最新人教版2018-2019学年七年级数学上册期中考试综合模拟试题及答案解析-精编试题
- 格式:docx
- 大小:192.89 KB
- 文档页数:19
2018-2019学年七年级上学期期中考试数学试题一、选择题(1-10小题每小题3分,11-16小题每小题3分,共42分,每小题的四个选项中只有一个是正确的)1.某天的温度上升了﹣2℃的意义是()A.上升了2℃B.没有变化C.下降了﹣2℃D.下降了2℃2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.3.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105B.1.3×104C.1.3×105D.13×1034.六棱柱中,侧棱的条数有()A.6条B.8条C.12条D.18条5.下列一组数:0.6,﹣4,(﹣1)2017,﹣5,﹣(﹣1.7),﹣|﹣2|中负数有()A.2个B.3个C.4个D.5个6.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能7.下面关于有理数的说法正确的是()A.正数、负数和零统称为有理数B.正整数与负整数合在一起就构成全部整数C.有限小数和无限循环小数不是有理数D.整数和分数统称为有理数8.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.9.如图,点A表示的有理数是a,则a,﹣a,1的大小顺序为()A.a<﹣a<1 B.﹣a<a<1 C.a<1<﹣a D.1<﹣a<a 10.下列说法正确的有()A.x+2=5是代数式B.是单项式C.多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和D.2不是单项式11.已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2017的值为()A.﹣1 B.1 C.2012 D.﹣200812.如图是某同学完成作业的照片,他做对的题数是()A.2个B.3个C.4个D.5个13.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2 14.已知|a|=5,|b|=2,且|a﹣b|=b﹣a,则a+b=()A.3或7 B.﹣3或﹣7 C.﹣3 D.﹣715.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.1+π或1﹣πB.2+π或2﹣πC.0.5+π或0.5﹣πD.0.25+π或0.25﹣π16.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去,则第2014个图中共有正方形的个数为()A.2014 B.2017 C.6040 D.6044二、填空题(17、18每小题3分,19小题每空2分,共10分)17.单项式的系数是.18.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是.19.一列数a1,a2,a3,a4,…,其中a1=﹣1,a2=,a3=,a4=,…依此类推,a2=,a2018=.三、解答题(共68分,请写出必要的解答过程)20.计算①(﹣40)﹣28+(﹣5)+28②(﹣12)÷③11﹣(+22)﹣11×(﹣3)④0﹣23÷(﹣4)3﹣21.用简便方法运算①÷(﹣)②(﹣1.53)×0.75+0.53×+3.4×(﹣0.75)③49×(﹣5)22.已知a,b互为相反数,m,n互为倒数,x的平方与它本身相等,回答:(1)由题目可得,a+b=,mn=,x=;(2)求多项式2x2+(﹣mn)2017+(a+b)2018的值.23.亮亮在学习展开与折叠时,不小心将正方体展开图的一个面给剪下来了,如图所示,经过折叠发现,它可以围成一个无盖的正方体盒子.现在请你开动脑筋,无盖的正方体盒子展开图还有哪些,请画出5种与亮亮不同的.(注意:请用尺子规范作图呦!)24.某电动车厂本周内计划每日生产200辆电动车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)(1)产量最多的一天比产量最少的一天多生产了辆.(2)本周总生产量与计划生产量相比,是增加还是减少,增加或减少了多少辆?(3)本周共生产了多少辆电动车?25.观察下列各式,并回答问题1+2+1=4=221+2+3+2+1=9=321+2+3+4+3+2+1=16=421+2+3+4+5+4+3+2+1=25=52……(1)请你写出第5个式子;(2)请你用含n的式子表示上述式子所表示的规律;(3)计算:1+2+3+……+99+100+99+……+3+2+1.(4)计算:6+7+8+……+99+100+99+……+8+7+6;(5)计算:1+2+3+……+99+100.26.阅读材料:我们知道无限循环小数可以化成分数,下面提供了一种方法.把循环小数0.化为分数:由100×0.﹣0.=16.﹣0.=16即(100﹣1)×0.=1699×0.=16所以0.=把循环小数2.1化为分数:只需将其小数部分0.1化成分数即可由100×0.1﹣10×0.1=15.﹣1.=14即(100﹣10)×0.1=1490×0.1=14所以0.1=所以2.1=2下面将展示三组题,你只能选择一组来做.(请在答题纸上标明你选择的题组)A组:请将下面4个数化成分数.①0.②0.③1.④3.2B组:请将下面2个数化成分数.①0.2②﹣3.0C组:你还知道其他无限循环小数化成分数的方法吗,请用0.举例说明.参考答案与试题解析一.选择题(共16小题)1.某天的温度上升了﹣2℃的意义是()A.上升了2℃B.没有变化C.下降了﹣2℃D.下降了2℃【分析】在一般情况下,温度上升一般用正数表示,上升的度数是负数,则表示与上升相反意义的量,即下降了2℃.【解答】解:上升一般用正数表示,则温度上升了﹣2℃的意义是下降了2℃,故选D.2.如图所示的花瓶中,()的表面,可以看作由所给的平面图形绕虚线旋转一周形成的.A.B.C.D.【分析】根据面动成体,可得答案.【解答】解:由题意,得图形与B的图形相符,故选:B.3.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105B.1.3×104C.1.3×105D.13×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将13000用科学记数法表示为:1.3×104.故选:B.4.六棱柱中,侧棱的条数有()A.6条B.8条C.12条D.18条【分析】根据棱柱的特征:n棱柱有n条侧棱,2n条底棱,n棱柱的棱是3n条,可得答案.【解答】解:六棱柱有六条侧棱,12条底棱,故选:C.5.下列一组数:0.6,﹣4,(﹣1)2017,﹣5,﹣(﹣1.7),﹣|﹣2|中负数有()A.2个B.3个C.4个D.5个【分析】根据正数和负数的定义即可作出判断,负数是小于0的数,据此选择正确选项.【解答】解:在0.6,﹣4,(﹣1)2017,﹣5,﹣(﹣1.7),﹣|﹣2|中负数有﹣4,(﹣1)2017=﹣1,﹣5,﹣|﹣2|=﹣2共4个,故选:C.6.用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A.圆锥B.圆柱C.球体D.以上都有可能【分析】根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【解答】解:A、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;D、根据以上分析可得此选项错误;故选:B.7.下面关于有理数的说法正确的是()A.正数、负数和零统称为有理数B.正整数与负整数合在一起就构成全部整数C.有限小数和无限循环小数不是有理数D.整数和分数统称为有理数【分析】根据有理数的定义即可作出判断.【解答】解:A、正有理数、负有理数和零统称为有理数,故说法错误;B、正整数与负整数以及0合在一起就构成整数,故说法错误;C、有限小数和无限循环小数是有理数,故说法错误;D、整数和分数统称为有理数,故说法正确.故选:D.8.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【分析】根据俯视图中每列正方形的个数,再画出从正面,左面看得到的图形即可.【解答】解:该几何体的左视图是:.故选:D.9.如图,点A表示的有理数是a,则a,﹣a,1的大小顺序为()A.a<﹣a<1 B.﹣a<a<1 C.a<1<﹣a D.1<﹣a<a【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【解答】解:因为﹣1<a<0,所以0<﹣a<1,可得:a<﹣a<1.故选:A.10.下列说法正确的有()A.x+2=5是代数式B.是单项式C.多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和D.2不是单项式【分析】利用代数式,整式,多项式,单项式的性质判断即可.【解答】解:A、x+2=5不是代数式,是等式,原说法错误,故不符合题意;B、不是单项式,是分式,原说法错误,故不符合题意;C、多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和,原说法正确,故符合题意;D、2是单项式,原说法错误,故不符合题意,故选:C.11.已知实数x,y满足|x﹣3|+(y+4)2=0,则代数式(x+y)2017的值为()A.﹣1 B.1 C.2012 D.﹣2008 【分析】根据非负数的性质进行计算即可.【解答】解:∵|x﹣3|+(y+4)2=0,∴x﹣3=0,y+4=0,∴x=3,y=﹣4,∴(x+y)2017=(3﹣4)2017=﹣1.故选:A.12.如图是某同学完成作业的照片,他做对的题数是()A.2个B.3个C.4个D.5个【分析】直接利用幂的乘方运算法则以及相反数的定义以及绝对值的性质、倒数的定义分别分析得出答案.【解答】解:①﹣1的倒数是1,不正确,故原题解答正确;②|﹣3|=3,正确,故原题解答错误;③﹣(﹣2)=﹣2,不正确,故原题解答错误;④=,正确,故原题解答正确;⑤若|a|=|b|,则a=b,不正确,故原题解答错误;故选:A.13.长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是()A.2a2﹣πb2B.2a2﹣b2C.2ab﹣πb2D.2ab﹣b2【分析】根据题意列出代数式解答即可.【解答】解:能射进阳光部分的面积是2ab﹣b2,故选:D.14.已知|a|=5,|b|=2,且|a﹣b|=b﹣a,则a+b=()A.3或7 B.﹣3或﹣7 C.﹣3 D.﹣7【分析】由|a﹣b|=b﹣a,知b>a,又由|a|=5,|b|=2,知a=﹣5,b=2或﹣2,当a=﹣5,b=2时,a+b=﹣3,当a=﹣5,b=﹣2时,a+b=﹣7,故a+b=﹣3或﹣7.【解答】解:∵|a﹣b|=b﹣a,∴b>a,∵|a|=5,|b|=2,∴a=﹣5,b=2或﹣2,当a=﹣5,b=2时,a+b=﹣3,当a=﹣5,b=﹣2时,a+b=﹣7,∴a+b=﹣3或﹣7.故选:B.15.如图,把半径为0.5的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴滚动一周,此时点A表示的数是()A.1+π或1﹣πB.2+π或2﹣πC.0.5+π或0.5﹣πD.0.25+π或0.25﹣π【分析】根据半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,再由圆的周长公式得出周长为π,根据两点间的距离是大数减小数,可得答案.【解答】解:由半径为0.5的圆从数轴上表示1的点沿着数轴滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得当A点在1的左边时表示的数是1﹣π,当A点在1的右边时表示的数是1+π.故选:A.16.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形;…;如此下去,则第2014个图中共有正方形的个数为()A.2014 B.2017 C.6040 D.6044【分析】观察图形可知,每剪开一次多出3个正方形,然后写出前4个图形中正方形的个数,再根据此规律写出第n个图形中的正方形的个数的表达式,再代入2014求得问题即可.【解答】解:第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形10个,…,第n个图形有正方形(3n﹣2)个.则第2014个图中共有正方形的个数为3×2014﹣2=6040.故选:C.二.填空题(共3小题)17.单项式的系数是.【分析】直接利用单项式的定义分析得出答案.【解答】解:单项式的系数是.故答案为:18.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是 5 .【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【解答】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故答案为:5.19.一列数a1,a2,a3,a4,…,其中a1=﹣1,a2=,a3=,a4=,…依此类推,a2=,a2018=.【分析】根据后一个数等于1减去前一个数差的倒数,进行计算即可求解.【解答】解:由题中给出的规律,得a1=﹣1,a2=,a3=2,a4=﹣1,a5=…2018÷3=672 (2)∴a2018=.故答案为,.三.解答题(共7小题)20.计算①(﹣40)﹣28+(﹣5)+28②(﹣12)÷③11﹣(+22)﹣11×(﹣3)④0﹣23÷(﹣4)3﹣【分析】①先化简,再计算加减法;②将除法变为乘法,再约分计算即可求解;③先算乘法,再算减法;④先算乘方,再算除法,最后算减法;同级运算,应按从左到右的顺序进行计算.【解答】解:①(﹣40)﹣28+(﹣5)+28=﹣40﹣28﹣5+28=﹣45;②(﹣12)÷=(﹣12)×(﹣12)×(﹣)=﹣;③11﹣(+22)﹣11×(﹣3)=11﹣22+33=22;④0﹣23÷(﹣4)3﹣=0﹣8÷(﹣64)﹣=0+﹣=0.21.用简便方法运算①÷(﹣)②(﹣1.53)×0.75+0.53×+3.4×(﹣0.75)③49×(﹣5)【分析】①将除法变为乘法,再根据乘法分配律简便计算;②根据乘法分配律简便计算;③先变形为(50﹣)×(﹣5),再根据乘法分配律简便计算.【解答】解:①÷(﹣)=×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣16+20﹣2=2;②(﹣1.53)×0.75+0.53×+3.4×(﹣0.75)=(﹣1.53+0.53﹣3.4)×0.75=﹣4.4×0.75=﹣3.3;③49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249.22.已知a,b互为相反数,m,n互为倒数,x的平方与它本身相等,回答:(1)由题目可得,a+b=0 ,mn= 1 ,x=0或1 ;(2)求多项式2x2+(﹣mn)2017+(a+b)2018的值.【分析】(1)根据相反数的定义、互为倒数的定义、平方的性质即可解决问题;(2)把a+b=0,mn=1,x=0或1,代入式子计算即可求解.【解答】解:(1)由题目可得,a+b=0,mn=1,x=0或1;故答案为:0;1;0或1.(2)当x=0时,2x2+(﹣mn)2017+(a+b)2018=0﹣1+0=﹣1;当x=1时,2x2+(﹣mn)2017+(a+b)2018=2﹣1+0=1.∴多项式2x2+(﹣mn)2017+(a+b)2018的值为﹣1或1.23.亮亮在学习展开与折叠时,不小心将正方体展开图的一个面给剪下来了,如图所示,经过折叠发现,它可以围成一个无盖的正方体盒子.现在请你开动脑筋,无盖的正方体盒子展开图还有哪些,请画出5种与亮亮不同的.(注意:请用尺子规范作图呦!)【分析】根据立方体的展开图解决问题即可(答案不唯一).【解答】解:无盖的正方体盒子展开图有:24.某电动车厂本周内计划每日生产200辆电动车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如表(增加的车辆数为正数,减少的车辆数为负数)(1)产量最多的一天比产量最少的一天多生产了辆.(2)本周总生产量与计划生产量相比,是增加还是减少,增加或减少了多少辆?(3)本周共生产了多少辆电动车?【分析】(1)求出每天的产量,即可得到产量最多的一天比产量最少的一天多生产的辆数;(2)根据表格求出所有数据之和,即可做出判断;(3)由表格以及计划每日生产的辆数即可得到本周的产量;【解答】解:(1)产量最多的一天比产量最少的一天多生产了(200+10)﹣(200﹣25)=35(辆),即产量最多的一天比产量最少的一天多生产了35辆;(2)﹣3+9﹣3+7+10﹣9﹣25=﹣14可知本周总生产量与计划生产量相比减少14辆.(3)本周生产的电动车为:7×200+(﹣3+9﹣3+7+10﹣9﹣25)=1386(辆).25.观察下列各式,并回答问题1+2+1=4=221+2+3+2+1=9=321+2+3+4+3+2+1=16=421+2+3+4+5+4+3+2+1=25=52……(1)请你写出第5个式子1+2+3+4+5+6+5+4+3+2+1=36=62;(2)请你用含n的式子表示上述式子所表示的规律1+2+3+…+n+…+3+2+1=n2;(3)计算:1+2+3+……+99+100+99+……+3+2+1.(4)计算:6+7+8+……+99+100+99+……+8+7+6;(5)计算:1+2+3+……+99+100.【分析】(1)由1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52,…可以看出每组数的和等于中间数的平方;由此可以写出第5个式子;(2)根据给出的式子可得所表示的规律;(3)(4)根据(2)中的规律可直接计算出结果;(5)根据(3)的结果加上100再除以2即可求解.【解答】解:(1)第5个式子1+2+3+4+5+6+5+4+3+2+1=36=62;(2)用含n的式子表示上述式子所表示的规律:1+2+3+…+n+…+3+2+1=n2;(3)1+2+3+……+99+100+99+……+3+2+1=1002=10000.(4)6+7+8+……+99+100+99+……+8+7+6=1002﹣(1+2+3+4+5)×2=10000﹣30=9970;(5)1+2+3+……+99+100=(10000+100)÷2=5050.故答案为:1+2+3+4+5+6+5+4+3+2+1=36=62;1+2+3+…+n+…+3+2+1=n2.26.阅读材料:我们知道无限循环小数可以化成分数,下面提供了一种方法.把循环小数0.化为分数:由100×0.﹣0.=16.﹣0.=16即(100﹣1)×0.=1699×0.=16所以0.=把循环小数2.1化为分数:只需将其小数部分0.1化成分数即可由100×0.1﹣10×0.1=15.﹣1.=14即(100﹣10)×0.1=1490×0.1=14所以0.1=所以2.1=2下面将展示三组题,你只能选择一组来做.(请在答题纸上标明你选择的题组)A组:请将下面4个数化成分数.①0.②0.③1.④3.2B组:请将下面2个数化成分数.①0.2②﹣3.0C组:你还知道其他无限循环小数化成分数的方法吗,请用0.举例说明.【分析】A组:根据题目中的结论解题即可;B组:根据题目中的结论解题即可;C组:令c=0.161616,则方程两边都乘以100,转化为100c﹣c=16,求出其解即可.【解答】解:A组:①0.=;②0.==;③1.=1;④3.2=3;B组:①0.2=;②﹣3.0=﹣3;C组:令c=0.262626…①则100c=26.262626…②②﹣①得100c﹣c=16,即99c=16,解得:c=故将0.化成分数为.。
2018-2019 学年江西省南昌市七年级(上)期中数学试卷一、选择题(本大题共8 小题 ,每小题 3 分,共 24分 )在每小题给出的四个选项中,只有一项是正确的 ,请将正确答案前的字母填入题后的括号内,每小题选对得 3 分 ,选错、不选或多选均得零分 .1.( 3 分)在 4, 1.5, 0,﹣ 2 四个数中,属于正分数的是()A .4B .1.5C. 0D.﹣ 22.( 3 分)若 a 的相反数为 1,则 a2019 是()A .2019B .﹣ 2019C. 1D.﹣ 13.( 3 分)计算 1﹣ 3+5﹣ 7+9 =( 1+5+9 )+(﹣ 3﹣ 7)是应用了()A .加法交换律B.加法结合律C.分配律D.加法交换律与结合律4.( 3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80 元记作 +80元,则﹣ 60 元表示()A.收入 60 元B.收入 20 元C.支出 60 元D.支出 20 元5.( 3 分)化简 x+y﹣( x﹣ y)的最后结果是()A .2x+2yB .2y C. 2x D. 06.( 3 分)若两个非零的有理数a、b,满足: |a|= a,|b|=﹣ b,a+b< 0,则在数轴上表示数a、 b 的点正确的是()A .B.C.D.7.( 3 分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由 1 个分裂为64 个,则这个过程要经过()A.1 小时B.2 小时C.3 小时D.4 小时8.( 3 分)按某种标准,多项式a 2﹣ 2a﹣ 1 与 ab+b+2 属于同一类,则下列符合此类标准的多项式是()22C. a+3b﹣ 22A .x ﹣ yB .a+4x+3D. x y+y﹣ 1二、填空题(本大题共6小题,每小题 3分,共 18分)9.(3 分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.第1页(共 13页)10.( 3分)数轴上点 A 表示﹣ 1,点 B 表示 2,则表示 A、 B 两点间的距离是.11.(3 分)若多项式22.x +kxy+4x﹣ 2xy+y﹣1 不含 xy 项,则 k 的值是12.( 3分)在﹣ 1,2,﹣ 3,4 中,任取 3 个不同的数相乘,则其中最小的积是.13.( 322.分)若 a ﹣ 2a=﹣ 1,则 3﹣ 2a +4a 的值是14.( 3 分)有一列数:0, 1, 3, 4,12, 13, 39, 40, 120, a, b, c,这串数是由小明按照一定的规则写下米的,他第 1 次写下 0,1,第 2 次接着写“ 3,4”,第 3 次接着写“ 12,13”,第 4 次接着写“39, 40”,就这样一直接着往下写,则这列数中的a=, b =, c=.三、解答题(本大题共4小题,每小题 6分,共 24分)15.( 6分)计算:( 1)(﹣ 1 )×+(﹣ 1 )×(﹣ 2 );( 2)﹣ 32+( 5﹣× 42)÷(﹣ 1 )16.( 6分)化简:22( 1) 2( x y﹣ 3x)﹣ 3( x y﹣ 2x﹣1)( 2) 4x 2﹣ [7x2﹣ 3( x2﹣ x) ]17.( 6分)若 |a|= 4, |b|< 2,且 b 为整数.(1)求 a, b 的值;(2)当 a, b 为何值时, a+b 有最大值或最小值?此时,最大值或最小值是多少?18.( 6 分)已知 A= 3a 22﹣ ab﹣ 2a, B=﹣ a +ab﹣ 2.( 1)求 4A﹣ 3( A﹣ B)的值;( 2)若 A+3B 的值与 a 的取值无关,求 b 的值.四、解答题(本大题共3小题,每小题 8分,共 24分)19.( 8 分)用“⊕”定义一种新运算,对于任意的有理数a, b,都有 a⊕ b= |a|+b.(1)求(﹣ 1⊕2)⊕(﹣ 3)的值;(2)当 x, y 满足什么条件时,“ x⊕ y”与“ y⊕ x”的值互为相反数.20.( 8 分)学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2 元印刷费,另收 200 元的制版费;乙印刷厂提出:每份材料收0.4 元印刷费,不收制版费.( 1)求两印刷厂各收费多少元?(用含x 的代数式表示)( 2)若学校要印刷1500 份材料,不考虑其他因素,选择哪家印刷厂比较合算?请通过第2页(共 13页)计算说明理由.21.(8 分)一个三位数,它的个位数字为a,十位数字比个位数字的 2 倍小 1,百位数字比个位数字大 6.(1)用含 a 的代数式表示这个三位数;(2)根据题目中的条件, a 的取值可能是多少?此时相应的三位数是多少?五、探究题 (本大题共 1 小题 ,共 10 分 )22.( 10 分) A、 B、 C 为数轴上三点,若点 C 到点 A 的距离是点C 到点 B 的距离的 2 倍,则称点 C 是( A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣ 1,点 B 表示的数为2,表示 1 的点 C 到点 A 的距离为2,到点 B 的距离为 1,则点 C 是( A, B)的奇异点,但不是( B, A)的奇异点.( 1)在图 1 中,直接说出点 D 是( A, B)还是( B, C)的奇异点;( 2)如图 2,若数轴上M、N 两点表示的数分别为﹣ 2 和 4,( M,N)的奇异点K 在 M、N 两点之间,请求出K 点表示的数;( 3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点P 从点 B 出发,向左运动.①若点 P 到达点 A 停止,则当点P 表示的数为多少时,P、A、B 中恰有一个点为其余两点的奇异点?②若点 P 到达点 A 后继续向左运动,是否存在使得P、A、 B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB 的距离;若不存在,请说明理由.第3页(共 13页)2018-2019 学年江西省南昌市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8 小题 ,每小题 3 分 ,共 24 分 )在每小题给出的四个选项中,只有一项是正确的 ,请将正确答案前的字母填入题后的括号内,每小题选对得 3 分 ,选错、不选或多选均得零分 .1.( 3 分)在 4, 1.5, 0,﹣ 2 四个数中,属于正分数的是()A .4B.1.5C.0D.﹣ 2【分析】利用正分数定义判断即可.【解答】解:在 4, 1.5,0,﹣ 2 四个数中,属于正分数的是 1.5,故选: B.【点评】此题考查了有理数,熟练掌握正分数的定义是解本题的关键.2.( 3 分)若 a 的相反数为 1,则 a2019 是()A .2019B .﹣ 2019C. 1D.﹣ 1【分析】直接利用相反数的定义结合有理数的乘方运算法则计算得出答案.【解答】解:∵ a 的相反数为1,∴ a=﹣ 1,则 a 2019=(﹣ 1)2019=﹣ 1.故选: D.【点评】此题主要考查了相反数的定义,正确得出 a 的值是解题关键.3.( 3 分)计算1﹣ 3+5﹣ 7+9 =( 1+5+9 )+(﹣ 3﹣ 7)是应用了()A .加法交换律B.加法结合律C.分配律D.加法交换律与结合律【分析】根据加法交换律与结合律即可求解.【解答】解:计算 1﹣3+5﹣ 7+9=( 1+5+9)+(﹣ 3﹣ 7)是应用了加法交换律与结合律.故选: D.【点评】考查了有理数的加减混合运算,方法指引:① 在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.② 转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.4.( 3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若第4页(共 13页)其意义相反,则分别叫做正数与负数.若收入80 元记作 +80 元,则﹣ 60 元表示()A .收入 60 元B .收入 20 元C.支出 60 元D.支出 20 元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,若收入80 元记作 +80 元,则﹣ 60 元表示支出60 元.故选: C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.( 3 分)化简x+y﹣( x﹣ y)的最后结果是()A .2x+2yB .2y C. 2x D. 0【分析】原式去括号合并即可得到结果.【解答】解:原式= x+y﹣x+y=2y.故选: B.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.( 3 分)若两个非零的有理数a、b,满足: |a|= a,|b|=﹣ b,a+b< 0,则在数轴上表示数a、 b 的点正确的是()A.B.C.D.【分析】根据 |a|=a 得出 a 是正数,根据|b|=﹣ b 得出 b 是负数,根据a+b< 0 得出 b 的绝对值比 a 大,在数轴上表示出来即可.【解答】解:∵ a、 b 是两个非零的有理数满足:|a|= a, |b|=﹣ b, a+b< 0,∴ a> 0, b< 0,∵ a+b<o,∴ |b|> |a|,∴在数轴上表示为:故选: B.【点评】本题考查了数轴,绝对值,有理数的加法法则等知识点,关键是确定出a> 0,b <0, |b|> |a|.7.( 3 分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌第5页(共 13页)由 1 个分裂为 64 个,则这个过程要经过()A .1 小时B .2 小时C .3 小时D .4 小时【分析】 每半小时分裂一次,一个变为2 个,实际是 21个.分裂第二次时, 2 个就变为了 22个.那么经过 3 小时,就要分裂 6 次.根据有理数的乘方的定义可得.【解答】 解:由题意可得: 2n = 64=26,则这个过程要经过: 3 小时.故选: C .【点评】 本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.8.( 3 分)按某种标准,多项式 a 2﹣ 2a ﹣ 1 与 ab+b+2 属于同一类,则下列符合此类标准的多项式是()22 C . a+3b ﹣ 2 2A .x ﹣ yB .a +4x+3 D . x y+y ﹣ 1【分析】 直接利用多项式次数与项数确定方法分析得出答案.【解答】 解:∵多项式 a 2﹣ 2a ﹣ 1 与 ab+b+2 属于同一类,∴它们都是二次三项式,2A 、 x ﹣y ,是二次二项式,不合题意;2B 、 a +4x+3 ,是二次三项式,符合题意;C 、 a+3b ﹣ 2,是一次三项式,不合题意;2D 、x y+y ﹣ 1,是三次三项式,不合题意;故选: B .【点评】 此题主要考查了多项式,正确把握多项式次数与项数确定方法是解题关键.二、填空题(本大题共6小题,每小题 3分,共 18分)9.(3 分)中国倡导的 “一带一路” 建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000 人,这个数用科学记数法表示为4.4× 109.【分析】 科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|< 10,n 为整数.确定n的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值<1 时, n 是负数.【解答】 解:将 4400000000 用科学记数法表示为4.4× 109.故答案为: 4.4×109.【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.第6页(共 13页)10.( 3 分)数轴上点 A 表示﹣ 1,点 B 表示 2,则表示A、 B 两点间的距离是3.【分析】数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.【解答】解: 2﹣(﹣ 1)= 3.故表示 A、 B 两点间的距离是3.故答案为: 3.【点评】此题考查了数轴上两点之间的距离的计算方法:右边的数减去左边的数.2211.(3 分)若多项式 x +kxy+4x﹣ 2xy+y ﹣1 不含 xy 项,则 k的值是 2.【分析】直接利用多项式中不含xy 项,得出 k﹣2= 0,进而得出答案.22【解答】解:∵多项式 x +kxy+4x﹣ 2xy+y ﹣1 不含 xy 项,∴kxy﹣ 2xy= 0,解得: k= 2.故答案为: 2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.12.( 3 分)在﹣ 1,2,﹣ 3,4 中,任取 3 个不同的数相乘,则其中最小的积是﹣24 .【分析】根据有理数的乘法和有理数的大小比较求出最小的积即可得解.【解答】解:最小的积= 2×(﹣ 3)× 4=﹣ 24.故答案为:﹣ 24.【点评】本题考查了有理数的乘法,有理数的大小比较,熟记运算法则并确定出最小乘积的列式是解题的关键.2213.( 3 分)若 a ﹣ 2a=﹣ 1,则3﹣ 2a +4a 的值是 5 .【分析】根据整体代入求值解答即可.22【解答】解:把 a ﹣ 2a=﹣ 1代入 3﹣ 2a +4 a= 3﹣ 2×(﹣ 1)= 5,故答案为: 5【点评】此题考查代数式求值,关键是根据整体代入求值解答.14.( 3 分)有一列数:0, 1, 3, 4,12, 13, 39, 40, 120, a, b, c,这串数是由小明按照一定的规则写下米的,他第 1 次写下 0,1,第 2 次接着写“ 3,4”,第 3 次接着写“ 12,13”,第 4 次接着写“ 39, 40”,就这样一直接着往下写,则这列数中的a=121,b =363 , c= 364 .【分析】由所写数字的规律得到,每次所写两个数为连续的两个整数,且第 1 个数为上第7页(共 13页)一次所写的两个数中的第2 个数的三倍,利用此方法可分别计算出 a 、 b 、 c 的值.【解答】 解: 3= 3× 1, 4= 3+1;12= 3× 4, 13=12+1;39= 3× 13, 40= 39+1 ;120= 40× 3, a = 120+1 = 121;b = 121× 3= 363,c = 363+1= 364.故答案为 121; 363; 364.【点评】 本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.三、解答题(本大题共4小题,每小题 6分,共 24分)15.( 6 分)计算:( 1)(﹣ 1 )×+(﹣ 1 )×(﹣ 2 );( 2)﹣ 32+( 5﹣× 42)÷(﹣ 1 )【分析】( 1)原式先计算乘法运算,再计算加减运算即可求出值;( 2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】 解:( 1)原式=﹣× + ×=﹣ 2+3= 1;( 2)原式=﹣ 9+3×(﹣)=﹣ 9﹣ 2=﹣ 11.【点评】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.( 6 分)化简:22( 1) 2( x y ﹣ 3x )﹣ 3( x y ﹣ 2x ﹣1)( 2) 4x 2﹣ [7x 2﹣ 3( x 2﹣ x ) ]【分析】( 1)先去括号,再合并同类项即可;( 2)先去小括号,再去中括号,然后合并同类项即可.22【解答】 解:( 1)原式= 2x y ﹣ 6x ﹣ 3x y+6x+3 2=﹣ x y+3;222( 2)原式= 4x ﹣ [7x ﹣ 3x +3 x]222= 4x ﹣ 7x +3x ﹣ 3x第8页(共 13页)=﹣ 3x .【点评】 本题考查了整式的加减, 整式加减的实质就是去括号、 合并同类项. 去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.17.( 6 分)若 |a|= 4, |b|< 2,且 b 为整数.( 1)求 a , b 的值;( 2)当 a , b 为何值时, a+b 有最大值或最小值?此时,最大值或最小值是多少?【分析】( 1)直接利用绝对值的性质得出a ,b 的值;( 2)直接利用( 1)中所求,分别分析得出答案.【解答】 解:( 1)∵ |a|= 4,∴ a =± 4.∵ |b|< 2,且 b 有整数,∴ b =﹣ 1, 0, 1;( 2)当 a = 4, b = 1 时, a+b 有最大值为 5;当 a =﹣ 4, b =﹣ 1 时, a+b 有最小值为 5.【点评】 此题主要考查了绝对值,正确分类讨论是解题关键.2 218.( 6 分)已知 A = 3a ﹣ ab ﹣ 2a , B =﹣ a +ab ﹣ 2.( 1)求 4A ﹣ 3( A ﹣ B )的值;( 2)若 A+3B 的值与 a 的取值无关,求 b 的值. 【分析】( 1)先化简,然后把A 和B 代入求解;( 2)根据题意可得 A+3B =( 2b ﹣ 2) a ﹣ 6 与 a 的取值无关,即化简之后 a 的系数为 0,据此求 b 值即可.22【解答】 解:( 1)∵ A =3a ﹣ ab ﹣2a , B =﹣ a +ab ﹣2, ∴原式= 4A ﹣3A+3B = A+3B=( 3a 2﹣ ab ﹣ 2a ) +3 (﹣ a 2+ab ﹣ 2)= 3a 2﹣ ab ﹣ 2a ﹣ 3a 2+3ab ﹣6= 2ab ﹣2a ﹣ 6.( 2)∵ A+3B =( 2b ﹣2) a ﹣ 6 与 a 的取值无关,∴ 2b ﹣2= 0,解得 b = 1.第9页(共 13页)【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.四、解答题(本大题共3小题,每小题 8分,共 24分)19.( 8 分)用“⊕”定义一种新运算,对于任意的有理数a, b,都有 a⊕ b= |a|+b.(1)求(﹣ 1⊕2)⊕(﹣ 3)的值;(2)当 x, y 满足什么条件时,“ x⊕ y”与“ y⊕ x”的值互为相反数.【分析】( 1)原式利用题中的新定义计算即可求出值;(2)根据题中的新定义将各式化简,利用相反数性质判断即可.【解答】解:( 1)∵﹣ 1⊕2= |﹣ 1|+2=3,∴(﹣ 1⊕ 2)⊕(﹣ 3)= 3⊕(﹣ 3)= |3|+(﹣ 3)= 0;(2)由题意,得( x⊕ y)+( y⊕ x)= 0,即 |x|+y+|y|+x= 0,∴ |x|+|y|=﹣ x﹣ y,∴ |x|=﹣ x,|y|=﹣ y,∴当 x≤0, y≤ 0 时,“ x⊕y”与“ y⊕ x”的值互为相反数.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.( 8 分)学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2 元印刷费,另收 200 元的制版费;乙印刷厂提出:每份材料收0.4 元印刷费,不收制版费.( 1)求两印刷厂各收费多少元?(用含x 的代数式表示)(2)若学校要印刷 1500 份材料,不考虑其他因素,选择哪家印刷厂比较合算?请通过计算说明理由.【分析】( 1)甲印刷厂收费表示为:甲厂每份材料印刷费×材料份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;( 2)先把 x= 1500 代入( 1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.【解答】解:( 1)甲印刷厂收费是0.2x+200 (元).乙印刷厂收费是0.4x(元).(2)当 x= 1500 时,甲印刷厂收费是0.2× 1500+200= 500(元).乙印刷厂收费是0.4× 1500= 600(元)∵500< 600,第 10 页(共 13 页)∴甲印刷厂比较合算.【点评】此题考查代数式求值,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出用含材料份数x 来表示甲、乙两印刷厂的收费的代数式.注意题中甲印刷厂的收费=印刷x 份材料的费用 +制版费,乙印刷厂的收费=印刷x 份材料的费用.21.(8 分)一个三位数,它的个位数字为a,十位数字比个位数字的 2 倍小 1,百位数字比个位数字大6.(1)用含 a 的代数式表示这个三位数;(2)根据题目中的条件, a 的取值可能是多少?此时相应的三位数是多少?【分析】( 1)根据三位数表示方法解答即可;(2)根据题意得出 a 的几种取值解答即可.【解答】解:( 1)当个位数字为 a 时,则十位数字为2a﹣ 1,百位数字为a+6,∴这个三位数是100( a+6) +10 ( 2a﹣ 1) +a= 121a+590,( 2)由题意,可知 a 的取值是1,2, 3.当a=1 时,三位数是 711,当a=2 时,三位数是 832,当a=3 时,三位数是 953.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.五、探究题 (本大题共 1 小题 ,共 10 分 )22.( 10 分) A、 B、 C 为数轴上三点,若点 C 到点 A 的距离是点C 到点 B 的距离的 2 倍,则称点 C 是( A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣ 1,点 B 表示的数为2,表示 1 的点 C 到点 A 的距离为2,到点 B 的距离为 1,则点 C 是( A, B)的奇异点,但不是( B, A)的奇异点.( 1)在图 1 中,直接说出点 D 是( A, B)还是( B, C)的奇异点;( 2)如图 2,若数轴上M、N 两点表示的数分别为﹣ 2 和 4,( M,N)的奇异点K 在 M、N 两点之间,请求出K 点表示的数;( 3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点P 从点 B 出发,向左运动.①若点 P 到达点 A 停止,则当点P 表示的数为多少时,P、A、B 中恰有一个点为其余两第 11 页(共 13 页)点的奇异点?②若点 P 到达点 A 后继续向左运动,是否存在使得P、A、 B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB 的距离;若不存在,请说明理由.【分析】( 1)根据“奇异点”的概念解答;( 2)设奇异点表示的数为x,根据“奇异点”的定义列出方程并解答;( 3)① 需要分类讨论:当点P 是( B, A)的奇异点;当点 A 是( B,P)的奇异点;当点 B 是( A,P)的奇异点.② 同上,需要分类讨论.【解答】解:( 1)在图 1 中,点 D 到点 A 的距离为1,到点 B 的距离为2,∴点 D 是( B, C)的奇异点,不是(A, B)的奇异点;(2)设奇异点表示的数为 x,则由题意,得 x﹣(﹣ 2)= 2( 4﹣x).解得 x=2.∴( M, N)的奇异点表示的数是2;( 3)① 设点 P 表示的数为y.当点 P 是( A, B)的奇异点时,则有 y+20= 2( 40﹣ y),解得 y=20.当点 P 是( B, A)的奇异点时,则有 40﹣ y= 2(y+20),解得 y=0.当点 A 是( B, P)的奇异点时,第 12 页(共 13 页)则有 40+20= 2(y+20),解得 y=10.当点 B 是( A, P)的奇异点时,则有 40+20= 2(40﹣ y),解得 y= 10.∴当点 P 表示的数是0 或 10 或 20 时,P、A、 B 中恰有一个点为其余两点的奇异点.②当点 P 为( B, A)的奇异点时,PB= 120;当点 A 为( P, B)的奇异点时,PB= 180;当点 A 为( B, P)的奇异点时,PB= 90;当点 B 为( P, A)的奇异点时,PB= 120.【点评】考查了数轴,一元一次方程的应用,解题的关键是掌握“奇异点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.第 13 页(共 13 页)。
2018--2019学年度七年级上学期数学期中试卷一、选择题(每小题3分,共30分)1. 在有理数 2 3、-2 3)A、4个B 、3个C、2个D、1个(-1)、、0、--2 中负数有(22. 若a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则 a bc()A、1B、0 C 、1 D 、不存在3、下列说法不正确的是( )A、到原点距离相等且在原点两旁的两个点所表示的数一定互为相反数 B 、所有的有理数都有相反数C、正数和负数互为相反数 D 、在一个有理数前添加“-”号就得到它的相反数4、下列计算正确的是()A.a 3a3a6B. 2a 3b5abC.a2a22a2D. a3a3a95.下列说法正确的是()3ab aA、-2 不是单项式B、-a表示负数C、5的系数是3 D 、x+x+1 不是多项式6.若-3x2m y3与2x4y n是同类项,那么mn ()A、0B、1 C 、-1 D 、-27.下列去括号变形正确的是()A.3a 1(2b1) 3a b 1B. 3a b c d 3a bc d2 21 1x2y3zC.m4pqm4pqD. x4y 6z2 28.若a 0,b 0,则下列不能确定正负的式子是()A.abB.aC.abD.a b b9.甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要想购买这种商品最划算,应到的超市是()(A)甲(B)乙(C)丙(D)乙或丙10.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,⋯,则第2010次输出的结果为()x为偶数1x2(A)6 (B)3输入x 输出(C) 3 (D) 3 31003 x+32006 1003 x为奇数2 2第1页(第10题)二、填空题(每小题 3分,共18分) 11.若代数2m 1 与 2 m 的值互为相反数,则 m 的值为____________;一本书有m 页,第一天读了全书的 3,3 34第二天读了余下的 1,则该书没读完的有 页。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
2018学年年11月十三中七年级上学期期中考试数学一.选择题(共10小题) 1.-31的绝对值是( ) A .-3B .3C .-31 D .31 2.如图,在数轴上表示数﹣2的点是( )A .PB .QC .MD .N3.黄岩岛是我国的固有领土,这段时间,中菲黄岩岛事件成了各大新闻网站的热点话题,某天,小芳在“百度”搜索引擎中输入“黄岩岛事件最新进展”,能搜索到相关结果约7050000个,7050000这个数用科学记数法表示为( ) A .0.705×106B .0.705×107C .7.05×106D .7.05×1074.在实数﹣2,33.0 ,3π,71,0.80108,38中,无理数的个数为( ) A .1个 B .2个C .3个D .4个5.设a =,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和56.下列说法中正确的是( ) A .的算术平方根是±4 B .12是144的平方根 C .的平方根是±5D .a 2的算术平方根是a7.若a 2﹣3b =4,则﹣6b +2a 2+2018值为( ) A .2014B .2022C .2026D .20108.若实数m 、n 满足|2m +1|+(n -2)2=0,则m n 的值等于( ) A .﹣1 B .1C .﹣21D .41 9.下列说法:①任何无理数都是无限不循环小数; ②实数与数轴上的点一一对应; ③在1和3之间的无理数有且只有,,,6,,8这6个;④近似数1.50所表示的准确数x 的取值范围是1.495<x <1.505 ⑤a 、b 互为相反数,则=﹣1;⑥2π是分数,其中正确的个数是( ) A .2 B .3C .4D .510.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85二.填空题(共6小题)11.比较大小:﹣2 ﹣3.(用“>”、“<”或“=”连接)12.生活中常有用正负数表示范围的情形,例如某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~22℃范围内保存该药品才合适.13.单项式522ab π-的系数是 ,次数是 .14.五个有理数相乘,其积是负数,则负因数的个数可能是 .15.如图所示是计算机程序计算,若开始输入x =﹣1,则最后输出的结果是 .16.设[x ]表示不大于x的最大整数,例如[3.15]=3,[3.7]=3,[3]=3,则[][][][]3333102101100...543432321⨯⨯++⨯⨯+⨯⨯+⨯⨯= .三.解答题(共7小题) 17.在数轴上表示下列各数:-211,2,﹣|-3|,38,π,并用“<”号把它们连接起来. 18.计算(1))1216743(12-+-⨯(2))31(27)3(21324-÷-+-⨯--19.观察下列各式: 第一式:; 第二式:=﹣; 第三式:=﹣;…(1)按以上规律列出第5个式子:________________________;第n 个式子 (n 是正整数); (2)根据以上式子及你所发现的规律计算:.201820171201720161...431321211⨯+⨯++⨯+⨯+⨯20.已知x =1﹣a ,y =2a ﹣5.(1)已知x 的算术平方根为3,求a 的值; (2)若x ,y 分别是同一个数的平方根,求这个数.21.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)产量最多的一天比产量最少的一天多生产自行车多少辆;(3)根据记录的数据可知该厂本周实际生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?22.阅读:|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|x-3|表示x与3的差的绝对值,也可理解数轴上表示x与3两点之间的距离,根据上述内容,回答下列问题:(1)如果|x-3|=5,则x=__________.(2)同理|x+2|+|x-1|表示数轴上有理数x所对应的点到-2和1所对应的点的距离之和,请你找出所符合条件的整数x,使得|x+2|+|x-1|=3,这样的整数是__________.(3)根据以上探索猜想对于任何实数x,|x+3|+|x-6|是否有最小值?如果有,请直接写出最小值及相应的x的取值范围;如果没有,请说明理由。
勤学早七年级数学(上)期中模拟题(测试范围:七年级第1章——第2章,解答参考时间:120分钟满分:120分)一、选择题(每小题3分,共30分) 1.四个数-3,2,1,0中,最大的数是( ) 2.-2的倒数是( )A .2B .-2C .0D .21-3. 用“<”将-π,-3.14,-3连接起来,正确的是( )A . -3<-π<-3.14B .-3.14<-3<-πC . -π< -3.14<-3D .-π< - 3< -3.14 4. 电冰箱的冷藏室温度是5℃,冷冻室温度是-3℃,则冷藏室比冷冻室温度高( )A .3℃B .-8℃C .8℃D .-3℃5.冥王星围绕太阳公转的轨道半径长度约为5900000000千米,这个数用科学计数法表示为( )A .5.9×109千米 B .5.9×1010千米C .0. 59×1010千米D .59×108千米6.如果代数式丢21x a y b +3与代数式一32x 3 y 2是同类项,则a ,b 的值分别是( ) A .a =3,b =1 B .a = -3,b = -1 C .a = -3,b =1 D .a =3,b =-1 7.下列各题中,正确的是( )A .a 2b -ba 2=0B .3y 2-y 2=3C .x +x =x 2D .3x +3y =6xy8.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图 形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形 中一共有12个小圆圈,…,按此规律排列,则第⑥个图形中小圆圈的 个数为( )A . 21个B .24个C .27个D .30个9.某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多元,一个苹果的价钱比2个梨子少2元,下列叙述正确的是( )A .一个西瓜的价钱是一个苹果的3倍B .若一个西瓜降价4元,则其价钱是一个苹果的3倍C .若一个西瓜降价8元,则其价钱是一个苹果的3倍D .若一个西瓜降价12元,则其价钱是一个苹果的3倍10.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b -1) (a +1)>0D .(b -1) (a -1)>0二、填空题(每小题3分,共18分)11.化简:①-(-2)= ;②2-= ;③(-2)2=_______. 12.数轴上距离原点5个单位长度的数是 . 13.若(m -5)2+6 n =0,则(m +n )2017的值是 .14.若a =10,b =5,且ab <0,则ba的值是_______. 15.如图,从边长为(a +4)的正方形纸片中剪去一个边长为(a +l )的正 方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝 隙),若拼成的长方形一边的长为3,则另一边的长为 .16.如图,数轴上的有理数a ,6满足a b a b a =+--23,则ba的值为____________. 三、解答题(共8题,共72分)17.(本题8分)把下列各数填入表示它所在的数集的括号内:-2.4,3, 2. 012,310-,411,-0.1•5•,0,-(-2.28),3.14,4-. 正有理数集合:( ……) 整数集合:( ……) 负分数集合:( ……) 负有理数集合:( ……) 解:略.18.(本题8分)计算:(1)(-2)3÷4-(-4); (2)(61-125+94)÷(-361).19.(本题8分)某市质量技术监督局从某食品厂生产的袋装食品中抽出 样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分 别用正、负数来表示,记录如下表:(1)(2)若该种食品的合格标准为500土3g ,求该食品的抽样检测的合格率,20.(本题8分)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,n 在有理数范围内既不是正数也不是负数,求2017)(mb a ++m 4-(-cd )2017+n (a +b +c +d )的值.21.(本题8分)已知a +b =5,ab = -3,求代数式(6a -5b -2ab ) -2(a -4b +ab )+b 的值.22.(10分)有理数a ,b ,c 在数轴上的位置如图所示.(1)判断正负,用“>”或“<”填空: b -c ____0,a -b ____0,c +a ____0; (2)化简:丨b -c 丨+丨a -b 丨-丨c +a 丨.23.(本题10分)已知代数式2(6X 2一y +bx ) +9 -2(2ax 2-x -5y +1)的值与x 无关. (1)求a ,b 的值; (2)求5-2a -6b 的值;(3)在(1)的条件下,求5a 2—6b 2+ (ab - b 2).(a + 3b ) -2(3a 2—3ab +7b 2)的值.24.(本题12分)已知b 是最小的正整数,且a ,b ,c 满足(c -5)2+丨a +b 丨=0. (1)填空:a =____,b =____,c =____;(2)a ,b ,c 在数轴上所对应的点分别为A ,B ,C ,点P 为数轴上一动点,其对应的数为x ,点P 在1到2之间运动时(即1≤x ≤2时),请化简式子:5211-+--+x x x (请写出化简过程);(3)在(1),(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动....,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .则BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值,1-5BDCCA 6-10DAADC 11.2;2;4 12.±5 13.-1 14.-2 15.2a +5 16. 31-17. 略18. 解:(1)2;(2)一7. 19. 解:(1)10017克;(2)80%.20. 解:由题意,得a +6=0,cd =1,m =2 ,n =0,∴原式=0+16+1+0= 17. 21.解:原式=4a +4b -4ab =4(a +b ) -4ab ,当a +b =5,ab = -3时,原式=32. 22. 解:(1)<,<,<;(2)2c 23.解:(1)a =3,b =-1; (2)5-2a -6b =5-2(a +3b )=5;(3)原式=-a 2+6ab -20b 2=-9-18-20=-47.24.解:(1)a =-1,b =1,c =5; (2) 12 -2x ;(3)AB =3t +2,BC =3t +4,∴BC --AB =2,不随时间t 的改变而改变.。
第1页(共18页)2018-2019学年北京人大附中七年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2010?西藏)的相反数是()A .B .3C .﹣3D .2.(3分)(2018秋?海淀区校级期中)港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A .1269×108B .1.269×1010C .1.269×1011D .1.269×10123.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A .一个数前面带有“﹣”号,则是这个数是负数B .整数和小数统称为有理数C .数轴上的点都表示有理数D .数轴上表示数a 的点在原点的左边,那么a 是一个负数4.(3分)(2018秋?海淀区校级期中)下列等式变形,正确的是()A .由6+x =7得x =7+6B .由3x+2=5x 得3x ﹣5x =2C .由2x =3得xD .由2﹣3x =3得x5.(3分)(2018秋?海淀区校级期中)用四舍五入法对0.4249取近似数精确到百分位的结果是()A .0.42B .0.43C .0.425D .0.4206.(3分)(2018秋?海淀区校级期中)以下代数式中不是单项式的是()A .﹣12abB .C .D .07.(3分)(2018秋?海淀区校级期中)下列计算正确的是()A .a+a =a2B .6x 3﹣5x 2=x C .3x 2+2x 3=5x5D .3a 2b ﹣4ba 2=﹣a 2b8.(3分)(2018秋?海淀区校级期中)下列等式,是一元一次方程的是()A .2x+3y =0B .3=0C .x 2﹣3x+2=x2D .1+2=39.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A.不是正数的数一定是负数B.符号相反的数互为相反数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.当a≠0,|a|总是大于010.(3分)(2018秋?海淀区校级期中)下列去括号正确的是()A.4(x﹣1)=4x﹣1B.﹣5(1x)=﹣5﹣x C.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c11.(3分)(2018秋?海淀区校级期中)当x=2时,代数式px 3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px 3+qx+1值是()A.2017B.2018C.2019D.202012.(3分)(2018秋?海淀区校级期中)有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A.b+c>0B.a+c<0C.>1D.abc≥0二、填空题(共12小题,每小题2分,满分24分)13.(2分)(2018秋?海淀区校级期中)下列数()2,+6,﹣2,0.9,﹣π,﹣(),0,,0.,﹣4.95中,是负分数的有.14.(2分)(2018秋?海淀区校级期中)比大小:(填写“>”或“<”)15.(2分)(2017秋?青龙县期末)单项式的系数是.16.(2分)(2018秋?海淀区校级期中)多项式ab﹣2ab 2﹣3a2+5b﹣1的次数是.17.(2分)(2018秋?海淀区校级期中)若关于x的方程m﹣3x=x﹣4的解是x=2,则m的值为.18.(2分)(2018秋?海淀区校级期中)如果|x|=2,则x的倒数是.19.(2分)(2018秋?海淀区校级期中)把多项式x 2﹣2﹣3x3+5x的升幂排列写成.20.(2分)(2015秋?泉港区期中)|a+3|+(b﹣2)2=0,求a b=.21.(2分)(2018秋?海淀区校级期中)一个两位数个位上的数是1,十位上的数是x,把1与x对调,新的两位数比原两位数小18,则依此题意所列的方程为.22.(2分)(2018秋?海淀区校级期中)已知a ,b 在数轴上的对应点如图所示,则化简|a+b|﹣|2a ﹣b|的结果是.23.(2分)(2018秋?海淀区校级期中)《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x 两,则用含x 的式子表示一只燕的重量为两.24.(2分)(2018秋?海淀区校级期中)对于有理数a ,b 定义运算“*”如下:a*b =b ,则关于该运算,下列说法正确的有(请填写正确说法的序号)①5*7=9*7②如果a*b =b*a ,那么a =b ③该运算满足交换律④该运算满足结合律,三、解答题(共1小题,满分20分,每小题20分)25.(20分)(2018秋?海淀区校级期中)(1)计算:12﹣(﹣18)+(﹣7)﹣15(2)计算:﹣52×|1|﹣||[(﹣1)3﹣7](3)计算:()﹣24×()(4 )解方程:x ﹣3x+1四、解答题:(本题共12分,每题4分26.(4分)(2018秋?海淀区校级期中)先化简下式,在求值:2(﹣x 2+3+4x )﹣(5x+4﹣3x 2),其中x .27.(4分)(2018秋?海淀区校级期中)求单项式﹣x2m ﹣n y 3与单项式x 5ym+n可以合并,求多项式4m ﹣2n+5(﹣m ﹣n )2﹣2(n ﹣2m )2的值.28.(4分)(2018秋?海淀区校级期中)将连续的奇数1,3,5,7,排成如下表:如图所示,图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.(1)设T字框内处于中间且靠上方的数是整个数表当中从小到大排列的第n个数,请你用含n的代数式表示T字框中的四个数的和;(2)若将T字框上下左右移动,框住的四个数的和能等于2018吗?如能,写出这四个数,如不能,说明理由.五、解答题[本题共8分,每题4分29.(4分)(2018秋?海淀区校级期中)阅读下面材料并回答问题观察有理数﹣2和﹣4在数轴上对应的两点之间的距离是2=|﹣2﹣(﹣4)|有理数1和﹣3在数轴上对应的两点之间的距离是4=|1﹣(﹣3)|归纳:有理数a、b在数轴上对应的两点A、B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a、b在数轴上对应点A、B之间的距离,称之为绝对值的几何意义应用(1)如果表示﹣1的点A和表示x点B之间的距离是2,那么x为;(2)方程|x+3|=4的解为;(3)小松同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x对应点到1和﹣2对应点的距离之和,而当﹣2≤x≤1时,取到它的最小值3,即为1和﹣2对应的点的距离.由方程右式的值为5可知,满足方程的x对应点在1的右边或﹣2的左边,若x的对应点在1的右边,利用数轴分析可以看出x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3;故原方程的解是x=2或x=﹣3参考小松的解答过程,回答下列问题:(Ⅰ)方程2|x﹣3|+|x+4|=20的解为;(Ⅱ)设x是有理数,令y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+…+100|x﹣100|下列四个结论中正确的是(请填写正确说法的序号)①有多于1个的有限多个x使y取到最小值②只有一个x使y取得最小值③有无穷多个x使y取得最小值④y没有最小值30.(4分)(2018秋?海淀区校级期中)数学是一门充满乐趣的学科,某校七年级小凯同学的数学学习小组遇到一个富有挑战性的探宄问题,请你帮助他们完成整个探究过程;【问题背景】对于一个正整数n,我们进行如下操作:(1)将n拆分为两个正整数m1,m2的和,并计算乘积m1×m2;(2)对于正整数m1,m2,分别重复此操作,得到另外两个乘积;(3)重复上述过程,直至不能再拆分为止,(即折分到正整数1);(4)将所有的乘积求和,并将所得的数值称为该正整数的“神秘值”,请探究不同的拆分方式是否影响正整数n的“神秘值”,并说明理由.【尝试探究】:(1)正整数1和2的“神秘值”分别是(2)为了研究一般的规律,小凯所在学习小组通过讨论,决定再选择两个具体的正整数6和7,重复上述过程探究结论:如图1所示,是小凯选择的一种拆分方式,通过该拆分方法得到正整数6的“神秘值”为15.请模仿小凯的计算方式,在图2中,选择另外一种拆分方式,给出计算正整数6的“神秘值”的过程;对于正整数7,请选择一种拆分方式,在图3中绐出计算正整数7的“神秘值”的过程.【结论猜想】结合上面的实践活动,进行更多的尝试后,小凯所在学习小组猜测,正整数n的“神秘值”与其折分方法无关.请帮助小凯,利用尝试成果,猜想正整数n的“神秘值”的表达式为,(用含字母n的代数式表示,直接写出结果)2018-2019学年北京人大附中七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2010?西藏)的相反数是()A .B .3C .﹣3D .【解答】解:根据相反数的定义,得的相反数是.故选:A .2.(3分)(2018秋?海淀区校级期中)港珠澳大桥于2018年10月24日上午9时正式通车啦是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A .1269×108B .1.269×1010C .1.269×1011D .1.269×1012【解答】解:将1269亿用科学记数法表示为 1.269×1011.故选:C .3.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A .一个数前面带有“﹣”号,则是这个数是负数B .整数和小数统称为有理数C .数轴上的点都表示有理数D .数轴上表示数a 的点在原点的左边,那么a 是一个负数【解答】解:A 、一个数前面带有“﹣”号,这个数不一定是负数,如﹣(﹣3)=3,故选项错误;B 、整数和分数统称为有理数,故选项错误;C 、数轴上的点都表示实数,故选项错误;D 、数轴上表示数a 的点在原点的左边,那么a 是一个负数,故选项正确.故选:D .4.(3分)(2018秋?海淀区校级期中)下列等式变形,正确的是()A .由6+x =7得x =7+6B .由3x+2=5x 得3x ﹣5x =2C .由2x =3得xD .由2﹣3x =3得x【解答】解:A 、由6+x =7得x =7﹣6,错误;B 、由3x+2=5x 得3x ﹣5x =﹣2,错误;C 、由2x =3得x ,正确;D 、由2﹣3x =3得x ,错误;故选:C .5.(3分)(2018秋?海淀区校级期中)用四舍五入法对0.4249取近似数精确到百分位的结果是()A .0.42B .0.43C .0.425D .0.420【解答】解:0.4249≈30.42(精确到百分位).故选:A .6.(3分)(2018秋?海淀区校级期中)以下代数式中不是单项式的是()A .﹣12abB .C .D .0【解答】解:A 、﹣12ab ,是单项式,不合题意;B 、,是单项式,不合题意;C 、,是多项式,不是单项式,符合题意;D 、0,是单项式,不合题意;故选:C .7.(3分)(2018秋?海淀区校级期中)下列计算正确的是()A .a+a =a2B .6x 3﹣5x 2=x C .3x 2+2x 3=5x5D .3a 2b ﹣4ba 2=﹣a 2b【解答】解:A 、a+a =2a ,故本选项错误;B 、6x 3与5x 2不是同类项,不能合并,故本选项错误;C 、3x 2与2x 3不是同类项,不能合并,故本选项错误;D 、3a 2b ﹣4ba 2=﹣a 2b ,故本选项正确;故选:D .8.(3分)(2018秋?海淀区校级期中)下列等式,是一元一次方程的是()A .2x+3y =0B .3=0C .x 2﹣3x+2=x2D .1+2=3【解答】解:A 、本方程中含有两个未知数,不是一元一次方程,故本选项错误;B、该方程不是整式方程,故本选项错误;C、由原方程知﹣3x+2=0,符合一元一次方程的定义;故本选项正确;D、1+2=3中不含有未知数,不是方程,故本选项错误.故选:C.9.(3分)(2018秋?海淀区校级期中)以下说法正确的是()A.不是正数的数一定是负数B.符号相反的数互为相反数C.一个数的绝对值越大,表示它的点在数轴上越靠右D.当a≠0,|a|总是大于0【解答】解:A、0不是正数,也不是负数,故选项错误;B、符号相反的两个数互为相反数,例如,3与﹣5不是相反数,故选项错误;C、一个数的绝对值越大,表示它的点在数轴上离原点越远,不一定越靠右,故选项错误;D、a≠0,不论a为正数还是负数,|a|都大于0,故选项正确.故选:D.10.(3分)(2018秋?海淀区校级期中)下列去括号正确的是()A.4(x﹣1)=4x﹣1B.﹣5(1x)=﹣5﹣xC.a﹣(﹣2b+c)=a+2b+c D.a+2(﹣2b+c)=a﹣4b+2c【解答】解:A、原式=4x﹣4,故本选项错误;B、原式=﹣5+x,故本选项错误;C、原式=a+2b﹣c,故本选项错误;D、原式=a﹣4b+2c,故本选项正确.故选:D.11.(3分)(2018秋?海淀区校级期中)当x=2时,代数式px 3+qx+1的值为﹣2018,求当x=﹣2时,代数式的px 3+qx+1值是()A.2017B.2018C.2019D.2020【解答】解:当x=2时,8p+2q+1=﹣2018,所以8p+2q=﹣2019,当x=﹣2时,﹣8p﹣2q+1=2019+1=2020.故选:D.12.(3分)(2018秋?海淀区校级期中)有理数a,b,c在数轴上的对应点的位置如图所示,若|a|<|b|,则下列结论中一定成立的是()A.b+c>0B.a+c<0C.>1D.abc≥0【解答】解:由于|a|<|b|,由数轴知:a<0<b或0<a<b,a<c<b,所以b+c>0,故A成立;a+c可能大于0,故B不成立;可能小于0,故C不成立;abc可能小于0,故D不成立.故选:A.二、填空题(共12小题,每小题2分,满分24分)13.(2分)(2018秋?海淀区校级期中)下列数()2,+6,﹣2,0.9,﹣π,﹣(),0,,0.,﹣4.95中,是负分数的有﹣4.95.【解答】解:()2,+6,﹣2,0.9,﹣π,﹣(),0,,0.,﹣4.95,则是负分数的有:﹣ 4.95,故答案为:﹣ 4.95.14.(2分)(2018秋?海淀区校级期中)比大小:>(填写“>”或“<”)【解答】解:,,∵||<||,∴>,∴>.故答案是:>.15.(2分)(2017秋?青龙县期末)单项式的系数是.【解答】解:原式x2y,所以该单项式的系数为;故答案为:。
2018-2019学年四川省成都市高新区七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×1033.代数式﹣的系数是()A.B.﹣C.D.﹣4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣15.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x46.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣77.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣409.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直棱柱.12.不超过(﹣)3的最大整数是.13.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为元.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=.23.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有个.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2018-2019学年四川省成都市高新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走10步记作+10步,那么向西走9步记作()A.+9步B.﹣9步C.+1步D.﹣19步【解答】解:∵向东走10步记作+10步,∴向西走9步记作﹣9步.故选:B.2.长虹卧波碧海上,泽被后世万年长.2018年10月24日,我国又一项世界级工程﹣﹣港珠澳大桥正式建成通车.大桥主体工程及三地口岸、连接线共投资约1200亿元.用科学记数法表示1200亿元为()元.A.1.2×1011B.12×1011C.1.2×108D.1.2×103【解答】解:将1200亿用科学记数法表示为1200×108=1.2×1011.故选:A.3.代数式﹣的系数是()A.B.﹣C.D.﹣【解答】解:代数式﹣的系数是﹣.故选:D.4.若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b﹣cd的值是()A.1B.﹣2C.﹣1D.1或﹣1【解答】解:根据题意得:a+b=0,c=﹣1,d=1或﹣1,则原式=2(a+b)﹣cd=1或﹣1.故选:D.5.下列各组运算中,运算中结果正确的是()A.(﹣1)2018=﹣12018B.(﹣1)2017=﹣12017C.﹣2(x﹣3)=﹣2x﹣3D.﹣2x2+5x2=3x4【解答】解:A、(﹣1)2018=12018,故此选项错误;B、(﹣1)2017=﹣12017,正确;C、﹣2(x﹣3)=﹣2x+6,故此选项错误;D、﹣2x2+5x2=3x2,故此选项错误;故选:B.6.点A在数轴上距原点3个单位长度,若一个点从点A处左移4个单位长度,此时终点所表示的数是()A.﹣1B.±1C.±7D.﹣1或﹣7【解答】解:根据题意得:3﹣4=﹣1或﹣3﹣4=﹣7,此时终点所表示的数是﹣1或﹣7,故选:D.7.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【解答】解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选:C.8.如图,这是一个数值转换机的示意图,若输入x的值为﹣5,则输出的结果为()A.﹣10B.﹣15C.﹣30D.﹣40【解答】解:把x=﹣5代入得:5﹣10﹣25=﹣30<0,则输出的结果为﹣30,故选:C.9.下列说法正确的是()A.一个数,如果不是正数,必定是负数B.两个数相加,和一定大于任何一个加数C.是二次二项式D.单独的一个数或一个字母也是单项式,其次数为0次【解答】解:A、一个数,如果不是正数,必定是非负数,故A错误;B、两个数相加,和不一定大于任何一个加数,故B错误;C、是二次二项式,故C正确;D、单独的一个数或一个字母也是单项式,其次数不一定为0次,故D错误.故选:C.10.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“S”形的图案,如图2所示,则这个“S”形的图案的周长可表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【解答】解:根据题意得:新矩形的长为(a﹣b),则“S”形的图案的周长可表示为:4a+4(a﹣b)=8a﹣4b.故选:B.二、填空题(每空4分,共16分)11.一个直棱柱有18条棱,则它是一个直六棱柱.【解答】解:一个直棱柱有18条棱,则它是直六棱柱.故答案为:六.12.不超过(﹣)3的最大整数是﹣3.【解答】解:(﹣)3=﹣,则不超过﹣的最大整数是﹣3,故答案为:﹣313.已知|a+1|+(b﹣4)2=0,则3a﹣b的值为﹣7.【解答】解:∵|a+1|+(b﹣4)2=0,∴a+1=0,b﹣4=0,解得:a=﹣1,b=4,故3a﹣b=﹣3﹣4=﹣7.故答案为:﹣7.14.某件商品的成本价为a元,按成本价提高30%后标价,再以8折(即按标价的80%)销售,这件商品的售价为 1.04a元.【解答】解:依题意得(1+30%)a×80%=1.04a(元).故答案是:1.04a.三、计算题(共24分)15.(16分)计算:(1)﹣32﹣(﹣14)+4;(2)×(3)37﹣()×(﹣6)2;(4)﹣22×[4﹣(﹣6)2].【解答】解:(1)原式=﹣32+14+4=﹣14;(2)原式=×(﹣)×=﹣2;(3)原式=37﹣(﹣)×36=37﹣28+6=15;(4)原式=﹣4×(﹣)﹣×(﹣32)=﹣×(﹣4﹣32)=﹣×(﹣36)=12.16.化简:(1)(7y﹣3z)﹣(8y﹣5z)(2)﹣(﹣2k2+4k﹣28)+(k2﹣k).【解答】解:(1)原式=7y﹣3z﹣8y+5z=﹣y+2z;(2)原式=k2﹣k+7+k2﹣k=k2﹣k+7.四、解答题(共30分)17.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【解答】解:如图所示:18.某工厂一周计划每日生产某产品100吨,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为“+”,减少的吨数记为“﹣”)(1)生产量最多的一天比生产量最少的一天多生产多少吨?(2)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?【解答】解:(1)生产量最多的一天星期五+7,生产量最少的一天是星期日﹣11,∴生产量最多的一天比生产量最少的一天多生产+7﹣(﹣10)=17,即生产量最多的一天比生产量最少的一天多生产17吨;(2)﹣1+3﹣2+4+7﹣7﹣11=﹣7,本周总生产量为100×7+(﹣7)=693(吨),平均每辆装载量为=19.8吨,即平均每辆货车大约需装载19.8吨.19.已知A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y.(1)求A﹣B;(2)当x=﹣2,y=﹣1时,求5A﹣(2A﹣6B)的值.【解答】解:(1)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴A﹣B=x2﹣3xy﹣y+x2﹣xy+3y=2x2﹣4xy+2y;(2)∵A=x2﹣3xy﹣y,B=﹣x2+xy﹣3y,∴原式=5A﹣2A+6B=3A+6B=3x2﹣9xy﹣3y﹣6x2+6xy﹣18y=﹣3x2﹣3xy﹣21y,当x=﹣2,y=﹣1时,原式=﹣12﹣6+21=3.20.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.【解答】解:(1)若实际购票:因为31+4=35<40,则需费用为:31×15+4×30=585(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵594>585,∴若学生人数为31人,该班买票至少应付585元;(2)若实际购票:因为32+4=36<40,则需费用为:32×15+4×30=600(元),若购团体票,则需费用为:(4×30+36×15)×0.9=660×0.9=594(元),∵600>594,∴若学生人数为32人,选择购40人团体票,最少付费594元;(3)根据(1)与(2)计算结果可知,购团体票比实际票便宜时的人数为x≥32;分三种情况讨论:①若32≤x≤36时,购团体票最少,则需费用:(4×30+36×15)×0.9=660×0.9=594(元),②若x>36时,则需费用为:(4×30+15x)×0.9=108+13.5x(元),③若0<x≤31时,则需费用:4×30+15x=120+15x(元),答:若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.一、填空题(每题4分,共20分)21.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,则A点表示的数是1﹣π.【解答】解:由直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,得A点与1之间的距离是π.由两点间的距离是大数减小数,得A点表示的数是1﹣π,故答案为:1﹣π.22.当x=﹣1时,代数式ax2+2bx+1的值为0,则﹣2a+4b﹣3=﹣1.【解答】解:把x=﹣1代入得:a﹣2b+1=0,即a﹣2b=﹣1,则原式=﹣2(a﹣2b)﹣3=2﹣3=﹣1,故答案为:﹣123.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原两位数大27,这样的两位数共有6个.【解答】解:设原两位数的个位数字为x,十位数字为y,依题意,得:10x+y=10y+x﹣27,解得:y﹣x=3.∵x,y均为一位正整数,∴y=4,5,6,7,8,9.故答案为:6.24.已知整数a1,a2,a3,a4,…满足下列条件a1=0,a2=|a1﹣1|,a3=|a2﹣2|,a4=|a3﹣3|,……以此类推,则a2018的值为1009.【解答】解:由题意可得,a1=0,a2=1,a3=1,a4=2,a5=2,a6=3,a7=3,a8=4,a9=4,…,∵(2018﹣1)÷2=1008…1,∴a2018=1008+1=1009,故答案为:1009.25.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为12个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个12面体.【解答】解:①设出正二十面体的顶点为n个,则棱有条.由题意F=20,∴n+10﹣=2,解得n=12.②设顶点数V,棱数E,面数F,每个点属于三个面,每条边属于两个面由每个面都是五边形,则就有E=,V=由欧拉公式:F+V﹣E=2,代入:F+﹣=2化简整理:F=12所以:E=30,V=20即多面体是12面体.棱数是30,面数是12,故答案为12,12.二、解答题(共30分)26.(1)若多项式2x3﹣8x2y+x+1与多项式﹣3x3﹣2mx2y+6x﹣9的差的值与字母y的取值无关,求m的值.(2)已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|b+c|+|a+c|.【解答】解:(1)(2x3﹣8x2y+x+1)+(﹣3x3﹣2mx2y+6x﹣9)=2x3﹣8x2y+x+1﹣3x3+2mx2y+6x﹣9=﹣x3﹣8x2y+2mx2y+7x﹣8=(﹣8+2m)x2y﹣x3+7x﹣8,∵﹣8+2m=0,解得m=4.(2)由数轴可得,a<b<0<c,|a|>|c|>|b|,∴|a+b|﹣|b+c|+|a+c|=﹣a﹣b﹣b﹣c﹣a﹣c=﹣2a﹣2b﹣2c.27.用火柴按下图中的方式搭图形:(1)按图示规律补全表格:(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用187根火柴搭图形,图中会产生多少个正方形?【解答】解:(1)图①中火柴棒的根数7=2+5×1,图②中火柴棒的根数12=2+5×2,图③中火柴棒的根数2+5×3=17,图④中火柴棒的根数2+5×4=22,图⑤中火柴棒的根数2+5×5=27,补全图形如下:(2)搭第n个图形需要的火柴根数为2+5n;(3)根据题意,得:2+5n=187,解得:n=37,∵图n中正方形的个数为2+3(n﹣1)=3n﹣1,∴第37个图形中,正方形的个数为3×37﹣1=110.28.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.【解答】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=或t=,其中<3不符合题意舍去答:t的值为和。
2018-2019学年七年级(上)名校联考期中数学试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6B.x﹣1=0C.2x+y=25D.=12.x=2是下列方程()的解.A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=03.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣14.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)6.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.参考答案一.选择题(每题3分,共30分)BDDDC CBBCD11.3.12.180°.13.1.14.70°.15..16.135°.1714岁.18.20°或140°.①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,193020.70解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,21.解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.24.证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.26.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.27.解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.。
七年级(上)期中数学试卷一、选择题(共8小题,每小题3分,共24分)1.化简|﹣2|等于()A.2 B.﹣2 C.±2D.2.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与13.下列各组单项式中,为同类项的是()A.a3与a2B. a2与2a2C.2xy与2x D.﹣3与a4.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元 B.3(a+b)元C.(3a+b)元D.(a+3b)元5.下列说法,其中正确的个数为()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤﹣a一定在原点的左边.A.1个B.2个C.3个D.4个6.将多项式﹣y2+2y3+1﹣y按照字母y升幂排列正确的是()A.2y3﹣y2﹣y+1 B.﹣y﹣y2+2y3+1 C.1+2y3﹣y2﹣y D.1﹣y﹣y2+2y37.已知a2=16,|b|=5,且ab<0,则a+b的值是()A.±9B.±1或±9C.±1D.﹣1或﹣98.多项式8x2﹣3x+5与多项式3x3+2mx2﹣5x+7的差,不含二次项,则常数m的值是()A.2 B.+4 C.﹣2 D.﹣8二、填空题(共7小题,每小题3分,共21分)9.﹣3的倒数是.10.单项式﹣xy2的系数是.11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.12.已知a﹣b=2,那么2a﹣2b+2015= .13.若=﹣1,则x是(选填“正”或“负”)数.14.关于x的多项式(a﹣4)x3﹣x b+x﹣b是二次三项式,则a= ,b= .15.如图是2010年9月份的日历.现在用一矩形在日历中任意框出9个数,用e表示出这9个数的和为.三、解答题(共10道题,共75分)16.计算下列各式:(1).(2).17.已知12箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,+0.6,0,﹣0.1,﹣0.6,+0.5,﹣0.2,﹣0.5.(1)求12箱苹果的总重量;(2)若每箱苹果的重量标准为10±0.5(千克),则这12箱有几箱不合乎标准的?18.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求的值.19.老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.20.已知a、b、c满足:(1)5(a+3)2+2|b﹣2|=0;(2)x2﹣a y1+b+c是7次单项式,求多项式a2b﹣[a2b﹣(2abc﹣a2c﹣3a2b)﹣4a2c]﹣abc的值.21.已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|.①求a5+b5的值;②化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|.22.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?23.大学生康康自主创业,在风景秀丽的遗爱湖边开了间遗爱咖啡馆.新网购的每一张正方形的桌子可坐4人,按照图的方式将桌子拼在一起,试回答下列问题.(1)两张桌子拼在一起可以坐几人?三张桌子拼在一起可以坐几人?n张桌子拼在一起可以坐几人?(2)咖啡馆里有60张这样的正方形桌子,按上图方式每4张拼成一个大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中若每4张桌子拼成一个大的正方形,共可坐多少人?(4)对于咖啡馆,哪种拼桌子的方式可以坐的人更多?24.一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.25.黄冈小河中学准备买一些乒乓球和乒乓球拍作为即将举行的秋季运动会的奖品.现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该校需球拍5副,乒乓球x盒(不小于5盒).问:(1)请用关于x的整式分别表示出在两店的付款情况;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?(3)当购买乒乓球多少盒时,两种优惠办法付款一样?参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.化简|﹣2|等于()A.2 B.﹣2 C.±2D.【考点】绝对值.【分析】根据负数的绝对值是它的相反数直接进行化简即可.【解答】解:|﹣2|=2.故选A.【点评】本题考查了绝对值,注意正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.3.下列各组单项式中,为同类项的是()A.a3与a2B. a2与2a2C.2xy与2x D.﹣3与a【考点】合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同的项不是同类项,故C错误;D、字母不同的项不是同类项,故D错误;故选:B.【点评】本题考查了同类项,利用了同类项的定义.4.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元 B.3(a+b)元C.(3a+b)元D.(a+3b)元【考点】列代数式.【分析】求用买1个面包和2瓶饮料所用的钱数,用1个面包的总价+三瓶饮料的单价即可.【解答】解:买1个面包和3瓶饮料所用的钱数:a+3b元;故选D.【点评】此题考查列代数式,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.5.下列说法,其中正确的个数为()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤﹣a一定在原点的左边.A.1个B.2个C.3个D.4个【考点】有理数;相反数.【分析】根据有理数的定义,有理数的分类,相反数的定义,数轴的认识即可求解.【解答】解:①正数,0和负数统称为有理数,原来的说法错误;②一个有理数不是整数就是分数是正确的;③没有最小的负数,没有最大的正数,原来的说法错误;④只有符号相反的两个数互为相反数,原来的说法错误;⑤a<0,﹣a一定在原点的右边,原来的说法错误.其中正确的个数为1个.故选A.【点评】本题考查有理数的定义,相反数的知识,属于基础题,注意概念的掌握,及特殊例子的记忆.6.将多项式﹣y2+2y3+1﹣y按照字母y升幂排列正确的是()A.2y3﹣y2﹣y+1 B.﹣y﹣y2+2y3+1 C.1+2y3﹣y2﹣y D.1﹣y﹣y2+2y3【考点】多项式.【分析】根据多项式幂的排列的定义解答.【解答】解:多项式﹣y2+2y3+1﹣y按照字母y升幂排列是:1﹣y﹣y2+2y3,故选:D.【点评】本题考查了多项式幂的排列,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.7.已知a2=16,|b|=5,且ab<0,则a+b的值是()A.±9B.±1或±9C.±1D.﹣1或﹣9【考点】有理数的乘法;绝对值;有理数的加法;有理数的乘方.【分析】根据绝对值以及平方的性质即可求得a,b的值,然后代入数据即可求解.【解答】解:∵|b|=5,∴b=±5,∵a2=16,∴a=±4,∵ab<0∴a=4,b=﹣5或a=﹣4,b=5,∴a+b=4﹣5=﹣1,或a+b=﹣4+5=﹣1.故选:C.【点评】本题考查了绝对值,平方的性质,正确确定a,b的值是关键.8.多项式8x2﹣3x+5与多项式3x3+2mx2﹣5x+7的差,不含二次项,则常数m的值是()A.2 B.+4 C.﹣2 D.﹣8【考点】整式的加减.【分析】先根据题意列出整式相加减的式子,再去括号,合并同类项,令二次项的系数等于0即可求出m的值.【解答】解:原式=(8x2﹣3x+5)﹣(3x3+2mx2﹣5x+7)=8x2﹣3x+5﹣3x3﹣2mx2+5x﹣7=﹣3x3+(8﹣2m)x2+2x﹣2.∵两多项式的差不含二次项,∴8﹣2m=0,解得m=4.故选B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二、填空题(共7小题,每小题3分,共21分)9.﹣3的倒数是﹣.【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.单项式﹣xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.12.已知a﹣b=2,那么2a﹣2b+2015= 2019 .【考点】代数式求值.【分析】等式a﹣b=2两边同时乘以2得:2a﹣2b=4,然后代入计算即可.【解答】解:∵a﹣b=2,∴2a﹣2b=4.∴原式=4+2015=2019.故答案为:2019.【点评】本题主要考查的是求代数式的值,求得2a﹣2b=4是解题的关键.13.若=﹣1,则x是负(选填“正”或“负”)数.【考点】有理数的除法;绝对值.【分析】由有理数的除法法则可知|x|与x异号,故此x<0.【解答】解:∵=﹣1,∴|x|=﹣x.∴x<0.故答案为:负.【点评】本题主要考查的是有理数的除法,掌握有理数的除法法则是解题的关键.14.关于x的多项式(a﹣4)x3﹣x b+x﹣b是二次三项式,则a= 4 ,b= 2 .【考点】多项式.【专题】计算题.【分析】根据多项式的项和次数的定义来解题.要先找到题中的等量关系,然后列出方程.【解答】解:∵多项式(a﹣4)x3﹣x b+x﹣b是二次三项式,∴(1)不含x3项,即a﹣4=0,a=4;(2)其最高次项的次数为2,即b=2.故填空答案:4,2.【点评】解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数;(3)多项式中不含字母的项叫常数项.15.如图是2010年9月份的日历.现在用一矩形在日历中任意框出9个数,用e表示出这9个数的和为9e .【考点】列代数式;整式的加减.【分析】根据日历中数字的规律:一行中,每相邻的两个数字相差是1;一列中,每相邻的两个数字相差是7,设出其中的一个,然后表示出其余的数,然后相加即可.【解答】解:根据分析得:b=e﹣7,h=e+7,d=e﹣1,f=e+1,a=e﹣8,c=e﹣6,g=e+6,i=e+8,∴a+b+c+d+e+f+g+h+i=e﹣8+e﹣7+e﹣6+e+e﹣1+e+1+e+6+e+7+e+8=9e,故答案为:9e.【点评】考查了列代数式的知识,了解日历中数之间的关系,能够从中发现数学方面的知识.关键是知道日历中数字的规律:一行中,每相邻的两个数字相差是1;一列中,每相邻的两个数字相差是7.三、解答题(共10道题,共75分)16.计算下列各式:(1).(2).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(3+5)+(﹣2﹣)=9﹣3=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣6+4﹣6=﹣12+4=﹣8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.已知12箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,+0.6,0,﹣0.1,﹣0.6,+0.5,﹣0.2,﹣0.5.(1)求12箱苹果的总重量;(2)若每箱苹果的重量标准为10±0.5(千克),则这12箱有几箱不合乎标准的?【考点】正数和负数.【分析】(1)根据题意得出算式12×10+[(+0.2)+(﹣0.2)+(+0.7)+(﹣0.3)+(﹣0.4)+(+0.6)+0+(﹣0.1)+(﹣0.6)+(+0.5)+(﹣0.2)+(﹣0.5)],求出即可.(2)不符合标准的有+0.7,+0.6,﹣0.6,即可得出答案.【解答】解:(1)12箱苹果的总重量是12×10+[(+0.2)+(﹣0.2)+(+0.7)+(﹣0.3)+(﹣0.4)+(+0.6)+0+(﹣0.1)+(﹣0.6)+(+0.5)+(﹣0.2)+(﹣0.5)]=119.7(千克),答:12箱苹果的总重量是119.7千克.(2)∵每箱苹果的重量标准为10±0.5(千克),∴+0.7,+0.6,﹣0.6的不符合标准,∴这12箱不合乎标准的有3箱.【点评】本题考查了有理数的加减法则的应用,关键是能根据题意列出算式.18.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,求的值.【考点】倒数;相反数;绝对值;有理数的混合运算.【专题】计算题.【分析】a、b互为相反数就是已知a+b=0;c、d互为倒数就是已知cd=1;绝对值是1的数是±1.这样就可以求出代数式的值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,∴原式=0+1+1=2或0﹣1+1=0.【点评】本题主要考查相反数、绝对值、倒数的定义.是需要识记的内容.19.老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.已知a、b、c满足:(1)5(a+3)2+2|b﹣2|=0;(2)x2﹣a y1+b+c是7次单项式,求多项式a2b﹣[a2b﹣(2abc﹣a2c﹣3a2b)﹣4a2c]﹣abc的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】利用非负数的性质求出a与b的值,根据7次单项式的次数为7,求出c的值,原式去括号合并后代入计算即可求出值.【解答】解:根据题意得:a=﹣3,b=2,c=﹣1,则原式=a2b﹣a2b+2abc﹣a2c﹣3a2b+4a2c﹣abc=﹣3a2b+3a2c+abc=﹣54﹣27+6=﹣75.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|.①求a5+b5的值;②化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|.【考点】数轴;绝对值;有理数的乘方.【专题】计算题.【分析】根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,继而即可求出①的值,对②中的式子去绝对值,也即可得出答案.【解答】解:根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,则a+b=0,所以有①a5+b5=0;②|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|,=a﹣0﹣(a﹣c)+(b﹣c)﹣ac+2b,=3b﹣ac.【点评】本题考查了数轴,绝对值,有理数的乘方的知识,注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号.同时注意把一个代数式看作一个整体.22.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?【考点】列代数式;代数式求值.【分析】(1)设客厅的宽是xm,卫生间的宽是ym,根据长方形的面积=长×宽,表示出总面积.(2)设客厅的宽是xm,卫生间的宽是ym,根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为80元,列出方程组求解.【解答】解:(1)设客厅的宽是xm,卫生间的宽是ym,地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得,解得:,地面总面积为:S(总)=6x+2y+18=45(m2),铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点评】本题考查理解题意的能力,关键是能用x和y表示各部分的面积,且长方形的面积=长×宽,求出总面积可求出总费用.23.大学生康康自主创业,在风景秀丽的遗爱湖边开了间遗爱咖啡馆.新网购的每一张正方形的桌子可坐4人,按照图的方式将桌子拼在一起,试回答下列问题.(1)两张桌子拼在一起可以坐几人?三张桌子拼在一起可以坐几人?n张桌子拼在一起可以坐几人?(2)咖啡馆里有60张这样的正方形桌子,按上图方式每4张拼成一个大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中若每4张桌子拼成一个大的正方形,共可坐多少人?(4)对于咖啡馆,哪种拼桌子的方式可以坐的人更多?【考点】规律型:图形的变化类.【分析】(1)观察摆放的桌子,不难发现:在1张桌子坐4人的基础上,多1张桌子,多2人.则n张桌子时,有4+2(n﹣1)=2n+2;(2)计算出每4张拼成一个大桌子坐的人数,进一步求得15张大桌子,共可坐多少人;(3)由每一条边坐2个人得出答案即可;(4)比较(2)(3)得出答案即可.【解答】解:(1)两张桌子拼在一起可坐2+2+2=6(人);三张桌子拼在一起可坐2+2+2+2=8(人);n张桌子拼在一起可坐2(n+1)=2n+2(人).(2)按上图方式每4张桌子拼成一个大桌子,那么一张大桌子可坐2×4+2=10(人).所以15张大桌子可坐10×15=150(人).(3)在(2)中,若每4张桌子拼成一个大的正方形桌子,则一张大正方形桌子可坐8人,15张大正方形桌子可坐8×15=120(人).(4)由(2)(3)比较可知,该咖啡馆采用第一种拼摆方式可以坐的人更多.【点评】此题考查图形的变化规律,要结合图形来找到规律:如果如图摆放,则在4的基础上,多1张桌子,多2人是解决问题的关键.24.一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…(1)写出第一次移动后这个点在数轴上表示的数为 3 ;(2)写出第二次移动结果这个点在数轴上表示的数为 4 ;(3)写出第五次移动后这个点在数轴上表示的数为7 ;(4)写出第n次移动结果这个点在数轴上表示的数为n+2 ;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.【考点】规律型:数字的变化类;数轴.【专题】规律型.【分析】(1)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位,实际上点A最后向左移动了1个单位,则第一次后这个点表示的数为1+2=3;(2)第二次先向左移动3个单位,再向右移动4个单位,实际上点A最后向左移动了1个单位,则第二次后这个点表示的数为2+2=4;(3)根据前面的规律得到第五次移动后这个点在数轴上表示的数是5+2=7;(4)第n次移动后这个点在数轴上表示的数是n+2;(5)由(4)得到第m次移动后这个点在数轴上表示的数为m+2,则m+2=56,然后解方程即可.【解答】解:(1)第一次移动后这个点在数轴上表示的数是3;(2)第二次移动后这个点在数轴上表示的数是4;(3)第五次移动后这个点在数轴上表示的数是7;(4)第n次移动后这个点在数轴上表示的数是n+2;(5)m+2=56,解得m=54.故答案为3,4,7,n+2,54.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.25.黄冈小河中学准备买一些乒乓球和乒乓球拍作为即将举行的秋季运动会的奖品.现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该校需球拍5副,乒乓球x盒(不小于5盒).问:(1)请用关于x的整式分别表示出在两店的付款情况;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?(3)当购买乒乓球多少盒时,两种优惠办法付款一样?【考点】一元一次方程的应用.【分析】(1)首先根据题意分别表示出去甲、乙两店购买所需的费用,在甲店购买所需的费用=30×乒乓球拍5副+需要花钱的球数×5,在乙店购买所需的费用=30×乒乓球拍5副×90%+球数×5×90%;(2)根据(1)中的代数式,把x=15、x=30分别代入计算出钱数即可;(3)都是根据(1)中的代数式列出关于x的方程,并解答.【解答】解:(1)在甲店:30×5+(x﹣5)×5=5x+125;在乙店:(30×5+5x)×0.9=4.5x+135.(2)当购买15盒乒乓球时:甲店需付款30×5+(15﹣5)×5=200(元),乙店需付款(30×5+15×5)×0.9=202.5(元),因为200<202.5,所以购买15盒乒乓球时,去甲店较合算;当购买30盒时:甲店需付款30×5+(30﹣5)×5=275(元),乙店需付款(30×5+30×5)×0.9=270(元),因为275>270,所以购买30盒乒乓球时,去乙店较合算.(3)两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,所以购买20盒乒乓球时,两种优惠办法付款一样.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。