2017年广海杯知识竞赛数学试卷与答案
- 格式:doc
- 大小:1.35 MB
- 文档页数:4
2013年崇武学区“广海杯”小学生知识竞赛理科试卷(满分75分,答卷时间75分钟)数学科试题(60分) 成绩__________一、填空题(每一处1分共18分)1、 2小时35分=( ) 分2、 O.4=( )÷25=36 :( ) = ( )%= ( )成3、一个棱长1米的正方体可以切成( )个棱长是1分米的小正方体。
4、用8个同样大小的小正方体拼成一个大正方体,那么原来每个小正方体的)()(表面积的表面积是这个大正方体 。
5、一本书有a 页,芳芳平均每天看16页,看了b 天,还剩下( )页没看。
())个。
有()中可以填写的自然数的(、 54 7 21 6〈〈7、在长为180厘米,宽为120厘米的纸板上,能裁出( )个半径为20厘米的圆;每个圆的面积约是( )平方厘米.. 60198))和(,原来是(倒数的和等于、已知互质的两个数的9、某月有五个星期三,但这个月的第一天和最后一天都不是星期三,这个月的1日是星期( )10、甲、乙两数的平均数是16,乙、丙两数的平均数是15,已知甲数正好是甲、乙、丙三数之和的41,甲数是( ),丙数是( )。
11、一根钢管长6米,把它锯成每段长60厘米需要53小时,如果锯成每段长100厘米的钢管需( )小时。
12、从运动场的一端到另一端全长100米,从一端起到另一端止每隔4米插一面小红旗。
现在要改成每隔5米插一面,有( )面小红旗不用移动。
二、选择题(每题1分,共6分)1、一种微型零件长0.5毫米,画在一幅图上长为5cm ,这幅图的比例尺是( )【A .1:10 B.10:1 C.1:100 D.100:1】2、减数是被减数的73,差和减数的比是( )。
【A .4:7 B .4:3 C .7:4】 3、圆锥的高缩小3倍,半径扩大3倍,则圆锥的体积( )。
【A. 扩大3倍;B. 缩小3倍;C.不变;D.扩大9倍】4、某商品原价为a 元,春节促销,降价20%,如果节后恢复到原价,则应将现售价提高( )A 、15%B 、20%C 、25%D 、30%5、小红早晨起床后,在家刷牙洗脸要用3分钟,用电饭锅浇早饭要用15分钟,读英语单词要用12分钟,吃早饭要用6分钟,她经过合理安排,起床后用( )分钟就能去上学。
2017年浙江高中数学竞赛一,填空题(每题8分,共80分)1. 在多项式()()610321x x x 的展开式+-的系数为______.2. 已知()5log35log172+=-a a ,则实数a=_________.3. 设()[]1,02在b ax x x f ++=中有两个实数根,则b a 22-的取值范围是___________.4. 设()1sin sin sin cos cos cos sin ,,222222=+-+-∈y x yx y x x x R y x 且,则=-y x _______. 5.已知两个命题,命题()()0log :>=x x x f p a 函数单调递增;命题函数:q ()012>++=ax x x g ()R x ∈,q p q p ∧∨为真命题,若为假命题,则实数a 的取值范围为____.6. 设S 是⎪⎭⎫ ⎝⎛850,中所有有理想的集合,对简分数()1,,=∈q p S pq,定义函数,1p q p q f +=⎪⎪⎭⎫ ⎝⎛则()32=x f 在S 中根的个数为___________.7. 已知动点P ,M,N 分别在x 轴上,圆()()12122=-+-y x 和圆()()34322=-+-y x 上,则PN PM +的最小值为__________.8. 已知棱长为1的正四面体P —ABC,PC 的中点为D,动点E 在线段AD 上,则直线与平面ABC 所成的角的取值范围为__________.9.已知平面向量0.10,321,,,=⋅<<===c b c b a ρρρρρ若λ()c b λλ---1所有取不到的值的集合为____________.10. 已知()()()0421212,0.1,0,2222=---+-+⎩⎨⎧≥-<-=x a x x f x x f x x x x x f 方程有三个根.321x x x <<若()12232x x x x -=-,则实数a=_______.二. 解答题11. (本题满分20分)设()()(),⋯=+=+=+,2,1,316,322121n x f x x f x x f n n 对每个n ,求()x x f n 3=的实数解。
2006年“广海杯”小学生知识竞赛数学试卷(满分60分,答卷时间60分钟)题序 一 二 三 四 五 总分 得分一、认真思考,对号入座(12%)1、下面是2004年泉州市的一些信息:全市人口7280700人,土地面积11015平方千米,耕地面积1456000000平方米,生产总值160297000000元。
根据上述信息,完成下列填空: (1)总人口数改写用“万”作单位的数是( )万人;(2)土地面积为( )公顷;耕地面积为( )平方千米; (3)生产总值省略“亿”后面的尾数约是( )亿元。
2、我国成功申办2008年第29届奥运会,按每4年举办一次,则第50届奥运会将在( )年举办,这一年共有( )天。
3、一堆苹果,每盘放6个,余5个;每盘放7个,余6个;每盘放8个,余7个。
这堆苹果最少有( )个。
4、如右图:横轴表示小明行驶的时间,纵轴表示小时离开家的距离,请你仔细观察右图,从所给的 折线图中可以看出小明在图书馆呆了( )分钟,去时平均速度是每小时( )千米。
5、 如左图所示:把底面直径6厘米,高10厘米的圆柱切成若干等分,拼成一个近似的长方体。
这个长方体的表面积 是( )平方厘米,体积是( )立方厘米。
6、用同样大小的方瓷砖铺一个正方形地面,两条对角线上 铺黑色的,其余的地方铺白色的(如右图所示)。
当铺满 这块地面时,共用了37块黑色的瓷砖,那么共用了 ( )块白色的瓷砖。
二、“动画”世界,心灵手巧(5%)请你在右边的长方形中,画上一条线段,把它分成一个最大的等腰直角三角形和一个梯形。
(1)算出这个梯形中最大的角是( )度。
(2%) (2)请你量出相关的数据,然后求出这个梯形的面积。
(3%)0 10 30 50 7090 1204321家图书馆距离(千米)时间(分钟)三、反复比较,慎重选择(5%)1、从上面观察这个几何体,看到的应该是第()幅图的①②③④2、用2、3、4这三个数字任意摆一个三位数,这个三位数能被2整除的可能性是()。
第3届“海都杯”数学竞赛五年级决赛试卷1、早晨4:20的时候,钟面上长针与短针所夹的锐角的角度是()度。
2、已知2※3=2+3+4,5※2=5+6,2※5=2+3+4+5+6,则5※5=()。
3、一个正方形的边长增加5厘米,它的面积就会增加225平方厘米,原来的正方形的面积是()平方厘米。
4、一个正三角形的周长与一个正六边形的周长相等。
若此正三角形的面积为4,则这个正六边形的面积为()。
5、某超市为庆祝元旦,准备将毛巾类商品做促销:儿童毛巾5元3条,大人毛巾4元1条。
明明的妈妈花了39元购买了15条毛巾。
那么他购买了()条儿童毛巾和()条大人毛巾。
6、有三个质数的和是50,则这三个质数的积最大是()。
7、在一个纸盒中装有红色、绿色及黄色的弹珠。
已知盒子里的弹珠除了38颗之外都是红色的弹珠,除了33颗之外都是绿色的弹珠,除了35颗之外都是黄色的弹珠。
那么盒子中总共装有()颗弹珠。
8、有A、B、C、D四个点从左向右依次排在一条直线上,以这四个点为端点,可以数出6条线段。
已知这6条线段的长度分别是12、18、30、32、44、62(单位:厘米),那么线段BC的长度是()厘米。
9、如下图,甲、乙两图形都是正方形,它们的边长分别是20厘米和12厘米,则三角形AEG的面积为()平方厘米。
10、通信班举行10分钟汉字输入大赛,全班平均成绩为每分钟120字,男生平均成绩比全班平均成绩少18字,女生平均成绩比男生平均成绩多27字,则这个班女生的人数是男生的()倍。
11、一个整数,如果它的各位上的数字之和再加上它的各位数字之积,恰好等于这个数,我们就称这个数为“海都数”,例如39=3+9+3×9就是一个“海都数”。
两位数中这样的“海都数”一共有()个。
12、依次写下整数1,2,3,4,…,998,999,则得到的整数123456789101112…998999,这个整数左起第2018位上的数字是()。
13、在桌面上摆有一些大小一样的正方体木块,从正面看如下(图1),从右面看如下(图2),要摆出这样的图形至少需要()块正方体木块。
2018年“广海杯”综合知识邀请赛数学试卷解析版
一、填空题:32%(每题2分)
1.(2分)4吨50千克= 4.05吨,1.05立方分米=1050立方厘米.【解答】解:4吨50千克=4.05吨
1.05立方分米=1050立方厘米
故答案为:4.05;1050.
2.(2分)如果3A=5B,那么A:B=5:3
【解答】解:如果3A=5B,那么A:B=5:3.
故答案为:5、3.
3.(2分)已知A和B都是非零自然数,并且A+B=60,A和B积的最大值是900,最小值是59.
【解答】解:(1)当两个因数都是30时积最大;
30×30=900;
(2)当一个因数是1时积最小;
60﹣1=59;
59×1=59;
故答案为:900,59.
4.(2分)在比例尺1:600000的地图上,量得甲、乙两地之间的距离是15厘米,甲乙两地的实际距离是90千米.
【解答】解:15÷
1
600000
=15×600000=9000000(厘米),
9000000厘米=90千米,
答:甲乙两地的实际距离是90千米.故答案为:90.
5.(2分)将3
55
表示为小数形式,小数点后第2018位上的数是5.
【解答】解:3
55
=3÷55=0.05454…
循环节是2位数,
(2018﹣1)÷2=1008 (1)
第1 页共12 页。
2012年“广海杯”小学生知识竞赛理科试卷(满分75分,答卷时间70分钟)数学科试题(60分)一、填空。
(每题2分,共12分)1.a=2×3×m,b=3×7×m(m是自然数且m≠0),如果a和b的最大公约数是27,则m是(),a和b的最小公倍数是()。
2.学校编码时,最后一位数字表示性别,1是男生,2是女生。
小红今年读三(2)班,她是2009年入学的,学号是36号,她的编码是200903362,小刚今年读五(1)班,学号是15号,他的编码是()。
3.数手指:伸出你的左手,按下面的顺序数:拇指1、食指2、中指3、无名指4、小指5、无名指6、中指7、食指8、拇指9、食指10……这样的顺序数,2012这个数是()指。
4.学校体育馆买排球12个,篮球9个,共用去756元,后来又买了同样的排球7个,篮球3个共用去351元,那么排球的单价是()元,篮球的单价是()元。
5.淘气和笑笑同时从学校出发步行到西湖公园,淘气每分钟走65米,笑笑每分钟走50米。
结果淘气先到,并在公园门口等了12分钟笑笑才赶到,学校到公园距离是()米。
6.甲、乙两油库存油数的比是7:5,从甲库运出60桶放入乙库,甲、乙两库油数比是4:5,乙库原有油()桶。
二、选择正确答案的题号填在括号里。
(每题1分,共6分)1.六(3)班有学生50人,上午出勤率是98﹪,下午又有3人请假。
下午的出勤率是()。
A.92﹪ B.94﹪ C.96﹪ D.98﹪2.在内壁长30厘米,宽20厘米,深15厘米的长方体容器内,倒入6升水,水位线离这个容器上边的距离是( )。
A . 5厘米B . 10厘米C .15厘米D .20厘米 3.(如下图)小正方形的51未被阴影覆盖,大正方形的101未被阴影覆盖,大小正方形的阴影部分面积之比是 ( )。
A .8:9B . 9:8C .1:2D .2:14.A 、B 两人分别从长200米的直线跑道两端出发来回跑步,A 每秒跑2米,B 每秒跑3米,匀速跑了20分钟,那么在这段时间内,A 、B 两人共相遇( )次。
2017年全国初中数学联合竞赛试题参考答案和评分标准(1)2017年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.已知实数,,abc满足213390abc,3972abc,则32bcab??=()A.2.B.1.C.0.D.1?.【答】B.已知等式可变形为2(2)3(3)90abbc,3(2)(3)72abbc,解得218ab??,318bc??,所以32bcab1.2.已知△ABC的三边长分别是,,abc,有以下三个结论:(1)以,,abc为边长的三角形一定存在;(2)以222,,abc为边长的三角形一定存在;(3)以||1,||1,||1abbcca为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设abc??,则有bca??.(1)因为bca??,所以2bcbca,即22()bca??(),即bca??,故以,,abc为边长的三角形一定存在;(2)以2,3,4abc为边长可以构成三角形,但以2224,9,16abc为边长的三角形不存在;(3)因为abc??,所以||11,||11,||11ababbcbccaac,故三条边中||1ca??大于或等于其余两边,而||1||111abbcabbc()()()()111||1acacca=,故以||1ab??,||1bc??,||1ca??为边长的三角形一定存在.3.若正整数,,abc满足abc??且2()abcabc,则称(,,)abc为好数组.那么,好数组的个数为()A.1.B.2.C.3.D.4.【答】C.若(,,)abc为好数组,则2()6abcabcc,所以6ab?.显然,a只能为1或2.若a=2,由6ab?可得2b?或3,2b?时可得4c?,3b?时可得52c?(不是整数);若a=1,则2(1)bcbc,于是可得(2)(2)6bc,可求得(,,)abc =(1,3,8)或(1,4,2017年全国初中数学联合竞赛试题参考答案及评分标准第1页(共7页)5).综合可知:共有3个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.109.B.87.C.65.D.43.【答】A.过B作//BEAD,交AC的延长线于点E,则180ABEBAD ACB??,所以△ABC∽△AEB,所以ACBCABEB?,所以631855ABBCEBAC.再由//BEAD,得4101895DOADOBBE.5.设A是以BC为直径的圆上的一点,ADBC?于点D,点E在线段DC上,点F在CB的延长线上,满足BAFCAE.已知15BC?,6BF?,3BD?,则AE=()A.43.B.213.C.214.D.215.【答】B.如图,因为BAFCAE,所以BAFBAECAEBAE,即90FAEBAC.又因为ADBC?,故2ADDEDFDBDC.而639DFBFBD,15312DCBCBD,所以29312ADDE,所以6AD?,4DE?.从而222264213AEADDE.6.对于正整数n,设na是最接近n的整数,则1232001111aaaa()A.1917.B.1927.C.1937.D.1947.【答】A.对于任意自然数k,2211()24kkk不是整数,所以,对于正整数n,12n?一定不是整数.设m是最接近n的整数,则1||2mn??,1m?.易知:当1m?时,1||2mn2211()()mnm??221144mmnmm.于是可知:对确定的正整数m,当正整数n满足221mmnmm时,m是最接近n的整数,即nam?.所以,使得na=m的正整数n的个数为2m.注意到2213131822001414210,因此,12200,,,aaa?中,有:2个1,4个2,6个3,2017年全国初中数学联合竞赛试题参考答案及评分标准第2页(共7页)EOCBADCBFDE8个4,……,26个13,18个14.所以123200111111111191246261812313147aaaa.二、填空题:(本题满分28分,每小题7分)1.使得等式311aa成立的实数a的值为_______.【答】8.由所给等式可得32(11)aa.令1xa??,则0x?,且21ax??,于是有322(1)(1)xx,整理后因式分解得2(3)(1)0xxx,解得10x?,23x?,31x??(舍去),所以1a??或8a?.验证可知:1a??是原方程的增根,8a?是原方程的根.所以,8a?.2.如图,平行四边形ABCD中,72ABC,AFBC?于点F,AF交BD于点E,若2DEAB?,则AED?=_______.【答】66?.取DE的中点M,在Rt△ADE中,有12AMEMDEAB.设AED,则1802AME,18ABM.又ABMAMB,所以180218,解得66.3.设,mn是正整数,且mn?.若9m与9n的末两位数字相同,则mn?的最小值为.【答】10.由题意知,999(91)mnnmn是100的倍数,所以91mn??是100的倍数,所以9mn?的末两位数字是01,显然,mn?是偶数,设2mnt??(t是正整数),则29981mntt.计算可知:281的末两位数字是61,381的末两位数字是41,481的末两位数字是21,581的末两位数字是01.所以t的最小值为5,从而可得mn?的最小值为10.4.若实数,xy满足3331xyxy,则22xy?的最小值为.【答】12.因为333322031()(1)333xyxyxyxyxyxy22(1)[()()(1)(1)]3(1)xyxyxyxyxy2017年全国初中数学联合竞赛试题参考答案及评分标准第3页(共7页)MEFCBDA22(1)(1)xyxyxyxy2221(1)[()(1)(1)]2xyxyxy,所以1xy或1xy??.若1xy,则22xy?=2.若1xy??,则22222111[()()][1()]222xyxyxyxy,当且仅当12xy??时等号成立.所以,22xy?的最小值为12.第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)yaxbxcc的图象与x轴有唯一交点,则二次函数3233yaxbxc的图象与x轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数2yaxbxc的图象与x轴有唯一交点,所以2140bac,所以240bac??.故二次函数3233yaxbxc的判别式323363623211()4(4)()1616bacbacbb61516b?0?,所以,二次函数3233yaxbxc的图象与x轴有两个交点.2.题目和解答与(A)卷第1题相同.3.题目和解答与(A)卷第3题相同.4.已知正整数,,abc满足26390abc,260abc,则222abc??=()A.424.B.430.C.441.D.460.【答】C.由已知等式消去c整理得22(9)3(1)75ab,所以23(1)75b??,又b为正整数,所以16b??.若b=1,则2(9)75a??,无正整数解;若b=2,则2(9)72a??,无正整数解;若b=3,则2(9)63a??,无正整数解;若b=4,则2(9)48a??,无正整数解;若b=5,则2(9)27a??,无正整数解;若b=6,则2(9)0a??,解得9a?,此时18c?.2017年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)因此,9a?,b=6,18c?,故222abc=441.5.设O是四边形ABCD的对角线AC、BD的交点,若180BADACB,且3BC?,4AD?,5AC?,6AB?,则DOOB=()A.43.B.65.C.87.D.109.【答】D.解答过程与(A)卷第4题相同.6.题目和解答与(A)卷第5题相同.二、填空题:(本题满分28分,每小题7分)1.题目和解答与(A)卷第1题相同.2.设O是锐角三角形ABC的外心,,DE分别为线段,BCOA的中点,7ACBOED,5ABCOED,则OED?=_________.【答】10?.如图,设OEDx??,则5ABCx??,7ACBx??,DOC??18012BACx,10AOCx??,所以1802AODx,180(1802)ODExxx,所以1122ODOEOAOC,所以60DOC,从而可得10x??.3.题目和解答与(A)卷第3题相同.4.题目和解答与(A)卷第4题相同.第二试(A)一、(本题满分20分)已知实数,xy满足3xy??,221112xyxy,求55xy?的值.解由221112xyxy可得2233222()xyxyxyxyxy.设xyt?,则222()292xyxyxyt,332()[()3]3(93)xyxyxyxyt,代入上式可得22(392)3(93)tttt,解得1t?或3t?.……………………10分当3t?时,3xy?,又3xy??,故,xy是一元二次方程2330mm的两实数根,但易知此方程没有实数根,不合题意.……………………15分当1t?时,1xy?,又3xy??,故,xy是一元二次方程2310mm的两实数根,符合题意.此时552233222()()()(92)[3(93)]3123xyxyxyxyxyttt.……………………20分2017年全国初中数学联合竞赛试题参考答案及评分标准第5页(共7页)DEOBAC二、(本题满分25分)如图,△ABC中,ABAC?,45BAC,E 是BAC?的外角平分线与△ABC的外接圆的交点,点F在AB上且EFAB?.已知1AF?,5BF?,求△ABC的面积.解在FB上取点D,使FD=AF,连接ED并延长,交△ABC的外接圆于点G.由EF⊥AD,AF=FD知△AED是等腰三角形,所以∠AED=1802??∠EAD=∠BAC,……………………10分所以??AGBC?,所以??ACBG?,所以AC=BG (15)分又∠BGE=∠BAE=∠ADE=∠BDG,所以BG=BD,所以AC=BD =5-1=4,……………………20分△ABC的AB边上的高sin4522hAC.所以,△ABC的面积116226222SABh (25)分三、(本题满分25分)求所有的正整数数对(,)ab,使得34938ba.解显然,4938b??为奇数,所以a为奇数.又因为33493849385ba,所以5a?.……………………5分由34938ba可得38493ba,即22(2)(24)73baaa.……………………10分设2(2,24)aaad,则d为奇数.注意到224(2)(4)12aaaa,所以|12d,所以d=1或3.……………………15分若d=1,则有22 27, 243,b aaa或22 23, 247, ba aa均无正整数解.……………………20分若d=3,则有221237,243,baaa?或12223,2437,baaa解得11a?,3b?.所以,满足条件的正整数对只有一个,为(11,3).……………………25分第二试(B)一、(本题满分20分)已知实数,,abc满足abc??,16abc,22211284abcabc,求c的值.解设abx??,aby?,依题意有2212(16)(16)1284xyxyx,整理得21(8)(8)8xyx,所以8x?或8(8)yx??.……………………10分2017年全国初中数学联合竞赛试题参考答案及评分标准第6页(共7页)FEABCD(1)若8x?,则8ab??,此时c=8.(2)若8(8)yx??,即8(8)abab,则(8)(8)0ab,所以8a?或8b?.当8a?时,结合abc??可得24abc,与16abc矛盾.当8b?时,结合abc??及16abc可得0a?,8c?.综合可知:8c?.……………………20分二、(本题满分25分)求所有的正整数m,使得21221mm 是完全平方数.解当m=1时,212211mm是完全平方数.……………………5分当1m?时,设212221mmn(n为正整数).注意到2112112122212(2)221(21)(2)mmmmmm,故可得12122(21)(2)mmn,……………………10分所以22212112(21)(21)(21)mmmmnnn.……………………15分设121mxn,121myn,则xy?,222mxy??,所以,xy均为2的方幂.……………………20分又22myx被4除余数为2,所以,只可能2x?,2my?,故22222mm,解得3m?.综上可知:满足条件的正整数m有两个,分别为1和3.……………………25分三、(本题满分25分)如图,O为四边形ABCD内一点,OADOCB,OAOD?,OBOC?.求证:2222ABCDADBC.证明由题设条件可知90AODBOC,又OADOCB,所以△AOD∽△COB,……………………5分所以ODAOOBCO?,从而OCAOOBOD?.……………………10分又AOCAOBBOCAOBAODDOB,所以△AOC∽△DOB,所以OACODB.……………………15分设AC和BD交于点P,则90APDAOD,所以ACDB?,……………………20分所以222222222222()()()()ABCDAPPBPDPCAPPDPBPCADBC .……………………25分2017年全国初中数学联合竞赛试题参考答案及评分标准第7页(共7页)PDAO CB。
2017年数学竞四川赛区(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l nc o sl n c o s211==cos cos cos x x e e dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n co s xx c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。
2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。
3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。
则21xx yy w w c-=_________。
解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。
所以1221=4xx yy w w f c-。
4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。
这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。