位置线框中的磁通量发生变化,所以这两个过程中有感应电流,但由Ⅱ位置到Ⅲ位置,线框中磁通量不变化,所以无感应电流;故A错,由Ⅱ到Ⅲ加速度为g,故B正确.因线框的速度由v0经一系列运动再到v0且知道有一段加速度为g的加速过程故线框一定做过减速运动,故D正确;由能量守恒知,线框产生的热量为重力势能的减少量即mg(d+L),故C错误.三、填空题(本题共2小题,共10分)11.(6分)如图11所示,是“研究电磁感应现象”的实验装置.图11(1)将图中所缺导线补充完整.(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后,将原线圈迅速插入副线圈中,电流计指针将________.(3)原线圈插入副线圈后,将滑动变阻器滑片迅速向左移动时,电流计指针将________.答案(1)如图所示(2)向右偏(3)向左偏12.(4分)如图12所示,两根平行光滑长直金属导轨,其电阻不计,导体棒ab和cd跨在导轨上,ab 电阻大于cd 电阻.当cd 在外力F 2作用下匀速向右滑动时,ab 在外力F 1作用下保持静止,则ab 两端电压U ab 和cd 两端电压U cd 相比,U ab ________U cd ,外力F 1和F 2相比,F 1________F 2(填>、=或<).图12答案 = =四、解答题(本题共4小题,共42分)13.(10分)如图13所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L ,右端接有电阻R ,磁感应强度为B ,一根质量为m 、电阻不计的金属棒以v 0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q ,求:图13(1)棒能运动的距离;(2)R 上产生的热量.答案 (1)qR BL (2)12mv 20-μmgqR BL解析 (1)设在整个过程中,棒运动的距离为s ,磁通量的变化量ΔΦ=BLs ,通过棒的任一截面的电量q =I Δt =ΔΦR ,解得s =qR BL. (2)根据能的转化和守恒定律,金属棒的动能的一部分克服摩擦力做功,一部分转化为电能,电能又转化为热能Q ,即有12mv 20=μmgs +Q ,解得Q =12mv 20-μmgs =12mv 20-μmgqR BL. 14.(10分) U 形金属导轨abcd 原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc 等长的金属棒PQ 平行bc 放在导轨上,棒左边靠着绝缘的固定竖直立柱e 、f .已知磁感应强度B =0.8 T ,导轨质量M =2 kg ,其中bc 段长0.5 m 、电阻r =0.4 Ω,其余部分电阻不计,金属棒PQ 质量m =0.6 kg 、电阻R =0.2 Ω、与导轨间的摩擦因数μ=0.2.若向导轨施加方向向左、大小为F =2 N 的水平拉力,如图14所示.求:导轨的最大加速度、最大电流和最大速度(设导轨足够长,g 取10 m/s 2).图14答案 0.4 m/s 22 A3 m/s解析 导轨受到PQ 棒水平向右的摩擦力f =μmg ,根据牛顿第二定律并整理得F -μmg -F 安=Ma ,刚拉动导轨时,I 感=0,安培力为零,导轨有最大加速度 a m =F -μmg M =(2-0.2×0.6×10)2m/s 2=0.4 m/s 2 随着导轨速度的增大,感应电流增大,加速度减小,当a =0时,速度最大.设速度最大值为v m ,电流最大值为I m ,此时导轨受到向右的安培力F 安=BI m L ,F -μmg -BI m L =0I m =F -μmg BL代入数据得I m =2-0.2×0.6×100.8×0.5A =2 A I =E R +r ,I m =BLv m R +rv m =I m (R +r )BL =2×(0.2+0.4)0.8×0.5m/s =3 m/s. 15.(10分)如图15所示,a 、b 是两根平行直导轨,MN 和OP 是垂直跨在a 、b 上并可左右滑动的两根平行直导线,每根长为l ,导轨上接入阻值分别为R 和2R 的两个电阻和一个板长为L ′、间距为d 的平行板电容器.整个装置放在磁感应强度为B 、垂直导轨平面的匀强磁场中.当用外力使MN 以速率2v 向右匀速滑动、OP 以速率v 向左匀速滑动时,两板间正好能平衡一个质量为m 的带电微粒,试问:图15(1)微粒带何种电荷?电荷量是多少?(2)外力的功率和电路中的电功率各是多少?答案 (1)负电 mgd Blv (2)3B 2l 2v 2R 3B 2l 2v 2R解析 (1)当MN 向右滑动时,切割磁感线产生的感应电动势E 1=2Blv ,方向由N 指向M .OP 向左滑动时产生的感应电动势E 2=Blv ,方向由O 指向P .两者同时滑动时,MN 和OP 可以看成两个顺向串联的电源,电路中总的电动势:E =E 1+E 2=3Blv ,方向沿NMOPN .由全电路欧姆定律得电路中的电流强度I =E R +2R =Blv R,方向沿NMOPN . 电容器两端的电压相当于把电阻R 看做电源NM 的内阻时的路端电压,即U =E 1-IR =2Blv -Blv R·R =Blv 由于上板电势比下板高,故在两板间形成的匀强电场的方向竖直向下,可见悬浮于两板间的微粒必带负电.设微粒的电荷量为q ,由平衡条件mg =Eq =U dq ,得 q =mgd U =mgd Blv(2)NM 和OP 两导线所受安培力均为F =BIl =B Blv R l =B 2l 2v R,其方向都与它们的运动方向相反.两导线都匀速滑动,由平衡条件可知所加外力应满足条件F 外=F =B 2l 2v R因此,外力做功的机械功率P 外=F ·2v +Fv =3Fv =3B 2l 2v 2R. 电路中产生感应电流总的电功率P 电=IE =Blv R ·3Blv =3B 2l 2v 2R可见,P 外=P 电,这正是能量转化和守恒的必然结果.16.(12分)如图16所示,质量m 1=0.1 kg ,电阻R 1=0.3 Ω,长度l =0.4 m 的导体棒ab 横放在U 形金属框架上.框架质量m 2=0.2 kg ,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m 的MM ′、NN ′相互平行,电阻不计且足够长.电阻R 2=0.1 Ω的MN 垂直于MM ′.整个装置处于竖直向上的匀强磁场中,磁感应强度B =0.5 T .垂直于ab 施加F =2 N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM ′、NN ′保持良好接触.当ab 运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.图16(1)求框架开始运动时ab 速度v 的大小;(2)从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q =0.1 J ,求该过程ab 位移s 的大小.答案 (1)6 m/s (2)1.1 m解析 (1)ab 对框架的压力N 1=m 1g框架受水平面的支持力N 2=m 2g +N 1依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力f m =μN 2ab 中的感应电动势E =BlvMN 中电流I =E R 1+R 2MN 受到的安培力F 安=IlB框架开始运动时F 安=f m由上述各式,代入数据解得v =6 m/s(2)闭合回路中产生的总热量Q 总=R 1+R 2R 2Q 由能量守恒定律,得Fs =12m 1v 2+Q 总 代入数据解得s =1.1 m。
章末检测(A)(时间:90分钟满分:100分)一、单项选择题(本题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分)1.如图1所示是描述电磁炉工作原理的示意图.炉子的内部有一个金属线圈,当电流通过线圈时,会产生磁场,这个磁场的大小和方向是不断变化的,这个变化的磁场又会引起放在电磁炉上面的铁质(或钢质)锅底内产生感应电流,由于锅底有电阻,所以感应电流又会在锅底产生热效应,这些热能便起到加热物体的作用从而煮食.因为电磁炉是以电磁感应产生电流,利用电流的热效应产生热量,所以不是所有的锅或器具都适用.以下说法正确的是()图1A.最好使用铝锅或铜锅B.最好使用平底不锈钢锅或铁锅C.最好使用陶瓷锅或耐热玻璃锅D.在电磁炉与铁锅之间放一层白纸后无法加热答案 B解析选用陶瓷锅或耐热玻璃锅无法形成涡流,选项C错误;选项A、B中均能形成涡流,铜和铝的电阻率小,电热少,效率低,相对来说选用平底不锈钢锅或铁锅为最佳,选项A错误,B正确;由于线圈产生的磁场能穿透白纸到达锅底,在铁锅中产生涡流,能够加热,选项D错误.2.如图2,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为U a、U b、U c.已知bc边的长度为l.下列判断正确的是()图2A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿abcaC.U bc =-12Bl 2ω,金属框中无电流D.U ac =12Bl 2ω,金属框中电流方向沿acba答案 C解析 金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误;转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误;由转动切割产生感应电动势的公式得U bc =-12Bl 2ω,选项C 正确.3.如图3所示,先后以恒定的速度v 1和v 2把一个正方形金属线框水平拉出有界匀强磁场区域,且v 1=2v 2,则在先后两种情况( )图3A.线框中的感应电动势之比E 1∶E 2=2∶1B.线框中的感应电流之比I 1∶I 2=1∶2C.线框中产生的热量之比Q 1∶Q 2=1∶4D.通过线框某截面的电荷量之比q 1∶q 2=2∶1答案 A解析 根据E =BL v ∝v 以及v 1=2v 2可知,选项A 正确;因为I =E R ∝E ,所以I 1∶I 2=2∶1,选项B 错误;线框中产生的热量Q =I 2Rt =E 2R t =B 2L 2v 2R ·L v =B 2L 3v R ∝v ,所以Q1∶Q2=2∶1,选项C错误;根据q=ΔΦR=BSR,q1∶q2=1∶1可知,选项D错误.4.匀强磁场方向垂直纸面,规定向里的方向为正,磁感应强度B与时间t变化规律如图4甲所示,在磁场中有一细金属圆环,圆环平面位于纸面内,如图4乙所示.令E1、E2、E3分别表示Oa、bc、cd段的感应电动势的大小,I1、I2、I3分别表示对应的电流,则下列判断正确的是()图4A.E1<E2,I1沿逆时针方向,I2沿顺时针方向B.E1<E2,I1沿顺时针方向,I2沿逆时针方向C.E2<E3,I2沿逆时针方向,I3沿顺时针方向D.E2=E3,I2沿逆时针方向,I3沿顺时针方向答案 A解析根据E=ΔBΔt S,所以B-t图线的斜率大小反映电动势大小,根据比较图线的斜率大小可看出E1<E2=E3;根据楞次定律可判断,I1沿逆时针方向,I2沿顺时针方向,I3沿顺时针方向.选项A正确.5.如图5所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿abcda的感应电流为正,则表示线框中电流i随bc边的位置坐标x变化的图象正确的是()图5答案 C6.如图6所示,在长载流直导线近旁固定有两平行光滑导轨A、B,导轨与导线平行且在同一水平面内,在导轨上有两根可自由滑动的导体棒ab和cd.当载流直导线中的电流逐渐减弱时,导体棒ab和cd的运动情况是()图6A.一起向左运动B.一起向右运动C.相向运动,相互靠近D.相背运动,相互远离答案 D解析根据右手螺旋定则知,直流电流下方的磁场方向垂直纸面向里,电流减小时,磁场减弱,根据楞次定律得,回路中的感应电流为acdb,根据左手定则知,ab所受安培力方向向左,cd所受安培力向右,即ab和cd相背运动,相互远离,故D正确,A、B、C错误.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,选对但不全的得3分,有选错或不答的得0分)7.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是()A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.奥斯特发现了电流的热效应,定量给出了电能和热能之间的转换关系答案AC8.如图7所示的电路中,电感L的自感系数很大,电阻可忽略,D为理想二极管,则下列说法正确的有()图7A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S断开时,L2立即熄灭D.当S断开时,L1突然变亮,然后逐渐变暗至熄灭答案BD解析当S闭合时,因二极管加上了反向电压,故二极管截止,L1一直不亮,通过线圈的电流增加,感应电动势阻碍电流增加,故使得L2逐渐变亮,选项B 正确,A错误;当S断开时,由于线圈自感电动势阻碍电流的减小,故通过L1的电流要在L-L2-L1-D之中形成新的回路,故L1突然变亮,然后逐渐变暗至熄灭,选项C错误,D正确.9.如图8所示是测量通电螺线管内部磁感应强度的一种装置:把一个很小的测量线圈放在待测处(测量线圈平面与螺线管轴线垂直),将线圈与可以测量电荷量的冲击电流计G串联,当将双刀双掷开关S由位置1拨到位置2时,测得通过测量线圈的电荷量为q.已知测量线圈的匝数为n,面积为S,测量线圈和G串联回路的总电阻为R.下列判断正确的是()图8A.在此过程中,穿过测量线圈的磁通量的变化量ΔΦ=qRB.在此过程中,穿过测量线圈的磁通量的变化量ΔΦ=qR nC.待测处的磁感应强度的大小为B =qR nSD.待测处的磁感应强度的大小为B =qR 2nS答案 BD解析 由E =n ΔΦΔt ,E =IR ,q =I Δt ,得q =n ΔΦR ,得ΔΦ=qR n ,B 正确;ΔΦ=2BS ,得B =qR 2nS ,D 正确.10.如图9所示,足够长且电阻不计的光滑平行金属导轨MN 、PQ 竖直放置,间距为L =0.5 m ,一匀强磁场磁感应强度B =0.2 T 垂直穿过导轨平面,导轨的上端M 与P 间连接阻值为R =0.4 Ω的电阻,质量为m =0.01 kg 、电阻不计的金属棒ab 垂直紧贴在导轨上.现使金属棒ab 由静止开始下滑,经过一段时间金属棒达到稳定状态,这段时间内通过R 的电荷量为0.3 C ,则在这一过程中(g = 10 m/s 2)( )图9A.安培力最大值为0.18 NB.这段时间内下降的高度1.2 mC.重力最大功率为0.1 WD.电阻产生的焦耳热为0.18 J答案 BD解析 安培力的最大值应该等于重力为0.1 N ,故A 错误;由法拉第电磁感应定律和闭合电路欧姆定律可知q =I -t =BS R =BLs R ,解得s =1.2 m ,故B 正确;当安培力等于重力时,速度最大,mg =B 2L 2v m R ,解得v m =4 m/s ,重力最大功率P m=0.4 W ,故C 错误;由能量守恒定律,电阻产生的焦耳热Q =mgs -12m v 2m =0.18 J ,故D 正确.三、填空题(本题共2小题,共10分)11.(4分)为判断线圈绕向,可将灵敏电流计G 与线圈L 连接,如图10所示.已知线圈由a 端开始绕至b 端:当电流从电流计G 的左端流入时,指针向左偏转.图10(1)将磁铁的N 极向下从线圈上方竖直插入线圈L 时,发现电流计的指针向左偏转.俯视线圈,其绕向为________(选填“顺时针”或“逆时针”).(2)当条形磁铁从图中的虚线位置向右远离线圈L 时,发现电流计的指针向右偏转.俯视线圈,其绕向为________(选填“顺时针”或“逆时针”).答案 (1)顺时针 (2)逆时针解析 (1)由题可知在线圈L 内电流从b 流向a ,而根据楞次定律(增反减同)知,线圈L 中产生的磁场与原磁场方向相反(向上),再根据右手螺旋定则可知,电流方向为逆时针方向(俯视线圈),因此线圈绕向为顺时针方向(俯视线圈).(2)由题意可知在线圈L 内电流从a 流向b ,而根据楞次定律(增反减同)知,线圈L 中产生的磁场与原磁场方向相同(向上),再根据右手螺旋定则可知,感应电流方向与(1)问相同,而电流的流向与(1)问相反,因此线圈绕向一定与(1)问相反,为逆时针方向(俯视线圈).12.(6分)如图11所示为“研究电磁感应现象”的实验装置.图11(1)将图中所缺的导线补接完整;(2)如果在闭合开关时发现灵敏电流计的指针向右偏转一下,那么合上开关后可能出现的情况有:A.将线圈A 迅速插入线圈B 时,灵敏电流计指针将________.B.线圈A 插入线圈B 后,将滑动变阻器的滑片迅速向左拉时,灵敏电流计指针________.答案 (1)见解析图 (2)向右偏转一下 向左偏转一下解析 (1)如图所示(2)根据楞次定律及灵敏电流计的指针偏转方向与流过它的电流方向的关系来判定,则A.向右偏转一下;B.向左偏转一下.四、解答题(本题共4小题,共46分.解答应写出必要的文字说明、只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)13.(10分)如图12甲所示,横截面积为0.2 m 2的100匝圆形线圈A 处在变化的磁场中,磁场方向垂直纸面,其磁感应强度B 随时间t 的变化规律如图12乙所示,设垂直纸面向外为B 的正方向.R 1=4 Ω,R 2=6 Ω,C =30 μF ,线圈的内阻不计,求电容器上极板所带电荷量并说明正负.图12答案 7.2×10-6 C 上极板带正电解析 E =n ΔB Δt S =100×0.021×0.2 V =0.4 V电路中的电流I =E R 1+R 2=0.44+6A =0.18 A 所以U C =IR 2=0.18×6 V =0.24 VQ =CU C =30×10-6×0.24 C =7.2×10-6 C由楞次定律和安培定则可知,电容器的上极板带正电.14. (12分)如图13所示,在光滑水平面上有一长为L1、宽为L2的单匝矩形闭合导线框abcd,处于磁感应强度为B的有界匀强磁场中,其ab边与磁场的边界重合.线框由粗细均匀的同种导线制成,总电阻为R.现用垂直于线框ab边的水平拉力,将线框以速度v向右沿水平方向匀速拉出磁场,此过程中保持线框平面与磁感线垂直,且ab边与磁场边界平行.求线框被拉出磁场的过程中图13(1)通过线框的电流;(2)线框中产生的焦耳热;(3)线框中a、b两点间的电压大小.答案(1)BL2vR(2)B2L1L22vR(3)BL22v2(L1+L2)解析(1)线框产生的感应电动势E=BL2v通过线框的电流I=ER=BL2vR(2)线框被拉出磁场所需时间t=L1 v此过程线框中产生的焦耳热Q=I2Rt=B2L1L22vR(3)线框ab边的电阻R ab=L22(L1+L2)R线框中a、b两点间电压的大小U=IR ab=BL22v2(L1+L2)15.(12分)如图14所示,图14两根足够长的光滑金属导轨MN、PQ间距为L=0.5 m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终良好接触,已知两棒的质量均为0.02 kg,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.g取10 m/s2,问:(1)通过cd棒的电流I是多少?方向如何?(2)棒ab受到的力F多大?(3)棒cd每产生Q=0.1 J的热量,力F做的功W是多少?答案(1)1 A方向由d到c(2)0.2 N(3)0.4 J解析(1)棒cd受到的安培力F cd=ILB①棒cd在共点力作用下平衡,则F cd=mg sin 30°②由①②式代入数据解得I=1 A方向由右手定则可知由d到c.(2)棒ab与棒cd受到的安培力大小相等,F ab=F cd对棒ab由共点力平衡有F=mg sin 30°+ILB③代入数据解得F=0.2 N.④(3)设在时间t内棒cd产生Q=0.1 J的热量,由焦耳定律可知Q=I2Rt⑤设ab棒匀速运动的速度大小为v,则产生的感应电动势E=BL v⑥由闭合电路欧姆定律知I=E2R⑦由运动学公式知,在时间t内,棒ab沿导轨的位移s=v t⑧力F做的功W=Fs⑨综合上述各式,代入数据解得W=0.4 J.16.(12分)如图15所示,质量m1=0.1 kg、电阻R1=0.3 Ω、长度L=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab棒施加F=2 N的水平向右的恒力,ab棒从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触,当ab棒运动到某处时,框架开始运动.设框架与水平面间的最大静摩擦力等于滑动摩擦力,g取10 m/s2.图15(1)求框架开始运动时ab棒的速度v的大小;(2)从ab棒开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab的位移s的大小.答案(1)6 m/s(2)1.1 m解析(1)ab对框架的压力F1=m1g框架受水平面的支持力F N=m2g+F1依题意,最大静摩擦力等于滑动摩擦力,则框架受到的最大静摩擦力f=μF N.设框架开始运动时ab棒的速度为v,则ab中的感应电动势E=BL vMN中电流I=ER1+R2MN受到的安培力F安=BIL框架开始运动时F安=f由上述各式代入数据解得v=6 m/s(2)闭合回路中产生的总热量Q总=R1+R2 R2Q由能量守恒定律得Fs=12m1v2+Q总代入数据解得s=1.1 m.。
电磁感应规律的应用练习一、单项选择题1.如下图,MN 、PQ 为两平行金属导轨,M 、P 间连接一阻值为R 的电阻,导轨处于匀强磁场中,磁感应强度为B ,磁场方向与导轨所在平面垂直,图中磁场垂直纸面向里,有一金属圆环沿两导轨滑动、速度为v ,与导轨接触良好,圆环的直径d 与两导轨间的距离相等,设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时( ).A .有感应电流通过电阻R ,大小为πdBvR B .有感应电流通过电阻R ,大小为dBvRC .有感应电流通过电阻R ,大小为2dBvRD .没有感应电流通过电阻R2.如图所示,在匀强磁场中,MN 和PQ 是两条平行的金属导轨,ab 和cd 为串有电压表和电流表的两根金属棒,当两棒以相同水平速度向右运动时,下列说法正确的是( ).A .电压表有读数,电流表有读数B .电压表无读数,电流表无读数C .电压表有读数,电流表无读数D .电压表无读数,电流表有读数 二、双项选择题 3.如图所示,阻值为R 的金属棒AB 从图示位置分别以v 1、v 2的水平速度沿光滑导轨(电阻不计)匀速滑到A ′B ′位置,若v 1∶v 2=1∶2,则在这两个过程中( ).A .回路电流I 1∶I 2=1∶2B .产生的热量Q 1∶Q 2=1∶2C .通过任一截面的电荷量q 1∶q 2=1∶2D .外力的功率P 1∶P 2=1∶2 4.如下图所示,在磁感应强度为B 的匀强磁场中有固定的金属框架ABC ,已知∠B =θ,导体棒DE 在框架上从B 点开始在外力作用下,沿垂直DE 方向以速度v 匀速向右平移,使导体棒和框架构成等腰三角形回路.设框架和导体棒材料相同,其单位长度的电阻均为R 0,框架和导体棒均足够长,不计摩擦及接触电阻,关于回路中的电流I 和电功率P 随时间t 变化的下面四个图象中可能正确的是( ).5.如图所示,固定放置在同一水平面内的两根长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆AB 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离l 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路中的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程中,( ).A .杆的速度最大值为22()F mg RB d μ- B .流过电阻R 的电荷量为BdlR r+C .恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D .恒力F 做的功与安培力做的功之和大于杆动能的变化量6.单匝矩形线圈在匀强磁场中匀速转动.转轴垂直于磁场.若线圈所围面积里磁通量随时间变化的规律如图所示,则( ).A .线圈中O 时刻感应电动势最小B .线圈中C 时刻感应电动势为零 C .线圈中C 时刻感应电动势最大D .线圈从O 至C 时间内平均感应电动势为0.4 V 三、非选择题7.如图所示,线圈abcd 每边长l =0.20 m ,线圈质量m 1=0.10 kg ,电阻R =0.10 Ω,砝码质量m 2=0.14 kg.线圈上方的匀强磁场的磁感应强度B =0.5 T ,方向垂直线圈平面向里,磁场区域的宽度为h =l =0.20 m .砝码从某一位置下降,使ab 边进入磁场开始做匀速运动.求线圈做匀速运动的速度.8.如下图所示,两根互相平行的光滑金属导轨位于水平面内,相距为L=0.5 m,在导轨的一端接有阻值为R=0.3 Ω的电阻,在x≥0一侧存在一与水平面垂直的均匀磁场,磁感应强度B=1 T.一质量m=2 kg的金属杆垂直放置在导轨上,金属杆的电阻r=0.2 Ω,导轨电阻不计.当金属杆以v0=4 m/s的初速度进入磁场的同时,受到一个水平向右的外力作用,且外力的功率恒为P=18 W,经过2 s金属杆达到最大速度.求:(1)金属杆达到的最大速度v max;(2)在这2 s时间内回路产生的热量Q;(3)当速度变为5 m/s时,金属杆的加速度a.参考答案1.答案:B解析:穿过闭合回路的磁通量发生变化,故产生感应电流,感应电动势为E =Bdv ,则通过R 的感应电流=BdvI R,故选B 项. 2.答案:B解析:两棒以相同速度向右运动时,都产生相同的电动势,由右手定则可知φa >φb ,φd >φc ;又因φa =φd ,φb =φc ,所以回路中无电流,因此电流表无示数,由于电压表本身由电流表改装而成,也无示数.3.答案:AB解析:感应电动势为BLv ,感应电流=E BLv I R R=,大小与速度成正比,产生的热量Q =I 2Rt =22222·B L v L B L L v R v R''=,B 、L 、L ′、R 是一样的,两次产生的热量比等于运动速度比.通过任一截面的电荷量··BLv L BLL q I t R v R''===与速度无关,所以这两个过程中,通过任一截面的电荷量之比应为1∶1.金属棒运动中受磁场力的作用,为使棒匀速运动,外力大小要与磁场力相等.则外力的功率P =Fv =BIL ·v =222B L v R,其中B 、L 、R 相同,外力的功率与速度的二次方成正比,所以外力的功率之比应为1∶4.故选项A 、B 正确.4.答案:AD 解析:当导体棒DE 在框架上从B 点开始在外力作用下,沿垂直DE 方向以速度v 匀速向右平移时,在和框架构成的等腰三角形回路中导体棒的有效切割长度L ∝ t ,回路的周长s ∝ t ,故感应电动势E =BLv ∝ t ;回路电阻R ∝ t ,感应电流=EI R保持不变.电功率P =I 2R ∝t .5.答案:BD解析:当杆达到最大速度v max 时,导体杆所受的合力为零,由F -μmg -22maxB d v R r+=0得,max 22()()F mg R r v B d μ-+=,选项A 错误;由=B S Bdlq R r R r R rΦ∆∆==+++可知,选项B正确;在杆从开始到达到最大速度的过程中,由动能定理有:W F +W f +W 安=ΔE k ,其中W f =-μmgl ,W 安=-Q ,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,选项C 错误;恒力F 做的功与安培力做的功之和等于杆动能的变化量与克服摩擦力做的功之和,选项D 正确.6.答案:BD解析:在Φ-t 图象中,斜率表示磁通量的变化率.由图知,O 时刻磁通量最小,但变化率最大,C 时刻磁通量最大,但变化率为零,所以A 、C 两项错,B 项对.由O 到C ,3210 V=0.4 V 0.005E t Φ-∆⨯==∆,D 项对.7.答案:4 m/s解析:该题的研究对象为线圈,线圈在匀速上升时受到的安培力F 安、绳子的拉力F 和重力m 1g 相互平衡,即F =F 安+m 1g ①砝码受力也平衡:F =m 2g ②线圈匀速上升,在线圈中产生的感应电流I =Blv /R ③ 因此线圈受到向下的安培力F 安=BIl ④联解①②③④式得v =(m 2-m 1)gR /B 2l 2代入数据得v =4 m/s .8.答案:(1)6 m/s (2)16 J (3)0.55 m/s 2解析:(1)金属杆达到最大速度v max 时,外力F 与安培力平衡,则F =BI max L ① 外力的功率P =Fv max ②根据感应电动势公式和闭合电路欧姆定律可得maxmax BLv I R r=+③由①②③可得max v =(2)金属杆在从开始到达最大速度的过程中,根据动能定理可得W F -W 安=22max 011m 22v mv -④ 又W F =Pt ⑤克服安培力做的功等于回路产生的电能,即W 安=Q ⑥ 由④⑤⑥解得Q =16 J(3)当v =5 m/s 时,由牛顿第二定律,有F -BIL =ma 且=P F v⑦ =BLvI R r+⑧ 由⑦⑧解得222()==0.55 m/s P B L v v R r a m-+.。
章末综合测评(一)(时间:60分钟满分:100分)一、选择题(本题共10个小题,每小题6分,共60分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.) 1.如图1所示,矩形闭合金属框abcd的平面与匀强磁场垂直,若ab边受竖直向上的磁场力作用,则可知金属框的运动情况是( )【导学号:90270051】图1A.向左平动进入磁场B.向右平动退出磁场C.沿竖直方向向上平动D.沿竖直方向向下平动【解析】因为ab边受到的安培力的方向竖直向上,所以由左手定则就可以判断出金属框中感应电流的方向是abcda,金属框中的电流是由ad边切割磁感线产生的,所以金属框向左平动进入磁场.【答案】A 2.环形线圈放在匀强磁场中,设在第1 s内磁场方向垂直于线圈平面向里,如图2甲所示.若磁感应强度B随时间t的变化关系如图乙所示,那么在第2 s内,线圈中感应电流的大小和方向是( )甲乙图2A.大小恒定,逆时针方向B.大小恒定,顺时针方向C.大小逐渐增加,顺时针方向D .大小逐渐减小,逆时针方向【解析】 由题图乙可知,第2 s 内ΔB Δt 为定值,由E =ΔΦΔt =ΔBΔt S 知,线圈中感应电动势为定值,所以感应电流大小恒定.第2 s 内磁场方向向外,穿过线圈的磁通量减少,由楞次定律判断知感应电流为逆时针方向,A 项正确.【答案】 A3.(2015·重庆高考)如图3为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )图3A .恒为-t2-t1B .从0均匀变化到-t2-t1C .恒为--t2-t1D .从0均匀变化到--t2-t1【解析】 根据法拉第电磁感应定律得,感应电动势E =n ΔΦΔt =n-t2-t1,由楞次定律和右手螺旋定则可判断b 点电势高于a 点电势,因磁场均匀变化,所以感应电动势恒定,因此a 、b 两点电势差恒为φa -φb =-n-t2-t1,选项C 正确.【答案】 C4.如图4所示,L 是自感系数很大的理想线圈,a 、b 为两只完全相同的小灯泡,R 0是一个定值电阻,则下列有关说法中正确的是( )图4A.当S闭合瞬间,a灯比b灯亮B.当S闭合待电路稳定后,两灯亮度相同C.当S突然断开瞬间,a灯比b灯亮些D.当S突然断开瞬间,b灯立即熄灭【解析】S闭合瞬间,a、b同时亮,b比a亮;稳定后,a灯不亮;S断开瞬间,a灯比b灯亮.【答案】C 5.紧靠在一起的线圈A与B如图5甲所示,当给线圈A通以图乙所示的电流(规定由a进入b流出为电流正方向)时,则线圈cd两端的电势差应为图中的( ) 【导学号:90270052】图5【解析】0~1 s内,A线圈中电流均匀增大,产生向左均匀增大的磁场,由楞次定律可知,B线圈中外电路的感应电流方向由c到d,大小不变,c点电势高,所以选项A正确.【答案】A 6.如图6所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则( )图6B.Q1>Q2,q1>q2A.Q1>Q2,q1=q2D.Q1=Q2,q1>q2C.Q1=Q2,q1=q2【解析】 根据法拉第电磁感应定律E =Blv 、欧姆定律I =E R 和焦耳定律Q =I 2Rt ,得线圈进入磁场产生的热量Q =B2l2v2R ·l′v =B2Slv R ,因为l ab >l bc ,所以Q 1>Q 2.根据E =ΔΦΔt,I =ER 及q =I Δt 得q =BSR,故q 1=q 2.选项A 正确,选项B 、C 、D 错误.【答案】 A7.(2015·山东高考)如图7所示,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是( )图7A .处于磁场中的圆盘部分,靠近圆心处电势高B .所加磁场越强越易使圆盘停止转动C .若所加磁场反向,圆盘将加速转动D .若所加磁场穿过整个圆盘,圆盘将匀速转动【解析】 根据右手定则可判断靠近圆心处电势高,选项A 正确;圆盘处在磁场中的部分转动切割磁感线,相当于电源,其他部分相当于外电路,根据左手定则,圆盘所受安培力与运动方向相反,磁场越强,安培力越大,故所加磁场越强越易使圆盘停止转动,选项B 正确;磁场反向,安培力仍阻碍圆盘转动,选项C 错误;若所加磁场穿过整个圆盘,整个圆盘相当于电源,不存在外电路,没有电流,所以圆盘不受安培力而匀速转动,选项D 正确.【答案】 ABD8.如图8所示,线圈内有条形磁铁,将磁铁从线圈中拔出来时( )【导学号:90270053】图8A .φa >φbB .φa <φbC .电阻中电流方向由a 到bD .电阻中电流方向由b 到a【解析】 线圈中磁场方向向右,磁铁从线圈中拔出时,磁通量减少,根据楞次定律,线圈中产生感应电动势,右端为正极,左端为负极,所以电阻中电流方向由b 到a ,故φb >φa .B 、D 项正确.【答案】 BD9.单匝矩形线圈在匀强磁场中匀速转动,转动轴垂直于磁场.若线圈所围面积的磁通量随时间变化的规律如图9所示,则( )图9 A .线圈中0时刻感应电动势最小 B .线圈中C 时刻感应电动势为零 C .线圈中C 时刻感应电动势最大D .线圈从0至C 时间内平均感应电动势为0.4 V【解析】 感应电动势E =ΔΦΔt,而磁通量变化率是Φt 图线的切线斜率,当t =0时Φ=0,但ΔΦΔt≠0.若求平均感应电动势,则用ΔΦ与Δt 的比值去求.【答案】 BD10.(2016·宜昌高二检测)如图10所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表面粗糙,导轨左端连接一个电阻R ,质量为m 的金属棒(电阻也不计)放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与导轨平面垂直.用水平恒力F 把ab 棒从静止起向右拉动的过程中,下列说法正确的是( )图10 A .恒力F 做的功等于电路产生的电能B .恒力F 和摩擦力的合力做的功等于电路中产生的电能C .克服安培力做的功等于电路中产生的电能D .恒力F 和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和【解析】 沿水平方向,ab 棒受向右的恒力F 、向左的摩擦力F f 和安培力F 安,随棒速度的增大,安培力增大,合力F -F f -F 安减小,但速度在增大,最终可能达到最大速度.从功能关系来看,棒克服安培力做功等于其他形式的能转化成的电能,故A 、B 错误,C 正确;由动能定理知,恒力F 、安培力和摩擦力三者的合力做的功等于金属棒动能的增加量,D 正确;也可从能量守恒角度进行判定,即恒力F 做的功等于电路中产生的电能、因摩擦而产生的内能及棒动能的增加之和.【答案】 CD二、非选择题(本题共3小题,共40分.)11.(12分)如图11所示,两平行金属导轨位于同一水平面上,相距l ,左端与一电阻R 相连;整个系统置于匀强磁场中,磁感应强度大小为B ,方向竖直向下.一质量为m 的导体棒置于导轨上,在水平外力作用下沿导轨以速度v 匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g ,导轨和导体棒的电阻均可忽略.求:图11(1)电阻R 消耗的功率; (2)水平外力的大小.【解析】 (1)导体切割磁感线运动产生的电动势为E =Blv根据欧姆定律,闭合回路中的感应电流为I =ER电阻R 消耗的功率为P =I 2R ,联立可得P =B2l2v2R.(2)对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有F 安+μmg =F ①F 安=BIl =B2l2vR②故F =B2l2v R+μmg .【答案】 (1)B2L2v2R (2)B2l2vR+μmg12.(12分)如图12所示,面积为0.2 m 2的100匝线圈A 处在磁场中,磁场方向垂直于线圈平面.磁感应强度随时间变化的规律是B =(6-0.2t )T ,已知电路中的R 1=4 Ω,R 2=6 Ω,电容C =30 μF ,线圈A 的电阻不计.求:图12 (1)闭合S 后,通过R 2的电流大小;(2)闭合S 一段时间后,再断开S ,S 断开后通过R 2的电荷量是多少?【导学号:90270054】【解析】 (1)磁感应强度变化率的大小ΔΦΔt =0.2 T/s线圈A 中的感应电动势的大小E =nSΔBΔt=100×0.2×0.2V =4 V 通过R 2的电流:I =E R1+R2=44+6A =0.4 A.(2)R 2两端的电压U =IR 2=2.4 V 电容器稳定后所带的电荷量Q =CU =3×10-5×2.4 C =7.2×10-5 CS 断开后通过R 2的电荷量为7.2×10-5C. 【答案】 (1)0.4 A (2)7.2×10-5 C13.(16分)某同学设计一个发电测速装置,工作原理如图13所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g 取10 m/s 2)图13(1)测U 时,与a 点相接的是电压表的“正极”还是“负极”?(2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失.【解析】 (1)正极.(2)由电磁感应定律得U =E =ΔΦΔtΔΦ=12BR 2ΔθU =12B ωR 2v =r ω=13ωR所以v =2U3BR =2 m/s.(3)ΔE =mgh -12mv2ΔE =0.5 J.【答案】 (1)正极 (2)2 m/s (3)0.5 J。
第一章电磁感应第四节法拉第电磁感应定律A级抓基础1.在磁感应强度为0。
5 T的匀强磁场中,让长为0。
2 m的导线垂直于磁场方向做切割磁感线运动,运动方向与导线垂直,产生的感应电动势为0。
5 V,则导线切割磁感线的速度为( )A.0.5 m/s B.5 m/sC.0。
05 m/s D.2.5 m/s解析:由E=BLv可知v=5 m/s,B对.答案:B2.穿过一个单匝线圈的磁通量始终保持每秒钟均匀地增加1 Wb,则( )A.线圈中感应电动势每秒增加1 VB.线圈中感应电动势每秒减少1 VC.线圈中感应电动势大小不变D.线圈中无感应电动势解析:磁通量始终保持每秒钟均匀地增加1 Wb,则错误!=1 Wb/s,根据法拉第电磁感应定律E=n错误!,得E=1 V保持不变.故C正确,A、B、D错误.答案:C3.用均匀导线做成的单匝正方形线框,每边长为0。
2米,正方形的一半放在和纸面垂直向里的匀强磁场中,如图所示,当磁场以20 T/s的变化率增强时,线框中点a、b两点电势差是()A.U ab=0.2 V B.U ab=-0。
2 VC.U ab=0.4 V D.U ab=-0。
4 V解析:由题意,磁感应强度的变化率为ΔBΔt=20 T/s,由法拉第电磁感应定律得E=错误!=错误!S=20×错误!×0。
22 V=0。
4 V,由楞次定律判断得,线框中感应电流方向沿逆时针方向,b相当于电源的正极,a相当于电源的负极,则a的电势低于b的电势,根据欧姆定律得U ab=-错误!E=-0。
2 V。
答案:B4.水平放置的金属框架cdef处于如图所示的匀强磁场中,金属棒ab置于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab始终保持静止,则( )A.ab中电流增大,ab棒所受摩擦力也增大B.ab中电流不变,ab棒所受摩擦力也不变C.ab中电流不变,ab棒所受摩擦力增大D.ab中电流增大,ab棒所受摩擦力不变解析:磁感应强度均匀增大,穿过回路的磁通量均匀增大,根据法拉第电磁感应定律,可知回路中产生恒定的电动势、感应电流也恒定不变,ab棒所受的安培力F=BIL,可知安培力F均匀增大,金属棒ab始终保持静止,则摩擦力也均匀增大.故C正确,A、B、D 均错误.答案:C5.在范围足够大,方向竖直向下的匀强磁场中,B=0。
章末检测B(时间:90分钟满分:100分)一、单项选择题(本题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分)1.我国已经制定了登月计划,2013年12月我国发射的“玉兔号”月球车成功着陆月球,不久的将来中国人将真正实现登月梦,进入那神秘的广寒宫.假如有一宇航员登月后,想探测一下月球表面是否有磁场,他手边有一只灵敏电流表和一个小线圈,则下列推断正确的是()A.直接将电流表放于月球表面,看是否有示数来判断磁场的有无B.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表无示数,则可判断月球表面无磁场C.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表有示数,则可判断月球表面有磁场D.将电流表与线圈组成的闭合回路,使线圈在某一平面内沿各个方向运动,如电流表无示数,则可判断月球表面无磁场答案 C解析电磁感应现象产生的条件是:穿过闭合回路的磁通量发生改变时,回路中有感应电流产生.A中,即使有一个恒定的磁场,也不会有示数,A错误;同理,将电流表与线圈组成回路,使线圈沿某一方向运动,如果电流表无示数,也不能判断出没有磁场,因为磁通量可能是恒定的,B错误;电流表有示数则说明一定有磁场,C正确;将电流表与线圈组成闭合回路,使线圈在某一个与磁场平行的平面内沿各个方面运动,也不会有示数,D错误.2.一环形线圈放在磁场中,设第1 s内磁感线垂直线圈平面向里,如图1甲所示.若磁感应强度B随时间t变化的关系如图乙所示,那么下列选项正确的是()图1A.第1 s内线圈中感应电流的大小逐渐增加B.第2 s内线圈中感应电流的大小恒定C.第3 s内线圈中感应电流的方向为顺时针方向D.第4 s内线圈中感应电流的方向为顺时针方向答案 B解析 由图象分析可知,磁场在每1 s 内为均匀变化,斜率恒定,线圈中产生的感应电流大小恒定,因此A 错误,B 正确;由楞次定律可判断出第3 s 、第4 s 内线圈中感应电流的方向均为逆时针方向,C 、D 错误.3.竖直面内有两圆形区域内分别存在水平的匀强磁场,其半径均为R 且相切于O 点,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R 的导体杆OA 绕O 点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t =0时,OA 恰好位于两圆的公切线上,如图2所示,若选取从O 指向A 的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是( )图2答案 A解析 由右手定则可判断,开始时感应电动势为正,故B 错误;由E =12BL 2ω可知,B 、ω不变,切割有效长度随时间先增大后减小,且做非线性变化,经半个周期后,电动势的方向反向,故C 、D 错误,A 正确.4.在如图3所示的电路中,a 、b 、c 为三盏完全相同的灯泡,L 是一个自感系数很大、直流电阻为零的自感线圈,E 为电源,S 为开关.关于三盏灯泡,下列说法正确的是( )图3A .闭合开关,c 先亮,a 、b 后亮B .闭合开关一会后,a 、b 一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪亮一下后和a一起缓慢熄灭答案 B解析闭合开关,由于自感线圈自感系数很大,所以b、c灯先亮,a灯后亮,A错;电路稳定后,线圈相当于一根导线,a、b灯一样亮,B对;开关断开,c灯马上熄灭,此时线圈相当于一个电源,a、b灯构成一个串联电路,缓慢熄灭,C、D错.5.如图4所示,铝质的圆筒形管竖直立在水平桌面上,一条形磁铁从铝管的正上方由静止开始下落,然后从管内下落到水平桌面上.已知磁铁下落过程中不与管壁接触,不计空气阻力,下列判断正确的是()图4A.磁铁在整个下落过程中做自由落体运动B.磁铁在管内下落过程中机械能守恒C.磁铁在管内下落过程中,铝管对桌面的压力大于铝管的重力D.磁铁在下落过程中动能的增加量等于其重力势能的减少量答案 C解析磁铁在铝管中运动的过程中,铝管的磁通量发生变化,产生感应电流,磁铁受到向上的安培力的阻碍,铝管中产生热能,所以磁铁的机械能不守恒,磁铁做的是非自由落体运动,A、B选项错误;铝管受到的安培力向下,则铝管对桌面的压力大于铝管的重力,C选项正确;磁铁在整个下落过程中,除重力做功外,还有安培力做负功,导致减小的重力势能,部分转化为动能外,还产生内能.所以根据能量守恒定律可知,磁铁在下落过程中动能的增加量小于其重力势能的减少量.D选项错误.6.如图5所示,用一根横截面积为S的硬导线做成一个半径为r的圆环,把圆环的右半部分置于均匀变化的磁场中,磁场方向垂直纸面向里,磁感应强度大小随时间的变化率ΔB Δt=k(k>0),ab为圆环的一条直径,导线的电阻率为ρ.则()图5A .圆环具有扩张的趋势B .圆环中产生顺时针方向的感应电流C .图中ab 两点间的电压大小为12k π D .圆环中感应电流的大小为krS 4ρ答案 D解析 磁场方向垂直纸面向里,磁感应强度大小随时间的变化率ΔB Δt=k (k >0),说明B 增大,根据楞次定律判断可知,圆环中产生的感应电流方向沿逆时针方向,B 错误;根据左手定则判断可知,圆环所受的安培力指向环内,则圆环有收缩的趋势,A 错误;由法拉第电磁感应定律得E =ΔB Δt S 环=12k πr 2,C 错误;圆环的电阻R =ρ2πr S ,则感应电流大小为I =E R =krS 4ρ,D 正确.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,选对但不全的得3分,有选错或不答的得0分)7.如图6所示,两条平行虚线之间存在匀强磁场,磁场方向垂直纸面向里,虚线间的距离为l ,金属圆环的直径也是l ,圆环从左边界进入磁场,以垂直于磁场边界的恒定速度v 穿过磁场区域.则下列说法正确的是( )图6A .感应电动势的大小先增大后减小再增大再减小B .感应电流的方向先逆时针后顺时针C .金属圆环受到的安培力先向左后向右D .进入磁场时感应电动势平均值E =12πBl v 答案 AB解析 在圆环进入磁场的过程中,通过圆环的磁通量逐渐增大,根据楞次定律,可知感应电流的方向为逆时针方向,有效长度先增大后减小,所以感应电动势先增大后减小,同理可以判断出磁场时的情况,A 、B 选项正确;根据左手定则可以判断,进入磁场和出磁场时受到的安培力都向左,C 选项错误;进入磁场时感应电动势平均值E =ΔΦΔt =B ·14πl 2l v=14πBl v ,D 选项错误.8.如图7甲所示,位于同一水平面内的两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在平面,导轨的一端与一电阻相连,具有一定质量的金属杆ab 放在导轨上并与导轨垂直,当磁场的磁感应强度B 随时间t 如图乙变化时(规定垂直纸面向里的磁场方向为正方向),用一平行于导轨的力F 向左或向右拉杆ab ,使它保持静止.若规定由a →b 通过杆的感应电流方向为正方向,向右的拉力方向为正方向,则能反映通过杆的感应电流i 和拉力F 随时间t 变化的图线是( )图7答案 AC解析 在0~0.5 s 内,B 均匀增大,根据法拉第电磁感应定律可知,回路中产生恒定的感应电动势,E 1=ΔΦ=ΔB S =2B 0-B 00.5S =2B 0S ,根据楞次定律判断得知,ab 中产生的感应电流方向由b →a ,为负方向.感应电流的大小为I 1=E 1R =2B 0S R;ab 杆所受的安培力大小为F A1=BI 1L =2B 0SL R (B 0+2B 0t ),方向向左,则拉力大小为F 1=F A1=2B 0SL R(B 0+2B 0t ),方向向右,为正方向;在0.5~1 s 内,B 不变,穿过回路的磁通量不变,没有感应电流产生,安培力和拉力均为零;在1~1.5 s 内,B 均匀减小,根据法拉第电磁感应定律可知,回路中产生恒定的感应电动势,E 2=ΔΦΔt =ΔB Δt S =2B 00.5S =4B 0S ,根据楞次定律判断得知,ab 中产生的感应电流方向由a →b ,为正方向.感应电流的大小为I 2=E 2R =4B 0S R;ab 杆所受的安培力大小为F A2=BI 2L =4B 0SL R [2B 0-4B 0(t -1)]=4B 0SL R(6B 0-4B 0t ),方向向右,则拉力大小为F 2=F A2=4B 0SL R(6B 0-4B 0t ),方向向左,为负方向;故知A 、C 正确. 9.如图8所示,正方形线框的边长为L ,电容器的电容为C .正方形线框的一半放在垂直纸面向里的匀强磁场中,当磁感应强度以k 的变化率均匀减小时,则( )图8A .线框产生的感应电动势大小为kL 2B .电压表没有读数C .a 点的电势高于b 点的电势D .电容器所带的电荷量为零答案 BC解析 由于线框的一半放在磁场中,因此线框产生的感应电动势大小为kL 22,A 错误;由于线框所产生的感应电动势是恒定的,且线框连接了一个电容器,相当于电路断路,外电压等于电动势,内电压为零,而接电压表的这部分相当于回路的内部,因此,电压表两端无电压,电压表没有读数,B 正确;根据楞次定律可以判断,a 点的电势高于b 点的电势,C 正确;电容器所带电荷量为Q =C kL 22,D 错误. 10.在光滑的水平面上方,有两个磁感应强度大小均为B 、方向相反的水平匀强磁场,如图9所示.PQ 为两个磁场的边界,磁场范围足够大.一个边长为a 、质量为m 、电阻为R 的金属正方形线框,以速度v 垂直磁场方向从图中实线位置开始向右运动,当线框运动到分别有一半面积在两个磁场中时,速度为v 2,则下列说法正确的是( )图9A .此过程中通过线框横截面的电荷量为2Ba 2RB .此时线框的加速度为B 2a 2v 2mRC .此过程中回路产生的电能为38m v 2 D .此时线框中的电功率为4B 2a 2v 2R答案 CD解析 对此过程,由能量守恒定律可得,回路产生的电能E =12m v 2-12m ×14v 2=38m v 2,选项C 正确;线圈中磁通量的变化ΔΦ=Ba 2,则由电流的定义和欧姆定律可得q =ΔΦR =Ba 2R ,选项A 错误;此时线框产生的电流I =2Ba v R ,由牛顿第二定律和安培力公式可得加速度a 1=2BIa m=4B 2a 2v mR ,选项B 错误;由电功率定义可得P =I 2R =4B 2a 2v 2R,选项D 正确. 三、填空题(本题共2小题,共10分)11.(6分)把一个用丝线悬挂的铅球放在电路中的线圈上方,如图10所示,在下列三种情况下,悬挂铅球的丝线所受的拉力与铅球不在线圈上方时比较:图10(1)当滑动变阻器的滑片向右移动时,拉力__________.(2)当滑片向左移动时,拉力______________.(3)当滑片不动时,拉力____________.(填“变大”、“不变”或“变小”)答案 (1)变小 (2)变大 (3)不变解析 滑片向右移动时,电路中电阻变小,电流变大,穿过铅球横截面积的磁通量变大,根据楞次定律,铅球有向上运动的趋势,阻碍磁通量的变化,所以拉力变小;相反,滑片向左移动时,拉力变大;滑片不动,电流不变,磁通量不变,所以拉力不变.12.(4分)用如图11所示的实验装置探究电磁感应现象的规律.图11(1)当有电流从电流表的正极流入时,指针向右偏转,下列说法哪些是正确的( )A .当把磁铁的N 极向下插入线圈时,电流表指针向左偏转B .当把磁铁的N 极从线圈中拔出时,电流表指针向左偏转C .保持磁铁在线圈中静止,电流表指针不发生偏转D .磁铁插入线圈后,将磁铁和线圈一起以同一速度向上运动,电流表指针向左偏(2)某同学在实验过程中发现,灵敏电流计的指针摆动很小,如果电路连接正确,接触也良好,原因可能是电流计灵敏度较低、线圈电阻较大,除此以外还可能是因为____________________________(写一种可能原因)答案 (1)AC (2)导体运动的慢或者磁场较弱解析 (1)当有电流从电流表的正极流入时,指针向右偏转,这说明:电流从哪极流入,指针向哪偏转.当把磁铁的N 极向下插入线圈时,由楞次定律可知,感应电流从负极流入,电流表指针向左偏,故A 正确;当把磁铁的N 极从线圈中拔出时,由楞次定律可知,感应电流从正极流入,电流表指针向右偏转,故B 错误;保持磁铁在线圈中静止,穿过线圈的磁通量不变,不产生感应电流,电流表指针不发生偏转,故C 正确;磁铁插入线圈后,将磁铁和线圈一起以同一速度向上运动,穿过线圈的磁通量不变,不产生感应电流,电流表指针不偏转,故D 错误.(2)感应电流是由于导体在磁场中做切割磁感线运动而产生的,如果电路连接正确,接触也良好,原因可能是电流计灵敏度较低、线圈电阻较大,除此以外还可能是因为导体运动的慢或者磁场较弱.四、解答题(本题共4小题,共46分.解答应写出必要的文字说明、只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)13.(12分)轻质细线吊着一质量为m =0.32 kg 、边长为L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω.边长为L 2的正方形磁场区域对称分布在线圈下边的两侧,如图12甲所示,磁场方向垂直纸面向里,大小随时间变化如图乙所示,从t =0开始经t 0时间细线开始松弛,取g =10 m/s 2.求:图12(1)在前t 0时间内线圈中产生的感应电动势;(2)在前t 0时间内线圈的电功率;(3)t 0的值.答案 (1)0.4 V (2)0.16 W (3)2 s解析 (1)由法拉第电磁感应定律得E =n ΔΦΔt =n ×12×(L 2)2ΔB Δt=10×12×(0.82)2×0.5 V =0.4 V . (2)I =E r=0.4 A ,P =I 2r =0.16 W. (3)分析线圈受力可知,当细线松弛时有:F 安=nBI ·L 2=mg ,I =E r ,B =2mgr nEL=2 T 由题图乙知:B =1+0.5t 0(T),解得t 0=2 s.14.(10分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为L ,电阻不计,M 、M ′处接有如图13所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C .长度也为L 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速直线运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图13(1)ab 棒的速度v 的大小;(2)电容器所带的电荷量q .答案 (1)4QR B 2L 2s (2)CQR BLs解析 (1)设ab 上产生的感应电动势为E ,回路中电流为I ,ab 运动距离s 所用时间为t ,则有:E =BL v I =E 4Rt =s v Q =I 2(4R )t 由上述方程得:v =4QR B 2L 2s(2)设电容器两极板间的电势差为U ,则有:U =IR电容器所带电荷量为:q =CU解得:q =CQR BLs15.(12分)如图14所示,有两根足够长、不计电阻、相距L 的平行光滑金属导轨cd 、ef 与水平面成θ角固定放置,底端接一阻值为R 的电阻,在轨道平面内有磁感应强度为B 的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce 、垂直于导轨、质量为m 、电阻不计的金属杆ab ,在沿轨道平面向上的恒定拉力F 的作用下,从底端ce 由静止沿导轨向上运动,当ab 杆速度达到稳定后,撤去拉力F ,最后ab 杆又沿轨道匀速回到ce 端.已知ab 杆向上和向下运动的最大速度相等,求拉力F 和杆ab 最后回到ce 端的速度v .图14答案 2mg sin θ mgR sin θB 2L 2解析 当ab 杆沿导轨上滑达到最大速度v 时,其受力如图所示:由平衡条件可知:F -F 安=mg sin θ①又F 安=BIL ②而I =BL v R③ 联立①②③式得:F -B 2L 2v R-mg sin θ=0④ 同理可得,ab 杆沿导轨下滑达到最大速度时:mg sin θ-B 2L 2v R=0⑤ 联立④⑤两式解得:F =2mg sin θ,v =mgR sin θB 2L 216.(12分)如图15所示,相距为L 的两条足够长的光滑平行金属导轨,MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻.整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.将质量为m 、阻值也为R 的金属杆ab 垂直放在导轨上,杆ab 由静止释放,下滑距离s 时达到最大速度.重力加速度为g ,导轨电阻不计,杆与导轨接触良好.求:图15(1)杆ab 下滑的最大加速度;(2)杆ab 下滑的最大速度;(3)上述过程中,杆上产生的热量.答案 见解析解析 (1)设ab 杆下滑到某位置时速度为v ,则此时杆产生的感应电动势E =BL v回路中的感应电流I =E R +R杆所受的安培力F =BIL根据牛顿第二定律有:mg sin θ-B 2L 2v 2R=ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下.(2)由(1)问知,当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下 (3)ab 杆从静止开始到最大速度过程中,根据能量守恒定律有mgs sin θ=Q 总+12m v 2m又Q 杆=12Q 总,所以Q 杆=12mgs sin θ-m 3g 2R 2sin 2θB 4L 4.。
粤教版高中物理选修3-2第一章电磁感应单元检测、单选题1. 如图所示,长直导线右侧的矩形线框abed与直导线位于同一平面,当长直导线中的电流发生如图所示的变化时(图中所示电流方向为正方向),线框中的感应电流与线框受力情况为()A. t i到t2时间内,线框内电流的方向为abeda,线框受力向右B. t i到t2时间内,线框内电流的方向为abeda,线框受力向左C. 在t2时刻,线框内电流的方向为abeda,线框受力向右D. 在t3时刻,线框内电流最大,线框受力最大2. 如图所示,矩形线框在磁场内做的各种运动中,能够产生感应电流的是(A.3. (2016?北京)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直。
磁感应强度B随时间均匀增大。
两圆坏半径之比为2:1,圆环中产生的感应电动势分别为巳和E),不考虑两圆环间的相互影响。
下列说法正确的是()A. &吕=4:1,感应电流均沿逆时针方向B. EE b=4:1,感应电流均沿顺时针方向C.巳吕=2:1,感应电流均沿逆时针方向D. EE b=2:1,感应电流均沿顺时针方向4.如图所示电路中,L 是自感系数足够大的线圈,它的电阻可忽略不计,Di 和D 2是两个完全相同的小灯泡.将电键K 闭合,待灯泡亮度稳定后,再将电键 K 断开,则下列说法中正确的是( )D. W 1> W 2 ,7.法拉第发明了世界上第一台发电机法拉第圆盘发电机•如图所示, 匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表 连接起来形成回路•转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转•下列说法正确的是A. K 闭合瞬间,两灯同时亮,以后 D i 熄灭,D 2变亮B. K 闭合瞬间,D i 先亮,D 2后亮,最后两灯亮度一样C. K 断开时,两灯都亮一下再慢慢熄灭D. K 断开时,D i . D 2均立即熄灭 5.如图所示,通电直导线旁放有一闭合线圈abed ,当直电线中的电流I 增大或减小时(b□A.电流I 增大,线圈向左平动 C.电流I 减小,线圈向上平动6.如图所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场•若第一次用B 电流I 增大,线圈向0.3s 时间拉出,外力做的功为 W 1 ,通过导线截面的电荷量为 q 1 ;第二次用0.9s 时间拉出,外力所做的功为 W 2 ,通过导线截面的电荷量为q 2则()A. W i < W 2 ,q 1 < q 2B. W i < W 2 , q i =q 2 q 1 > q 2 紫铜做的圆盘水平放置在竖直向下的 A. 回路中电流大小变化,方向不变 B. 回路中电流大小不变,方向变化C. W 1> W 2 , q 1=q 2D.回路中电流方向不变,从 b 导线流进电流表 abed,在水平放置的细长磁铁 S 极中心附近落下,下落过程中线C.回路中电流的大小和方向都周期性变化8.如图所示,一个水平放置的矩形闭合线框框保持水平且bc边在纸外,ad边在纸内•它由位置甲经乙到丙,且甲、丙都靠近乙。
第一章 电磁感应【知识体系】[答案填写] ①磁通量 ②磁通量的变化率 ③nΔΦΔt ④E =BLv ⑤12BL 2ω ⑥电流主题1 楞次定律的理解及其推广1.楞次定律的理解.楞次定律解决的问题是感应电流的方向问题,它涉及两个磁场,感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场),前者和后者的关系不是“同向”和“反向”的简单关系,而是前者“阻碍”后者“变化”的关系.2.对“阻碍”意义的理解.(1)阻碍原磁场的变化.“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反,当原磁通量减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其他形式的能量转化为电能,因而楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的推广.楞次定律可推广为感应电流的效果总是要反抗(或阻碍)产生感应电流的原因.因此也常用以下结论作迅速判断:(1)阻碍原磁通量的变化(增反减同).(2)阻碍导体的相对运动(来拒去留).(3)使线圈的面积有扩大或缩小的趋势(增缩减扩).(4)阻碍原电流的变化(自感现象).【典例1】如图所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当开关S接通的一瞬间,两铜环的运动情况是( )A.同时向两侧推开B.同时向螺线管靠拢C.一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D.同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断解析:当开关S接通的一瞬间,螺线管的磁场增强,故穿过两边线圈的磁通量均增加,根据楞次定律,在线圈中产生的感应电流阻碍磁通量的增加,故线圈会远离螺线管运动,故两铜环的运动情况是同时向两侧推开,选项A正确.答案:A针对训练1.(2016·上海卷)(多选)如图(a),螺线管内有平行于轴线的外加匀强磁场,图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图(b)所示规律变化时( )图(a) 图(b)A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C .在t 2~t 3时间内,L 内有逆时针方向的感应电流D .在t 3~t 4时间内,L 内有顺时针方向的感应电流解析:在t 1~t 2时间内,穿过圆环的磁通量向上不是均匀增大,由楞次定律可以确定L 必须减小面积以达到阻碍磁通量的增大,故有收缩的趋势,故A 正确;在t 2~t 3时间内,穿过圆环的磁通量向上均匀减小,由法拉第电磁感应定律可知,L 中磁通量不变,则L 中没有感应电流,因此没有变化的趋势,故B 、C 错误;在t 3~t 4时间内,向下的磁通量减小,根据楞次定律,在线圈中的电流方向c 到b ,根据右手螺旋定则,穿过圆环L 的磁通量向内减小,则根据楞次定律,在金属圆环中产生顺时针方向的感应电流,故D 正确.答案:AD主题2 电磁感应中的电路问题在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,感应电流引起热效应,所以电磁感应问题常常与电路知识综合考查.1.解决与电路相联系的电磁感应问题的基本方法.(1)明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路.(2)用法拉第电磁感应定律确定感应电动势的大小,用楞次定律或右手定则确定感应电流的方向.(3)画等效电路图.分清内外电路,画出等效电路图是解决此类问题的关键.(4)运用闭合电路欧姆定律、串并联电路的特点、电功、电功率等公式求解.2.问题示例.图甲 图乙(1)图甲中若磁场增强,可判断感应电流方向为逆时针,则ΦB >ΦA ;若线圈内阻为r ,则U BA =ΔΦΔt ·R R +r. (2)图乙中,据右手定则判定电流流经AB 的方向为B →A ,则可判定ΦA >ΦB ,若导体棒的电阻为r ,则U AB =BLv R +r·R . 【典例2】 (多选)半径为a 的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B ,杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为8B 2av (π+4)R 0D .θ=π3时,杆受的安培力大小为3B 2av (5π+3)R 0解析:θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度是a ,所以杆产生的电动势为Bav ,故B 错误;θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻⎝⎛⎭⎪⎫2+π2aR 0.所以杆受的安培力大小是8B 2av (π+4)R 0,故C 正确;当θ=π3时,电路中总电阻是⎝ ⎛⎭⎪⎫518π+1aR 0,所以杆受到的安培力18B 2av (5π+18)R,故D 错误. 答案:AC针对训练2.(2016·全国Ⅱ卷)(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别于圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B 中,圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:铜盘转动产生的感应电动势为:E =12BL 2ω,B 、L 、ω不变,E 不变,电流I =E R=BL 2ω2R,电流大小恒定不变,由右手定则可知,回路中电流方向不变,若从上往下看,圆盘顺时针转动,由右手定则知,电流沿a 到b 的方向流动,故A 、B 正确;若圆盘转动方向不变,角速度大小发生变化,则电流方向不变,大小变化,故C 错误;若圆盘转动的角速度变为原来的2倍,回路电流变为原来2倍,根据P =I 2R ,电流在R 上的热功率也变为原来的4倍,故D 错误.答案:AB主题3 电磁感应中的动力学问题1.解决电磁感应中的动力学问题的一般思路.(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流.(3)分析研究导体的受力情况(包含安培力,用左手定则确定其方向).(4)根据牛顿第二定律或物体受力平衡列方程求解.2.受力情况、运动情况的动态分析.导体受力运动产生感应电动势→感应电流→通电导体受安培力作用→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,最终结果是加速度等于0,导体达到稳定运动状态.此类问题要画好受力图,抓住加速度a =0时,速度v 达到最值的特点.【典例3】 (多选)如图所示,固定放置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离l 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .则此过程( )A .杆的速度最大值为(F -μmg )RB 2d 2 B .流过电阻R 的电量为Bdl R +rC .恒力F 做的功与安培力做的功之和大于杆动能的变化量D .恒力F 做的功与摩擦力做的功之和等于杆动能的变化量解析:杆匀速运动时速度最大,设杆的速度最大值为v ,此时杆所受的安培力为F A =BId=B Bdv R +r d =B 2d 2v R +r ,而且杆受力平衡,则有F =F A +μmg ,解得v =(F -μmg )(R +r )B 2d 2,故A 错误.流过电阻R 的电荷量为 q =ΔΦR +r =Bdl R +r,故B 正确.根据动能定理得:恒力F 做的功、摩擦力做的功、安培力做的功之和等于杆动能的变化量,而摩擦力做负功,安培力也做负功,则知恒力F 做的功与安培力做的功之和大于杆动能的变化量,恒力F 做的功与摩擦力做的功之和大于杆动能的变化量,故C 正确,D 错误.答案:BC针对训练3.(多选)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .金属棒向下运动时,流过电阻R 的电流方向为a →bB .释放瞬间金属棒的加速度等于重力加速度gC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .电阻R 上产生的总热量等于金属棒重力势能的减少量解析:导体棒下落过程中切割磁感线,回路中形成电流,根据楞次定律判断电流的方向,流过电阻R 电流方向为b →a ,故A 错误;金属棒释放瞬间,速度为零,感应电流为零,由于弹簧处于原长状态,因此金属棒只受重力作用,故其加速度的大小为g ,故A 正确;当金属棒的速度为v 时,由F 安=BIL =B BLv R L =B 2l 2v R,故C 正确;当金属棒下落到最底端时,重力势能转化为弹性势能和焦耳热,所以R 上产生的总热量小于金属棒重力势能的减少量,故D 错误.答案:BC主题4 电磁感应中的能量问题1.能量转化.在电磁感应现象中,通过外力克服安培力做功,把机械能或其他形式的能转化为电能,克服安培力做多少功,就有多少其他形式的能转化为电能,即在电路中就产生多少电能.若电路是纯电阻电路,转化过来的电能全部转化为内能;若电路为非纯电阻电路,则电能一部分转化为内能,一部分转化为其他形式的能,比如:用电器有电动机,一部分转化为机械能.2.一般思路.(1)分析回路,分清电源和外电路.(2)分清哪些力做功,明确有哪些形式的能量发生转化.如:3.电能的三种求解思路.(1)利用克服安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.(2)利用能量守恒求解,相应的其他能量的减少量等于产生的电能.(3)利用电路特征来求解,通过电路中所消耗的电能来计算.【典例4】 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.2 m ,导轨平面与水平面间夹角θ=30°,N 、Q 间连接一个电阻R =0.1 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =0.5 T .一根质量m =0.03 kg 的金属棒正在以v =1.2 m/s 的速度沿导轨匀速下滑,下滑过程中始终与导轨垂直,且与导轨接触良好.金属棒及导轨的电阻不计,g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求:(1)电阻R 中电流的大小;(2)金属棒与导轨间的滑动摩擦因数的大小;(3)对金属棒施加一个垂直于金属棒且沿导轨平面向上的恒定拉力F =0.2 N ,若金属棒继续下滑x =0.14 m 后速度恰好减为0,则在金属棒减速过程中电阻R 中产生的焦耳热为多少?解析:(1)感应电动势E =BLv =0.5×0.2×1.2 V =0.12 V ,感应电流I =E R =0.120.1 A =1.2 A.(2)导体棒受到的安培力F 安=BIL =0.5×0.2×1.2 N =0.12 N. 金属棒匀速下滑,根据平衡条件可知mg sin θ-f -F 安=0,且F N -mg cos θ=0,又f =μF N ,代入数据,解得μ=0.25.(3)从施加拉力F 到金属棒停下的过程中,由能量守恒定律,得(F -mg sin θ+μmg cos θ)x +Q =12mv 2, 代入数据,解得产生的焦耳热Q =1.04×10-2J.答案:(1)1.2 A (2)0.25 (3)1.04×10-2 J针对训练4.(2014·广东卷)如图所示,上下开口、内壁光滑的铜管P 和塑料管Q 竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( )A .在P 和Q 中都做自由落体运动B .在两个下落过程中的机械能都守恒C .在P 中的下落时间比在Q 中的长D .落至底部时在P 中的速度比在Q 中的大解析:由于电磁感应,在铜管P 中还受到向上的磁场力,而在塑料管中只受到重力,即只在Q 中做自由落体运动,故选项A 、B 错误;而在P 中加速度较小,故选项C 正确而选项D 错误.答案:C统揽考情1.感应电流的产生条件、方向判断和电动势的简单计算,磁感应强度、磁通量、电动势、电压、电流随时间变化的图象,以及感应电动势、感应电流随线框位移变化的图象,是高频考点,以选择题为主.2.滑轨类问题、线框穿越有界匀强磁场、电磁感应中的能量转化等综合问题,能很好地考查考生的能力,备受命题专家的青睐.真题例析(2015·课标全国Ⅱ卷)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c 金属框中无电流B .U b >U c 金属框中电流方向沿a →b →c →aC .U bc =-12Bl 2ω金属框中无电流 D .U bc =12Bl 2ω金属框中电流方向沿a →c →b →a 解析:当金属框绕ab 边以角速度ω逆时针转动时,穿过直角三角形金属框abc 的磁通量恒为0,所以没有感应电流,由右手定则可知,c 点电势高,U bc =-12Bl 2ω,故C 正确,A 、B 、D 错误.答案:C针对训练(2015·课标全国Ⅰ卷)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )A .圆盘上产生了感应电动势B .圆盘内的涡电流产生的磁场导致磁针转动C .在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D .圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动 解析:圆盘运动过程中,半径方向的金属条在切割磁感线,在圆心和边缘之间产生了感应电动势,选项A 对,圆盘在径向的辐条切割磁感线过程中,内部距离圆心远近不同的点电势不等而形成涡流产生,选项B对.圆盘转动过程中,圆盘位置、圆盘面积和磁场都没有发生变化,所以没有磁通量的变化,选项C错.圆盘本身呈现电中性,不会产生环形电流,选项D错.答案:AB1.(2016·江苏卷)(多选)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发生声音,下列说法正确的有( )A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.磁振动过程中,线圈中的电流方向不断变化解析:铜不可以被磁化,则选用铜质弦,电吉他不能正常工作,故A错误;取走磁体,就没有磁场,振弦不能切割磁感线产生电流,电吉他将不能正常工作,故B正确;根据E=n ΔΦΔt可知,增加线圈匝数可以增大线圈中的感应电动势,故C正确;磁振动过程中,磁场方向不变,但磁通量有时变大,有时变小,则线圈中的电流方向不断变化,故D正确.答案:BCD2.(2015·山东卷)(多选)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是( )A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D .若所加磁场穿过整个圆盘,圆盘将匀速转动解析:由右手定则可知,处于磁场中的圆盘部分,靠近圆心处电势高,选项A 正确;根据E =BLv 可知所加磁场越强,则感应电动势越大,感应电流越大,产生的电功率越大,消耗的机械能越快,则圆盘越容易停止转动,选项B 正确;若加反向磁场,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍减速转动,选项C 错误;若所加磁场穿过整个圆盘则圆盘中无感应电流,不消耗机械能,圆盘匀速转动,选项D 正确;故选A 、B 、D.答案:ABD3.(2016·浙江卷)如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10 匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )A .两线圈内产生顺时针方向的感应电流B .a 、b 线圈中感应电动势之比为9∶1C .a 、b 线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为3∶1解析:根据楞次定律可知,原磁场向里增大,则感应电流的磁场与原磁场方向相反,因此感应电流为逆时针,故A 错误;根据法拉第电磁感应定律可知,E =n ΔΦΔt =n ΔBS Δt , 而S =l 2, 因此电动势之比为9∶1,故B 正确;线圈中电阻R =ρL g,而导线长度L =n ×4l ,故电阻之比为3∶1, 由欧姆定律可知I =E R ,则电流之比为3∶1, 故C 错误;电功率P =E 2R ,电动势之比为9∶1,电阻之比为3∶1,则电功率之比为27∶1,故D 错误.答案:B4.(2015·安徽卷)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l .导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Blv sin θB .电路中感应电流的大小为Bv sin θrC .金属杆所受安培力的大小为B 2lv sin θrD .金属杆的热功率为B 2lv 2r sin θ解析:导体棒切割磁感线产生感应电动势E =Blv ,故A 错误;感应电流的大小I =Elsin θ·r =Bv sin θr ,故B 正确;所受的安培力为F =BIl sin θ=B 2vl r,故C 错误;金属杆的热功率Q =I 2l sin θ r =B 2v 2sin θr ,故D 错误. 答案:B5.(2015·课标全国Ⅰ卷)如图,一长为10 cm 的金属棒ab 用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1 T ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12 V 的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量均为0.5 cm ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm ,重力加速度大小取10 m/s 2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.解析:金属棒通电后,闭合回路电流I =U R =122A =6 A. 导体棒受到安培力F =BIL =0.06 N.根据安培定则可判断金属棒受到安培力方向竖直向下,开关闭合前:2×k ×0.5×10-2=mg ,开关闭合后:2×k ×(0.5+0.3)×10-2=mg +F .则m =0.01 kg.答案:安培力方向竖直向下 0.01 kg。