分式加减法法则
- 格式:ppt
- 大小:261.50 KB
- 文档页数:9
分式加减法运算法则分式加减法运算法则:1. 分式加法:分式加法是把分子相加或者相减,而分母保持不变,用一个新分式来表示和或差。
一般格式是:(分子1/分母)➕(分子2/分母)=(分子1+分子2/分母)。
2. 分式减法:分式减法也是把分子相减或者相加,而分母保持不变,用一个新分式来表示差。
一般格式是:(分子1/分母)➖(分子2/分母)=(分子1-分子2/分母)。
3. 分式整体乘法:分式整体乘法是将两个分式的分子相乘,而分母相乘。
一般格式是:(分子1/分母1)×(分子2/分母2)=(分子1×分子2/分母1×分母2)。
4. 分式整体除法:分式整体除法是将分式的分母相乘,而分子相乘。
一般格式是:(分子1/分母1)÷(分子2/分母2)=(分子1×分母2/分母1×分子2)。
5. 一般的分式的运算:在分式加减法和分式乘除法之后,还可以进行一般的计算,比如:(分子/分母)+(x/分母)+3=(分子+x+3×分母/分母)。
其中的 +x 和+3 就是一般的计算。
因此,在做分式加减法和乘除法的时候,我们首先要确定每个分式中分子和分母,然后根据其法则做整体或一般计算,得出正确结果。
此外,分母一般不能为0,否则会出现无穷大或者不可定义解答;分子和分母要使用相同的符号,否则会导致结果的正负不正确;如果分子和分母出现了负数,要根据实际情况将负号带到分子或者分母,以便能够得到正确的答案。
此外,分式的运算还有一个重要的技巧,即分数化简,就是用数学技巧找出分数的最简形式。
常用的分数化简诀窍就是先分子分母分别除以最大公约数,然后将分子和分母比较,可以将分母统一为最小值,再算出最终结果。
例如,有分式等式:(4/8)=(2/4),明显可以看出它们的最简形式应该为:(1/2)=(1/2),所以,我们只要在做分数运算的时候注意分数化简,就可以得出正确的答案。
总之,分式加减法和乘除法运算都要掌握其基本原理和规律,熟悉一般计算技巧,注意分数化简,以及分母不能为0,就可以得出正确的结果了。
分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
分式A/B中,A叫做分子,B叫做分母。
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分尸的值不变。
用字母表示为A/B=(A*C)/(B*C), A/B=(A÷C)/(B÷C)(C≠0)。
分式法则一、乘法法则分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用字母表示(a/b)*(c/d)=(a*c)/(b*d);二、除法法则分式除以分式,把除式的分子、分母颠倒位置后,与除式相乘。
用字母表示(a/b)÷(c/d)= (a/b)*(d/c)= (a*d)/(b*c);知识拓展:(1)分式乘、除法的运算按从左到右的顺序进行,结果如果不是最简分式,要进行约分。
(2)根据分式乘法法则有:①分式与分式相乘时,如果分子和分母是多项式,那么先分解因式,再看能否约分,然后相乘;②整式与分式相乘时,可以直接把整式看成分母是1的代数式,再与分式相乘;③分式的乘法实质就是约分,所以计算结果如能约分的,必须约分,或通过分解因式后能约分的也要约分,必须把结果化为最简分式或整式。
(3)根据法则我们知道,分式的除法需转化成乘法,转化过程实际上是“一变一倒”的过程,即除号变为乘号,除式的分子与分母颠倒位置。
当除式是整式时,可以将整式看成分母是1的代数式进行运算。
分式的乘方分式乘方要把分子、分母分别乘方。
用字母表示分式的乘方法则是:知识拓展:(1)分式的乘方法则是由乘方的意义和分式的乘法法则推导出来的。
(2)分式的乘方法则中“把分子、分母分别乘方”,是把分子、分母分别看做一个整体,如分式的加减法一、同分母分式加减法法则。
同分母分式相加减,分母不变,把分子相加减。
用字母表示为:(a/c)+(b/c)=(a+b)/c。
二、异分母分式加减法法则。
异分母分式相加减,先通分,变为同分母的分式,再加减。
分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a bcdacbd⋅=;abcdabdcadbc÷=⋅=当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘.2. 分式的加减法(1)同分母的分式加减法法则:acbca bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等的同分母的分式的过程.4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取;(3)相同字母(或含有字母的式子)的幂的因式取指数最高的.5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项,从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分,将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(xym m y x xy m ÷-⋅-(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅(5)22)2(4422-++---x x x x x x (6)6554651651222222-+-+-++--++x x x x x x x x x (7)()()222624x x x ---+ (8)223y xy xy xy x y x +-+++(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+--精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯--例2. ()242223232222222+++++--+-a a a a a a a a例3. 计算:xx xx x x x x x x x 4122121035632222-+-++---+++例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值例5.已知6112=++a a a ,试求1242++a a a 的值 例6. 1814121111842+-+-+-+--x x x x x例7. 计算 45342312+++++-++-++x x x x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x -++⋅+÷+--36)3(446222类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b ca b c b c a c a b-+-+--++--+--(3)2422---x x x (4)22211y x xy x y x -+--+(5)224--+a a (6) 222244242x y y x y x y y x -+-++ (7) 已知y x a x y -=,y xb x y+=,求22a b -类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭(3)245(3)33x x x x -÷----- (4)111111--++x x(5)2222222265232y x y x y xy x y x y xy x y xy x -+⋅---÷+++-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+-类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少?类型五:分式的拆分 1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n .2.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x .自我测试一、选择题2. 下列分式是最简分式的( ) A .ba a 232 B .aa a 32- C .22b a b a ++ D .222b a ab a --3. 化简)2()242(2+÷-+-m mm m 的结果是( )A .0B .1C .-1D .(m +2)24. 已知2111=-b a ,则b a ab -的值是( )A .21B .21- C .2 D .-25. 化简(x y -y x ) ÷x yx -的结果是( )A .1yB .x y y +C .x y y -D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 .7. 化简: aa 12-÷(1+a 1)= .8. 化简:4)222(2-÷--+x x x x x x 的结果为 .9. 若x 2-3x +1=0,则2421x x x ++的值为_________.10.化简12-a ·442++a a ÷2+a +12-a ,其结果是________.三、计算题 11. 计算(1) 22399xx x --- (2) x x x x x x x x x x 23832372325322222--+--+++--+ (3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x(5)aaa a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x12.化简求值 (1)aa -+-21442,并求时原式的值.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n 3… 输出答案 11分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a b c d ac bd ⋅=;a b c d a b d c adbc÷=⋅= 当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘. 2. 分式的加减法(1)同分母的分式加减法法则:a cbc a bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等 的同分母的分式的过程. 4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取; (3)相同字母(或含有字母的式子)的幂的因式取指数最高的. 5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、 分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项, 从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分, 将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( C )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( A )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( B )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( D )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( B )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(x ym m y x xy m ÷-⋅-解: 原式=663827c b a - 解:原式=338ym x -(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅ 解:原式=))(()(223b a b a b a +-+ 解:原式=32916ax b(5)22)2(4422-++---x xx x x x (6)6554651651222222-+-+-++--++x x x x x x x x x解:原式=21-+x x 解:原式=64+-x x (7)()()222624x x x ---+ (8)223y xy x y xy x y x +-+++ 解:原式=21-x 解:原式=xy x y -3(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+-- 解:原式=)1)(5(24-+-x x x 解:原式=0精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯-- 解:原式=)55()2222(426912624242669661244yx y x y x y x y x y x -÷⋅=)1()(51022y x y x -⋅=361yx -例2. ()242223232222222+++++--+-a a a a a a a a 解:原式=326322=++a a例3. 计算:x x xx x x x x x x x 4122121035632222-+-++---+++解:原式=)2)(2(12)1)(2()1()2)(5()1)(5(2-++-+---+++x x x xx x x x x x x=)2)(2(122121-+++---+x x x x x x =)2)(2(126-++x x x=26-x例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值解:由已知得:a c b b c a c b a -=+-=+-=+,,∴原式=a cb c c b a b c a b a +++++ =acb c b a b c a +++++ =-3例5.已知6112=++a a a ,试求1242++a a a 的值 解:由已知得:612=++a a a ,即611=++aa 51=+∴a a 232)1(1222=-+=+∴aa a a2411122224=++=++∴a a a a a 2411242=++∴a a a例6. 1814121111842+-+-+-+--x x x x x 解:原式=181412128422+-+-+--x x x x =181414844+-+--x x x =181888+--x x =11616-x例7. 计算 45342312+++++-++-++x x x x x x x x 解:原式=411311211111++++--+--++x x x x =41312111+++-+-+x x x x =)3)(2(52)4)(1(52+++-+++x x x x x x=24503510104234+++++x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x --+⋅+÷+--36)3(446222解:原式=)23(5--x m y x 解:原式=22--x类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b c a b c b c a c a b-+-+--++--+-- 解:原式=2- 解:原式=0(3)2422---x x x (4)22211y x xy x y x -+--+ 解:原式=2+x 解:原式=yx +2(5)224--+a a (6) 222244242x y y x y x y y x -+-++ 解:原式=242++-a a 解:原式=yx x 22+(7) 已知y x a x y -=,y xb x y+=,求22a b - 解:原式=4)2(2))((-=-⋅=-+yxx y b a b a类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭ 解:原式=nm nm 222-- 解:原式=)2(2+x x(3)245(3)33x x x x -÷----- (4)111111--++x x 解:原式=22+-x 解:原式=)2)(1()1)(2(-+-+x x x x(5)2222222265232y x yx y xy x y x y xy x y xy x -+⋅---÷+++- 解:原式=yx yx 26+-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+- 解:原式=))(()())(()(223334y xy x y x y x y x y x y x +--+=+-+又x y 2=,代入得: 原式=-9类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2解:原式=34--x , 当x =2时,原式=4.(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.解:原式=11+x , 当x =-45时,原式=5.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少? 解:原式=22-+x x , 当1x =时,原式=-3.类型五:分式的拆分1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n . 解:原式=11141313121211+-++-+-+-n n =111+-n =1+n n3.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x . 解:原式=100199********+-++++-+++-x x x x x x =10011+-x x =)100(100+x x 自我测试一、选择题A. a +bB. a -bC. a 2-b 2D. 12. 下列分式是最简分式的( C )A .b a a232 B .a a a 32- C .22b a b a ++ D .222b a ab a -- 3. 化简)2()242(2+÷-+-m mm m 的结果是( B ) A .0B .1C .-1D .(m +2)2 4. 已知2111=-b a ,则b a ab -的值是( D ) A .21 B .21- C .2 D .-2 5. 化简(x y -y x ) ÷x y x -的结果是( B ) A . 1y B . x yy + C . x yy - D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 -3 . 7. 化简: aa 12-÷(1+a 1)= a -1 . 8. 化简:4)222(2-÷--+x x x x x x 的结果为 x -6 .10.化简122-+a a ·4412++-a a a ÷21+a +122-a ,其结果是11-a . 三、计算题11. 计算(1) 22399x x x --- (2)x x x x x x x x x x 23832372325322222--+--+++--+ 解:原式=31+-x 解:原式=(3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x 解:原式=2)(y x xy - 解:原式=53-x (5)aa a a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x 解:原式=aa a a a a a a 633633-⋅+--⋅- 解:原式=252-x =)3(6361+-+-a a =31+-a12.化简求值 (1)aa -+-21442,并求3-=a 时原式的值. 解:原式=21+-a 当3-=a 时,原式=1.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . 解:原式=22--a a由已知得:02=-a a∴原式=-2(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n3 … 输出答案 1 1解:12=-+n nn n。
分式的运算法则分式是数学中常见的一种数值表达方式,也是数学中重要的一个概念。
在分式的运算中,有着一些常见的运算法则,这些法则在分式的计算中起到了重要的作用。
本文将围绕着分式的运算法则进行详细的阐述和解释,让读者更好地理解和掌握分式运算的技巧和方法。
一、分式的定义与基本概念分式是数学中的一种表示方式,它由分子和分母两部分组成,分子和分母都是整数或者代数式。
分式的一般形式为:a/b,其中a为分子,b为分母。
分子和分母之间用横线隔开,横线上方的数称为分子,横线下方的数称为分母。
分式也可以用小括号表示,例如:(a/b)。
分式的运算是指对分式进行加、减、乘、除等数学运算。
分式的运算法则是指在分式的运算中,遵循一定的规则和方法,以便得到正确的答案。
接下来,我们将详细介绍分式的运算法则。
二、分式的运算法则1.分式的通分当两个分式的分母不同,需要将它们通分,即将它们的分母化为相同的形式,然后再进行加减运算。
通分的方法是将两个分母的最小公倍数作为新的分母,分别将原来的分子乘以新分母与原分母的比值,然后再进行加减运算。
例如,对于分式3/4和5/6,需要将它们通分,通分后的分式为9/12和10/12,然后可以将它们相加得到19/12。
2.分式的约分分式的约分是指将分子和分母同时除以它们的公因数,使得它们的比值不变。
约分的目的是为了简化分式,使它们的表示更加简洁。
例如,对于分式12/24,可以将分子和分母同时除以它们的公因数12,得到1/2,这就是分式的约分形式。
3.分式的乘法分式的乘法是指将两个分式相乘,得到一个新的分式。
分式的乘法公式为:a/b × c/d = ac/bd。
例如,对于分式2/3和3/4,它们的乘积为2/3 × 3/4 = 6/12,然后可以将它们约分得到1/2。
4.分式的除法分式的除法是指将一个分式除以另一个分式,得到一个新的分式。
分式的除法公式为:a/b ÷ c/d = ad/bc。
分式的运算疑难分析1.类似分数,分式有:乘法法则——分式乘分式 ,用分子的积作为积的分母,分母的积作为积的分母. 除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示为:a c acb d bd =;ac ad adb d bc bc÷==. 2.类似分数的加减法,分式的加减法则是:同分母分式相加减,分母不变,把分子相加减,异分母分式相加减,选通分,变为同分母的分式,再加减,用式子表示为:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±=. 3.整数指数幂有以下运算性质:(1)a m a n =a m+n (m ,n 是整数); (2)(am)n =a mn(m ,n 是整数)(3)(ab)n =a n b n (n 是整数); (4)a m ÷a n =a m-n(m ,n 是整数)(5)(a b )n =n n a b(n 是整数); (6)a -n =1n a (a ≠0);特别地,当a ≠0时,a 0=1.有了负整数指数幂后,小于1的正整数也可以用科学记数法表示.例题选讲例1 计算:22266(3)44124x x x x x x x-+-⨯÷+-+-. 解:()()()()()()222233226611(3)12443322442x x x x x x x x x x x x x x -+--+-⨯÷+=⨯⨯=--+--+- =142x-.评注:当计算中有乘除法运算,还有乘方运算时,一般先是乘方,后乘除,在运算过程中要注意正确地运用符号法则来确定结果的符号.例2 计算:(1)a b ca b c a b c c a b+++-+---;(2)22112224xx y x y x y ---+-.解:(1)a b ca b c a b c c a b +++-+--- a b ca b c a b c a b c=+-+-+-+-1a b ca b c+-==+-;(2)22112224xx y x y x y ---+- ()()()()()()222222222x y x y xx y x y x y x y x y x y +-=---+-+-+=()()()()2222(2)2222x y x y x x y x y x y x y x y +-+---=-+-+22x y=-+ 评注:在分式的加减法运算中,注意把分子看成一个整体用括号括起来,再相加减,异分母分式的加减,要注意确定最简公分母.例3 计算:(1)2312122(3)6.()a b a b a ab ------;(2)13212().(2).(2)ab a a b -----.解:(1)23122(1)(1)(2)32(2)122(3)2366.()a b a b a b a ab ----+------+-----⨯=;0a b b ==-(2)13212().(2).(2)ab a a b -----113322(2)1(2).(2).(2).a b a a b ---⨯--⨯-=--=3(2)(1)3(4)122(2)2a b a b +--++--+--=-22b a =-评注:(1)计算前,注意幂的底数、指数、特别是各项系数. (2)要根据性质正确计算,防止(-2)-2=4,-2-2=211(2)4=-等类错误. (3)注意运算顺序,结果中不同时含分式和负整数指数幂.基础训练一、选一选(请将唯一正确答案的代号填入题后括号内) 1.下列分式中是最简分式的是( ). (A )221x x + (B )42x (C )211x x -- (D )11xx -- 2.用科学记数法表示0.000078,正确的是( ).(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3 (D )0.78×10-43.下列计算:①0(1)1-=-;②1(1)1--=;③33133aa-=-;④532()()x x x ---÷-=-.其中正确的个数是( ).(A )4 (B )3 (C )1 (D )04.已知公式1212111()R R R R R =+≠,则表示R 1的公式是( ). (A )212R R R RR -=(B )212RR R R R =- (C )212RR R R R =-(D )212()R R R R R += 5.某商店有一架不准确的天平(其臂不等长)及1千克的砝码,某顾客要购两千克瓜子,售货员将1千克砝码放于左盘,置瓜子于右盘使之平衡后给顾客,然后又将1千克砝码放于右盘,另置瓜子于左盘,平衡后再给顾客,这样称给顾客两千克瓜子( ).(A )是公平的 (B )顾客吃亏(C )商店吃亏 (D )长臂大于短臂2倍时商店吃亏 6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则100!98!的值为( ). (A )5049(B )99! (C )9900 (D )2! 7.下列分式的运算中,其中结果正确的是( ).(A )112a b a b +=+ (B )323()a a a = (C )22a b a b a b +=++ (D )231693a a a a -=-+-8.化简24().22a a a a a a---+的结果是( ).(A )-4 (B )4 (C )2a (D)2a+4二、填一填9.若20(1)a -有意义,则a ≠ .10.纳米是非常小的长度单位,1纳米=0.000000001米,那么用科学记数法表示1纳米= 米.11.如果12x y y -=,则xy= . 12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则2a bm dc a b c++-=++ .三、做一做 13.计算:(1)22411()4422a a a a a a -+-÷-+-+;(2)3211a a a a ----.14.请将下面的代数式尽可能化简,再选择一个你喜欢的数(要合适哦!)代入求值:212(1)1a a a a --++-.15.若关于x 的方程323a x bx --=的解是x=2,其中a b ≠0,求a bb a-的值. 16.已知222211111x x x x y x x x-+-=÷-+-+ ,试说明在等号右边代数式有意义的条件下,不论x 为何值,y 的值不变.四、试一试17.已知abc=1,化简 111a b cab a bc b ac c ++++++++, 试探求简捷的方法.16. 2 分式的运算一、1.A 2.A 3.D 4.C 5.C 6.C 7.D 8.A 二、9.a ≠±1 10.91.010-⨯ 11.3212.3整数指数幂(1)教学目标:1、 使学生掌握不等于零的零次幂的意义。