数据挖掘作业集答案
- 格式:doc
- 大小:178.00 KB
- 文档页数:18
数据挖掘习题答案数据挖掘习题答案数据挖掘作为一门重要的技术和方法,广泛应用于各个领域。
在学习数据挖掘的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以更好地理解和掌握数据挖掘的原理和应用。
以下是一些常见的数据挖掘习题及其答案,供大家参考。
一、选择题1. 数据挖掘的目标是什么?A. 发现隐藏在大数据中的模式和关联B. 提供数据存储和管理的解决方案C. 分析数据的趋势和变化D. 优化数据的存储和传输速度答案:A. 发现隐藏在大数据中的模式和关联2. 下列哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 回归D. 排序答案:D. 排序3. 数据挖掘的过程包括以下几个步骤,哪个是第一步?A. 数据清洗B. 数据集成C. 数据转换D. 数据选择答案:B. 数据集成4. 下列哪个不是数据挖掘中常用的算法?A. 决策树B. 支持向量机C. 朴素贝叶斯D. 深度学习答案:D. 深度学习5. 下列哪个不是数据挖掘的应用领域?A. 金融B. 医疗C. 娱乐D. 政治答案:D. 政治二、填空题1. 数据挖掘是从大量数据中发现________和________。
答案:模式,关联2. 数据挖掘的主要任务包括分类、聚类、回归和________。
答案:预测3. 数据挖掘的过程包括数据集成、数据清洗、数据转换和________。
答案:模式识别4. 决策树是一种常用的________算法。
答案:分类5. 数据挖掘可以应用于金融、医疗、娱乐等多个________。
答案:领域三、简答题1. 请简要介绍数据挖掘的主要任务和应用领域。
答:数据挖掘的主要任务包括分类、聚类、回归和预测。
分类是将数据集划分为不同的类别,聚类是将数据集中相似的样本归为一类,回归是根据已有的数据预测未知数据的值,预测是根据已有的数据预测未来的趋势和变化。
数据挖掘的应用领域非常广泛,包括金融、医疗、娱乐等。
在金融领域,数据挖掘可以用于信用评估、风险管理等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面;在娱乐领域,数据挖掘可以用于推荐系统、用户行为分析等方面。
您的本次作业分数为:100分1.【第001章】孤立点挖掘适用于下列哪种场合?A 目标市场分析B 购物篮分析C 模式识别D 信用卡欺诈检测正确答案:D2.【第01章】根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是()。
A 关联分析B 分类和预测C 演变分析D 概念描述正确答案:B3.【第01章】数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于()。
A 所涉及的算法的复杂性B 所涉及的数据量C 计算结果的表现形式D 是否使用了人工智能技术正确答案:B4.【第01章】下列几种数据挖掘功能中,()被广泛的应用于股票价格走势分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:D5.【第01章】下列几种数据挖掘功能中,()被广泛的用于购物篮分析。
A 关联分析B 分类和预测C 聚类分析D 演变分析正确答案:A6.【第01章】帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 聚类分析D 孤立点分析E 演变分析正确答案:C7.【第01章】下面的数据挖掘的任务中,()将决定所使用的数据挖掘功能。
A 选择任务相关的数据B 选择要挖掘的知识类型C 模式的兴趣度度量D 模式的可视化表示正确答案:B8.【第01章】假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是()。
A 关联分析B 分类和预测C 孤立点分析D 演变分析E 概念描述正确答案:E9.【第02章】下列哪种可视化方法可用于发现多维数据中属性之间的两两相关性?A 空间填充曲线B 散点图矩阵C 平行坐标D 圆弓分割正确答案:B10.【第02章】计算一个单位的平均工资,使用哪个中心趋势度量将得到最合理的结果?A 算术平均值B 截尾均值C 中位数D 众数正确答案:B11.【第02章】字段Size = {small, medium, large}属于那种属性类型?A 标称属性B 二元属性C 序数属性D 数值属性正确答案:C12.【第02章】字段Hair_color = {auburn, black, blond, brown, grey, red, white}属于那种属性类型?A 标称属性B 二元属性C 序数属性D 数值属性正确答案:A13.【第03章】哪种数据变换的方法将数据沿概念分层向上汇总?A 平滑B 聚集C 数据概化D 规范化正确答案:C14.【第03章】下面哪种数据预处理技术可以用来平滑数据,消除数据噪声?A 数据清理B 数据集成C 数据变换D 数据归约正确答案:A15.【第03章】()通过将属性域划分为区间,从而减少给定连续值的个数。
大工20春《数据挖掘》课程大作业满分答案网络教育学院《数据挖掘》课程大作业题目:KNN算法原理及Python实现姓名:研究中心:第一大题:数据挖掘》是一门实用性非常强的课程,数据挖掘是大数据这门前沿技术的基础,拥有广阔的前景,在信息化时代具有非常重要的意义。
数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器研究、知识获取、统计学、空间数据库和数据可视化等领域。
在研究过程中,我也遇到了不少困难,例如基础差,对于Python基础不牢,尤其是在进行这次课程作业时,显得力不从心;个别算法也研究的不够透彻。
在接下来的研究中,我仍然要加强理论知识的研究,并且在研究的同时联系实际,在日常工作中注意运用《数据挖掘》所学到的知识,不断加深巩固,不断发现问题,解决问题。
另外,对于自己掌握不牢的知识要勤复,多练,使自己早日成为一名合格的计算机毕业生。
第二大题:KNN算法介绍KNN算法,又叫K最邻近分类算法,是数据挖掘分类技术中最简单的方法之一。
所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
KNN算法的基本思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
KNN算法流程1.计算测试数据与各个训练数据之间的距离;2.按照距离的递增关系进行排序;3.选取距离最小的K个点;4.确定前K个点所在类别的出现频率;5.返回前K个点中出现频率最高的类别作为测试数据的预测分类。
Python实现算法及预测在Python中,我们可以使用sklearn库来实现KNN算法。
具体实现代码如下:pythonfrom sklearn.neighbors import KNeighborsClassifierknn = KNeighborsClassifier(n_neighbors=k)knn.fit(X_train。
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
数据挖掘作业集答案《数据挖掘》作业集答案第一章引言一、填空题(1)数据清理,数据集成,数据选择,数据变换,数据挖掘,模式评估,知识表示(2)算法的效率、可扩展性和并行处理(3)统计学、数据库技术和机器学习(4)WEB挖掘(5)一些与数据的一般行为或模型不一致的孤立数据二、单选题(1)B;(2)D;(3)D;(4)B;(5)A;(6)B;(7)C;(8)E;三、简答题(1)什么是数据挖掘?答:数据挖掘指的是从大量的数据中挖掘出那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识。
(2)一个典型的数据挖掘系统应该包括哪些组成部分?答:一个典型的数据挖掘系统应该包括以下部分:数据库、数据仓库或其他信息库数据库或数据仓库服务器知识库数据挖掘引擎模式评估模块图形用户界面(3)请简述不同历史时代数据库技术的演化。
答:1960年代和以前:研究文件系统。
1970年代:出现层次数据库和网状数据库。
1980年代早期:关系数据模型, 关系数据库管理系统(RDBMS)的实现1980年代后期:出现各种高级数据库系统(如:扩展的关系数据库、面向对象数据库等等)以及面向应用的数据库系统(空间数据库,时序数据库,多媒体数据库等等。
1990年代:研究的重点转移到数据挖掘, 数据仓库, 多媒体数据库和网络数据库。
2000年代:人们专注于研究流数据管理和挖掘、基于各种应用的数据挖掘、XML 数据库和整合的信息系统。
(4)请列举数据挖掘应用常见的数据源。
(或者说,我们都在什么样的数据上进行数据挖掘)答:常见的数据源包括关系数据库、数据仓库、事务数据库和高级数据库系统和信息库。
其中高级数据库系统和信息库包括:空间数据库、时间数据库和时间序列数据库、流数据、多媒体数据库、面向对象数据库和对象-关系数据库、异种数据库和遗产(legacy)数据库、文本数据库和万维网(WWW)等。
(5)什么是模式兴趣度的客观度量和主观度量?答:客观度量指的是基于所发现模式的结构和关于它们的统计来衡量模式的兴趣度,比如:支持度、置信度等等;主观度量基于用户对数据的判断来衡量模式的兴趣度,比如:出乎意料的、新颖的、可行动的等等。
Data Mining Take Home Exam学号: xxxx 姓名: xxx 1. (20分)考虑下表的数据集。
(1)计算整个数据集的Gini 指标值。
(2)计算属性性别的Gini 指标值(3)计算使用多路划分属性车型的Gini 指标值 (4)计算使用多路划分属性衬衣尺码的Gini 指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么? 解:(1) Gini=1-(10/20)^2-(10/20)^2=0.5 (2)Gini=[{1-(6/10)^2-(4/10)^2}*1/2]*2=0.48 (3)Gini={1-(1/4)^2-(3/4)^2}*4/20+{1-(8/8)^2-(0/8)^2}*8/20+{1-(1/8)^2-(7/8)^2}*8/2 0=26/160=0.1625(4)Gini={1-(3/5)^2-(2/5)^2}*5/20+{1-(3/7)^2-(4/7)^2}*7/20+[{1-(2/4)^2-(2/4)^2}*4/ 20]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. (20分)考虑下表中的购物篮事务数据集。
(1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
一、考虑表中二元分类问题的训练样本集1.整个训练样本集关于类属性的熵是多少?2.关于这些训练集中a1,a2的信息增益是多少?3.对于连续属性a3,计算所有可能的划分的信息增益。
4.根据信息增益,a1,a2,a3哪个是最佳划分?5.根据分类错误率,a1,a2哪具最佳?6.根据gini指标,a1,a2哪个最佳?答1.P(+) = 4/9 and P(−) = 5/9−4/9 log2(4/9) −5/9 log2(5/9) = 0.9911.答2:(估计不考)答3:答4:According to information gain, a1 produces the best split. 答5:For attribute a1: error rate = 2/9.For attribute a2: error rate = 4/9.Therefore, according to error rate, a1 produces the best split.答6:二、考虑如下二元分类问题的数据集1.计算a.b信息增益,决策树归纳算法会选用哪个属性2.计算a.b gini指标,决策树归纳会用哪个属性?这个答案没问题3.从图4-13可以看出熵和gini指标在[0,0.5]都是单调递增,而[0.5,1]之间单调递减。
有没有可能信息增益和gini指标增益支持不同的属性?解释你的理由Yes, even though these measures have similar range and monotonous behavior, their respective gains, Δ, which are scaled differences of the measures, do not necessarily behave in the same way, as illustrated by the results in parts (a) and (b).贝叶斯分类1.P(A = 1|−) = 2/5 = 0.4, P(B = 1|−) = 2/5 = 0.4,P(C = 1|−) = 1, P(A = 0|−) = 3/5 = 0.6,P(B = 0|−) = 3/5 = 0.6, P(C = 0|−) = 0; P(A = 1|+) = 3/5 = 0.6,P(B = 1|+) = 1/5 = 0.2, P(C = 1|+) = 2/5 = 0.4,P(A = 0|+) = 2/5 = 0.4, P(B = 0|+) = 4/5 = 0.8,P(C = 0|+) = 3/5 = 0.6.2.3.P(A = 0|+) = (2 + 2)/(5 + 4) = 4/9,P(A = 0|−) = (3+2)/(5 + 4) = 5/9,P(B = 1|+) = (1 + 2)/(5 + 4) = 3/9,P(B = 1|−) = (2+2)/(5 + 4) = 4/9,P(C = 0|+) = (3 + 2)/(5 + 4) = 5/9,P(C = 0|−) = (0+2)/(5 + 4) = 2/9.4.Let P(A = 0,B = 1, C = 0) = K5.当的条件概率之一是零,则估计为使用m-估计概率的方法的条件概率是更好的,因为我们不希望整个表达式变为零。
(完整word版)数据挖掘题⽬及答案⼀、何为数据仓库?其主要特点是什么?数据仓库与KDD的联系是什么?数据仓库是⼀个⾯向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,⽤于⽀持管理决策。
特点:1、⾯向主题操作型数据库的数据组织⾯向事务处理任务,各个业务系统之间各⾃分离,⽽数据仓库中的数据是按照⼀定的主题域进⾏组织的。
2、集成的数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加⼯、汇总和整理得到的,必须消除源数据中的不⼀致性,以保证数据仓库内的信息是关于整个企业的⼀致的全局信息。
3、相对稳定的数据仓库的数据主要供企业决策分析之⽤,⼀旦某个数据进⼊数据仓库以后,⼀般情况下将被长期保留,也就是数据仓库中⼀般有⼤量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
4、反映历史变化数据仓库中的数据通常包含历史信息,系统记录了企业从过去某⼀时点(如开始应⽤数据仓库的时点)到⽬前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
所谓基于数据库的知识发现(KDD)是指从⼤量数据中提取有效的、新颖的、潜在有⽤的、最终可被理解的模式的⾮平凡过程。
数据仓库为KDD提供了数据环境,KDD从数据仓库中提取有效的,可⽤的信息⼆、数据库有4笔交易。
设minsup=60%,minconf=80%。
TID DATE ITEMS_BOUGHTT100 3/5/2009 {A, C, S, L}T200 3/5/2009 {D, A, C, E, B}T300 4/5/2010 {A, B, C}T400 4/5/2010 {C, A, B, E}使⽤Apriori算法找出频繁项集,列出所有关联规则。
解:已知最⼩⽀持度为60%,最⼩置信度为80%1)第⼀步,对事务数据库进⾏⼀次扫描,计算出D中所包含的每个项⽬出现的次数,⽣成候选1-项集的集合C1。
第一章1.6(1)数据特征化是目标类数据的一般特性或特征的汇总。
例如,在某商店花费1000元以上的顾客特征的汇总描述是:年龄在40—50岁、有工作和很好的信誉等级。
(2)数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,高平均分数的学生的一般特点,可与低平均分数的学生的一般特点进行比较.由此产生的可能是一个相当普遍的描述,如平均分高达75%的学生是大四的计算机科学专业的学生,而平均分低于65%的学生则不是.(3)关联和相关分析是指在给定的频繁项集中寻找相关联的规则.例如,一个数据挖掘系统可能会发现这样的规则:专业(X,“计算机科学”)=〉拥有(X,”个人电脑“)[support= 12%,confidence = 98%],其中X是一个变量,代表一个学生,该规则表明,98%的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人电脑的可能性是98%。
12%的支持度意味着所研究的所有事务的12%显示属于计算机科学专业的学生都会拥有个人电脑。
(4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。
它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。
例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。
(5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。
聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定. (6)数据演变分析描述行为随时间变化的对象的规律或趋势,并对其建模。