分组法分解因式
- 格式:docx
- 大小:17.55 KB
- 文档页数:2
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。
解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。
可先将a2-b2一组应用平方差公式,再提出因式。
解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。
观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。
解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。
解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。
因式分解分组分解法
因式分解分组分解法是一种求多项式的因式分解的方法。
它的基本思路是将多项式中的项按照某种特定的规则进行分组,使得每一组中的项可以合并成一个公因式,从而简化多项式,方便因式分解。
具体来说,我们可以按照以下几种规则进行分组:
1. 按照指数分组:将多项式中所有指数相同的项放在一起,例如:
$$
3x^2+2x^3-5x^2-7x^3=3x^2-5x^2+2x^3-7x^3=-2x^2-5x^3
$$
2. 按照变量分组:将多项式中所有含有相同变量的项放在一起,例如:
$$
2x+3xy-4x-2xy=2x-4x+3xy-2xy=-2x+xy
$$
3. 混合分组:将多项式中按照指数和变量来进行分组,例如: $$
2x^2y+3xy^2-4xy-2x^2=2x^2y-2x^2+3xy^2-4xy=2x^2(y-1)+3xy(y-1 )=(2x^2+3xy)(y-1)
$$
通过以上的分组方法,我们可以将多项式中的项进行合并,得到
公因式,从而进行因式分解。
因式分解分组分解法在解题中应用广泛,是学习代数基础的重要内容之一。
分组分解法进行因式分解【知识精读】分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。
使用这种方法的关键在于分组适当,而在分组时,必须有预见性。
能预见到下一步能继续分解。
而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。
应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。
下面我们就来学习用分组分解法进行因式分解。
【分类解析】1. 在数学计算、化简、证明题中的应用例1. 把多项式分解因式,所得的结果为()分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。
例2. 分解因式分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。
2. 在几何学中的应用例:已知三条线段长分别为a、b、c,且满足证明:以a、b、c为三边能构成三角形分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”证明:3. 在方程中的应用例:求方程的整数解分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解4、中考点拨例1.分解因式:_____________。
说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。
例2.分解因式:____________说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。
例3. 分解因式:____________说明:分组的目的是能够继续分解。
5、题型展示:例1. 分解因式:说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。
分组分解法及添拆项法【知识要点】1.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的,即22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。
(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
例 把多项式am+bn+an+bm 分解因式。
解法一:原式=(am+an )+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)解法二:原式=(am+bm )+(bn+an)=m(a+b)+n(a+b)= (a+b)(m+n)(4)对于四项式,在分解时并不一定“二二”分组,有的需要“一三”分组, 例如:2221xy x y --+,在分组分解时,前三项为一组,最后一项为一组。
2221xy x y --+=2221(2)1()(1)(1)x xy y x y x y x y --+=--=+--+【典型例题】例1 分解因式(1)22x ax y ay --+ (2)432416x x x -+-(3)22244x xy y a -+- (4)27321a b ab a -+-(5)xy y y x x 2)1()1(-++-(6) )()(2222b a cd d c ab +++例2 分组后能直接运用公式的因式分解。
(1)22194m mn n +-+(2)2242x x y y --+例3 添拆项后再分组。
(1)44a +(2)4224a a b b ++(3)51a a ++ (4)1724+-x x(5)22222+++--+y x y x xy y x (6)22412a ax x x -+++例4 已知7,10x y xy +==,求(1)22x y +(2)44x y +的值。
因式分解的分组分解方法(一)因式分解的分组分解方法引言因式分解是数学中的重要概念,它能将多项式分解成乘积的形式,帮助我们简化计算和解题。
其中,分组分解方法是一种常用且有效的因式分解方法,本文将介绍一些常见的分组分解方法。
方法一:拆项分组法拆项分组法在因式分解中经常使用,它将多项式的项按照特定的规则进行分组,从而便于我们进行因式分解。
步骤如下: 1. 观察多项式,将其项按照相似的部分进行分组;2. 列出每个组的公因式; 3. 将每个组的公因式提取出来,并写在一起,形成因式分解式。
方法二:配方法配方法也是一种常用的分组分解方法,适用于某些特定的多项式。
步骤如下: 1. 观察多项式,如果存在两项可以通过配方法相乘得到另一项,那么可以使用配方法; 2. 根据配方法的公式进行运算,并将结果写在一起,形成因式分解式; 3. 检查分解后的乘积是否与原多项式相同。
方法三:差的平方分解法差的平方分解法适用于差的平方形式的多项式,它可以将其分解为两个因式的乘积。
步骤如下: 1. 观察多项式,如果存在差的平方形式,即a2−b2,那么可以使用差的平方分解法; 2. 将差的平方形式分解为两个因式的乘积; 3. 检查分解后的乘积是否与原多项式相同。
方法四:公因式提取法公因式提取法是一种简单而常见的因式分解方法,它适用于多项式中存在公因式的情况。
步骤如下: 1. 观察多项式,找出各个项的公因式; 2. 将公因式提取出来,并写在一起,形成因式分解式; 3. 检查分解后的乘积是否与原多项式相同。
方法五:完全平方公式法完全平方公式法适用于多项式中存在完全平方公式的情况。
步骤如下: 1. 观察多项式,如果存在完全平方公式形式,即a2+2ab+b2,那么可以使用完全平方公式法; 2. 将完全平方公式分解为两个因式的乘积; 3. 检查分解后的乘积是否与原多项式相同。
结论分组分解方法是因式分解中常用的方法之一,它能帮助我们将多项式简化成更简单的形式。
因式分解分 组分解法一、知识点讲解:1、分组分解法:利用分组来分解因式的方法叫做分组分解法。
2、分组分解法的原则:分组分解法的原则是分组后可直接提公因式或可直接运用公式法,但必须使各组之间能继续分解。
注意:(1)分组时可进行尝试,最后找到合理的分组方法(2)有些多项式的分组方法并不唯一。
二、例题讲解:例1把多项式am+an+bm+bn 分解因式 例2把多项式7x 2-3y+xy-21x 分解因式例3把多项式a 2-a-2b+2ab 分解因式 例4把多项式1-a 2-b 2+2ab 分解因式例5分解因式:22225942061a c b ab c -+---例6分解因式:221222x y xy x y +++++例7分解因式: 2222x x y xy x y y -+-+-例8分解因式:33268()x xy y x y ++-+例9分解因式:ab(a-b)+bc(b-c)+ca(c-a)练习:1、把下列各式分解因式22(1)36355x xy y x y -+-+ 22(2)2221a ab b a b ++--+2222(3)22a b x y ay bx --+-+ (4)()()(2)a c a c b b a +-+-22(5)29x xy y --+ 2(6)33a bc ac ab +--(7)xy xz y z -+- 22(8)99ax bx a b +--22(9)(1)(1)4a b ab --- 42(10)21100a a --2、若2226100a a b b ++-+=,求a 、b 的值3、已知:x+y=3,x-y=1,求233x xy x y +--的值4、尽可能多的求出整数a ,使代数式220x ax --在整数范围内可因式分解。
3 分组分解整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.1 三步曲我们用上面的整式来说明如何分组分解.例1 分解因式:ax by bx ay --+.解 ax by bx ay --+=()()ax bx ay by -+- [分为两组]=()()x a b y a b -+- [“提”]=()()x y a b +- [再“提”]一般地,分组分解大致分为三步:1.将原式的项适当分组;2.对每一组进行适当分组;3.将经过处理后的每一组当作一项,再采用“提”或“代”进行分解.一位高明的棋手,在下棋时,决不会只看一步,同样,在进行分组时,不仅要看到第二步,而且要看到三步.一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验,多加练习,就会成为有经验的“行家”.3.2 殊途同归分组的方法并不是唯一的,对于上面的整式ax by bx ay --+,也可以采用下面的做法: ax by bx ay --+=()()ax ay ax by +-+=()()a x y b x y +-+=()()x y a b +-.两种做法的效果是一样的,殊途同归!可以说,一种是按照x 与y 来分组(含x 的项在一组,含y 的项在另一组);另一种是按a 与b 来分组.例2 分解因式:221x ax x ax a +++--.解法一 按字母x 的幂来分组.221x ax x ax a +++--=()()()221x ax x ax a +++-+=()()()2111x a x a a +++-+=()()211a x x ++-解法二 按字母a 的幂来分组.221x ax x ax a +++--=()()221ax ax a x x +-++-=()()2211a x x x x +-++-=()()211a x x ++-.3.3 平均分配在例2中,原式的6项是平均分配的,或都要分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配. 例3 分解因式:3254222x x x x x --++-.解 6项可以分成三组,每组两项.我们把幂次相近的项放在一起,即3254222x x x x x --++-=()()()5432222x x x x x -+---=()()()42222x x x x x x -+---=()()4221x x x -+-.本例也可以将6项分为两组,每组三项,即将系数为1的放在一组,系数为-2的放在另一组,详细过程请读者自己完成.例4 分解因式:2222ac bd ad bc +--.解 2222ac bd ad bc +--整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.4瞄准公式如果在第二步或第三步中需要应用乘法公式,那么各组中的项数不一定相等,应当根据公式的特点来确定。
分组法分解因式
一、选择题(本大题共7小题,共21.0分)
1.把x3+x2y-xy2-y3分解因式,标准答案是()
A.(x+y)(x2-y2)
B.x2(x+y)-y2(x+y)
C.(x+y)(x-y)2
D.(x+y)2(x-y)
2.因式分解正确的是()
A.4x2-16=(2x+4)(2x-4)
B.(x2+4)2-16x2=(x+2)2(x2+4-4x)
C.-x2+2xy-y2=(x-y)2
D.x2-y2+2y-1=(x+y-1)(x-y+1)
3.把x2-y2-2y-1分解因式结果正确的是()
A.(x+y+1)(x-y-1)
B.(x+y-1)(x-y-1)
C.(x+y-1)(x+y+1)
D.(x-y+1)(x+y+1)
4.将多项式a2-9b2+2a-6b分解因式为()
A.(a+2)(3b+2)(a-3b)
B.(a-9b)(a+9b)
C.(a-9b)(a+9b+2)
D.(a-3b)(a+3b+2)
5.因式分解:1-4x2-4y2+8xy,正确的分组是()
A.(1-4x2)+(8xy-4y2)
B.(1-4x2-4y2)+8xy
C.(1+8xy)-(4x2+4y2)
D.1-(4x2+4y2-8xy)
6.把x2-1+2xy+y2的分解因式的结果是()
A.(x+1)(x-1)+y(2x+y)
B.(x+y+1)(x-y-1)
C.(x-y+1)(x-y-1)
D.(x+y+1)(x+y-1)
7.下列多项式中,不含(x-1)因式的是()
A.x3-x2+1-x
B.x+y-xy-x2
C.x2-2x-y2+x
D.(x2+3x)-(2x+2)
二、填空题(本大题共3小题,共9.0分)
8.分解因式:1-a2+2ab-b2=____________.
9.分解因式:y+y2+xy+xy2= ______ .
10.因式分解:9x2-y2-4y-4=____________.
三、解答题(本大题共1小题,共8.0分)
11.(10分)阅读:分解因式x2+2x-3
解:原式=x2+2x+ 1-1-3
=(x2+2x+1)-4
=(x+1)2-4
=(x+1+2)(x+1-2)
=(x+3)(x-1)
此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法。
此题为用配方法分解因式。
请体会配方法的特点,然后用配方法解决下列问题:
分解因式:。