011009生物化学复习要点解读
- 格式:doc
- 大小:175.50 KB
- 文档页数:19
第一章蛋白质第一节蛋白质概论1、①蛋白质的概念:蛋白质是由20种左右L-α氨基酸通过肽键相互连接而成的一类具有特定的空间构象和生物学活性的复杂高分子含氮化合物。
特点:构造复杂、功能多样、分子量大、平均含氮量为16%、具有胶体性质和两性性质②蛋白质的分类:•按分子外形的不对称程度分两类:球状蛋白——如血红蛋白、酶等纤维状蛋白——如角蛋白、血纤维蛋白原等•按组成分成两类:简单蛋白质——分子中只有氨基酸结合蛋白质——简单蛋白质+辅基构成主要有色蛋白、金属蛋白、磷蛋白、核蛋白、脂蛋白、糖蛋白• 按溶解度分清蛋白(白蛋白)如血清清蛋白、球蛋白(拟球蛋白和优球蛋白)、组蛋白、精蛋白、醇溶蛋白、硬蛋白、谷蛋白•按营养价值不同分两类:完全蛋白质不完全蛋白质•按蛋白质的功能分两类:活性蛋白质和非活性蛋白质③蛋白质的生物学功能• 催化功能----酶或辅酶如淀粉酶、蛋白酶•调节功能----激素蛋白调节体内新陈代谢如胰岛素•结构成分或支持功能----结构蛋白如胶原蛋白、a-角蛋白、丝纤蛋白等•运输功能----运输小分子和离子如血红蛋白、色素蛋白、血清蛋白•免疫防御功能----保护自身生命活动如免疫球蛋白、血纤维蛋白原及干扰素•收缩或运动功能----鞭毛运动和肌肉收缩如肌动蛋白和肌球蛋白•营养和贮存功能----为机体提供养料如醇溶蛋白、卵清蛋白、酪蛋白•生物膜受体功能----接受和传递调节信息如激素受体蛋白和感觉蛋白(味蛋白)•毒素蛋白----如细菌毒素、蛇毒等•控制生长、分化和遗传功能----如组蛋白、阻遏蛋白、表皮生长因子、DNA蛋白等(蛋白质是生命现象的体现者)第二节氨基酸的结构分类及性质一.氨基酸的结构特点1.结构特征---氨基酸是含有NH2的有机酸(1)都是α-氨基酸;(2)具有酸性的-COOH基及碱性的-NH2基,为两性电解质;(3)除甘氨酸(R基是H原子)外,都是L-型氨基酸,具有旋光性;二.氨基酸的种类及其结构(1)常见氨基酸(编码氨基酸)甘氨酸Gly(G) 丙氨酸Ala(A) 缬氨酸Val(V)亮氨酸Leu(L) 异亮氨酸Ile(I) 苯丙氨酸Phe(F)酪氨酸Tyr(Y) 色氨酸Try,Trp(W) 丝氨酸Ser(S)苏氨酸Thr(T) 半胱氨酸Cys(C) 甲硫氨酸Met(M)精氨酸Arg(R) 赖氨酸Lys(K) 组氨酸His(H)天冬氨酸Asp(D) 谷氨酸Glu(E)天冬酰胺Asn(N) 谷氨酰胺Gln(Q) 脯氨Pro(P)(2)稀有氨基酸:羟脯氨酸(Hyp) 羟赖氨酸(Hyly) 胱氨酸(Cys)根据R基团的结构或性质特点,巧记20种氨基酸的口诀:•甘、丙、缬、亮、异、脂链,(脂肪链R基团的5种)•丝、苏、半、蛋、羟硫添。
生物化学知识点重点整理生物化学是研究生物体内的化学反应过程的一个分支学科。
它主要研究生物大分子的合成和降解过程、生命活动的调节和调控、以及生物能量代谢等。
下面是生物化学中一些重要的知识点。
1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它的功能多种多样,包括构成细胞器和细胞骨架的结构蛋白质,酶和激素等。
核酸是DNA和RNA存储和传递遗传信息的分子。
多糖是一类碳水化合物,主要用于能量储存和结构支撑。
脂类是一类有机化合物,包括脂肪、油和脂肪酸等,主要用于能量储存和细胞膜的组成。
2.酶和酶动力学:酶是生物体内的一类蛋白质,具有催化化学反应的功能。
酶速度常常受到底物浓度、温度和pH值等因素的影响。
酶动力学研究酶速度与底物浓度的关系,揭示了酶催化机理和底物结合方式。
3.代谢物和代谢途径:代谢是生物体内发生的化学反应的总和。
代谢途径包括物质的合成和降解,以及能量的产生和消耗。
代谢物主要包括ATP、ADP、NADH、NAD+等,它们在细胞内起到能量储存和传递的重要作用。
4.蛋白质合成和降解:蛋白质合成是细胞内最重要的生化过程之一,包括转录和翻译两个阶段。
转录是将DNA上遗传信息转写成mRNA的过程,翻译是将mRNA上的遗传信息转化为蛋白质的过程。
蛋白质降解是将细胞内的蛋白质分解为小分子的过程,通过细胞骨架上的蛋白酶进行。
5.核酸合成和修复:核酸合成是将碱基、糖和磷酸酯键组合成核酸链的过程,包括DNA和RNA的合成。
核酸修复是维护细胞遗传信息稳定性的重要机制,通过修复酶修复DNA中的损伤。
6.糖代谢和糖酵解:糖代谢是指葡萄糖在细胞内的合成、降解和利用过程。
糖酵解是将葡萄糖降解为乳酸或乙醇产生能量的过程,这是细胞内产生ATP的主要途径之一7.脂类代谢和脂类合成:脂类代谢是指脂类在细胞内的合成、降解和利用过程。
脂类合成主要发生在肝脏和脂肪组织中,通过合成酶和脂蛋白来合成三酰甘油。
生物化学重点知识点生物化学是研究生物大分子的结构、组成、功能和相互作用的科学。
下面是一些生物化学的重点知识点:1.生物大分子:生物大分子包括蛋白质、核酸、多糖和脂质。
它们是生物体内最重要的分子,发挥着各种生命活动的功能。
2.氨基酸:氨基酸是蛋白质的基本组成部分。
有20种氨基酸,它们通过肽键连接形成多肽链。
氨基酸的顺序和空间结构决定了蛋白质的功能。
3.蛋白质结构:蛋白质的结构可分为四个层次:一级结构是氨基酸的顺序;二级结构是氢键的形成,如α-螺旋和β-折叠;三级结构是各个二级结构的空间排列;四级结构是多个蛋白质链的组装。
4.酶:酶是生物催化剂,能够加速化学反应的速率。
酶通过与底物形成亲和性复合物,降低活化能,使反应在生物条件下发生。
5.代谢途径:生物体的代谢途径包括糖酵解、有氧呼吸、脂肪酸合成、脂肪酸氧化和蛋白质合成等。
这些途径产生能量和所需的中间代谢产物。
6.核酸:核酸是遗传信息的携带者,包括DNA和RNA。
DNA是双链结构,RNA是单链结构。
DNA通过转录生成mRNA,再通过翻译生成蛋白质。
7.遗传密码:遗传密码是DNA碱基序列与蛋白质氨基酸序列之间的对应关系。
这种对应关系由密码子决定,每个密码子对应一种氨基酸。
8.代谢调控:生物体能够根据环境的变化来调控代谢途径。
这种调控发生在基因、酶活性和底物浓度等方面,以维持体内的稳态。
9.脂质:脂质是生物体内的重要功能分子,包括脂肪、磷脂和类固醇。
脂质在细胞膜结构和信号传导中起重要作用。
10.蛋白质折叠和疾病:蛋白质的错误折叠会导致一系列疾病,包括神经退行性疾病和癌症。
了解蛋白质折叠的机制有助于理解疾病的发生并开发新的治疗方法。
以上是生物化学的一些重点知识点。
了解这些知识可以帮助我们更好地理解生命的本质和生物体内各种生物化学过程的发生。
第一章蛋白质一、知识要点(一)氨基酸的结构蛋白质是重要的生物大分子,其组成单位是氨基酸。
组成蛋白质的氨基酸有20种,均为α-氨基酸。
每个氨基酸的α-碳上连接一个羧基,一个氨基,一个氢原子和一个侧链R基团。
20种氨基酸结构的差别就在于它们的R基团结构的不同。
根据20种氨基酸侧链R基团的极性,可将其分为四大类:非极性R基氨基酸(8种);不带电荷的极性R基氨基酸(7种);带负电荷的R基氨基酸(2种);带正电荷的R基氨基酸(3种)。
(二)氨基酸的性质氨基酸是两性电解质。
由于氨基酸含有酸性的羧基和碱性的氨基,所以既是酸又是碱,是两性电解质。
有些氨基酸的侧链还含有可解离的基团,其带电状况取决于它们的pK值。
由于不同氨基酸所带的可解离基团不同,所以等电点不同。
除甘氨酸外,其它都有不对称碳原子,所以具有D-型和L-型2种构型,具有旋光性,天然蛋白质中存在的氨基酸都是L-型的。
酪氨酸、苯丙氨酸和色氨酸具有紫外吸收特性,在280nm处有最大吸收值,大多数蛋白质都具有这些氨基酸,所以蛋白质在280nm处也有特征吸收,这是紫外吸收法定量测定蛋白质的基础。
氨基酸的α-羧基和α-氨基具有化学反应性,另外,许多氨基酸的侧链还含有羟基、氨基、羧基等可解离基团,也具有化学反应性。
较重要的化学反应有:(1)茚三酮反应,除脯氨酸外,所有的α-氨基酸都能与茚三酮发生颜色反应,生成蓝紫色化合物,脯氨酸与茚三酮生成黄色化合物。
(2)Sanger反应,α-NH2与2,4-二硝基氟苯作用产生相应的DNB-氨基酸。
(3)Edman反应,α-NH2与苯异硫氰酸酯作用产生相应的氨基酸的苯氨基硫甲酰衍生物(PIT-氨基酸)。
Sanger反应和Edmen反应均可用于蛋白质多肽链N端氨基酸的测定。
氨基酸通过肽键相互连接而成的化合物称为肽,由2个氨基酸组成的肽称为二肽,由3个氨基酸组成的肽称为三肽,少于10个氨基酸肽称为寡肽,由10个以上氨基酸组成的肽称为多肽。
引言概述:生物化学是考研生物学专业的重点内容之一。
在生物化学考研中,有一些重点知识点需要特别关注。
本文将从生物大分子、酶学、代谢途径、基因调控和信号传导等五个大点进行详细阐述,帮助考生更好地理解和掌握这些重点内容。
通过对这些重点知识点的全面了解,考生将能够更有针对性地备考,提高考试成绩。
正文内容:一、生物大分子1. 蛋白质- 结构和功能:介绍蛋白质的结构和各种功能,包括结构功能关系、酶的催化作用等。
- 翻译和转录:解释蛋白质的翻译和转录过程,讲述其中的关键步骤和调控因素。
- 蛋白质的修饰:探讨蛋白质的修饰类型和在细胞信号传导中的作用。
2.核酸- DNA和RNA的结构:介绍DNA和RNA的结构和特点,包括单链和双链结构、碱基组成等。
- DNA的复制和修复:讲解DNA的复制过程和各种修复机制,解释DNA的稳定性和遗传信息传递的重要性。
- RNA的转录和加工:解释RNA的转录和加工过程,阐述剪接、修饰和运送等关键步骤。
二、酶学1. 酶的分类和特性- 酶的分类:介绍不同类型的酶,包括氧化还原酶、水解酶等,解释它们的功能和催化机制。
- 酶的特性:讲述酶的催化速度、底物亲和力等特性,解释酶的催化效率和酶促反应的速率限制因素。
2. 酶的活性调控- 底物浓度和酶活性:探讨底物浓度对酶活性的影响,解释酶底物结合和解离的动力学过程。
- 酶的调控:介绍酶的调控方法,包括底物浓度调节、酶活化和抑制等,讲述这些调控机制的生理意义。
三、代谢途径1. 糖代谢- 糖酵解和糖异生:解释糖酵解和糖异生的过程和关键酶,解释它们在能量产生和产物合成中的作用。
- 糖原和糖酵解的调控:介绍糖原的合成和分解过程,解释糖酵解途径的调控机制。
2. 脂质代谢- 脂质的消化和吸收:讲解脂质在胃肠道中的消化和吸收过程,解释脂质消化酶的作用。
- 脂质的合成和分解:探讨脂质的合成和分解途径,解释关键酶的作用和调控方式。
四、基因调控1. 转录调控- 转录激活和抑制:介绍转录激活和抑制因子对基因转录的调控机制,解释它们与DNA结合的方式。
生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。
生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。
2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。
(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。
(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。
(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。
二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。
(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。
蛋白质的构象变化直接影响着蛋白质的功能。
2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。
其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。
三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。
(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。
2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。
(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。
生物化学知识点总整理生物化学是研究生物体化学组成和生命过程中化学变化规律的一门科学。
它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等方面都具有重要意义。
以下是对生物化学一些重要知识点的总整理。
一、生物大分子1、蛋白质蛋白质的组成:蛋白质由氨基酸通过肽键连接而成。
氨基酸有 20 种,分为必需氨基酸和非必需氨基酸。
蛋白质的结构:包括一级结构(氨基酸的线性排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的三维空间构象)和四级结构(多个亚基的组合)。
蛋白质的性质:具有两性解离、胶体性质、变性和复性等。
蛋白质的功能:催化、运输、调节、免疫防御、结构支持等。
2、核酸核酸的分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA 的结构:双螺旋结构,由两条反向平行的多核苷酸链围绕同一中心轴构成。
RNA 的种类:信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)。
核酸的功能:DNA 是遗传信息的携带者,RNA 参与遗传信息的表达和调控。
3、糖类单糖:如葡萄糖、果糖、半乳糖等,是最简单的糖类。
寡糖:由 2 10 个单糖分子组成,如蔗糖、麦芽糖等。
多糖:包括淀粉、糖原、纤维素等,具有储存能量和构成结构的作用。
4、脂质脂肪:由甘油和脂肪酸组成,是生物体储存能量的重要形式。
磷脂:构成生物膜的重要成分。
固醇:如胆固醇,参与细胞膜的组成和激素的合成。
二、酶1、酶的概念:酶是具有催化作用的生物大分子,大多数是蛋白质。
2、酶的特性:高效性、专一性、可调节性和不稳定性。
3、酶的作用机制:通过降低反应的活化能来加速反应的进行。
4、影响酶活性的因素:温度、pH、底物浓度、酶浓度、抑制剂和激活剂等。
三、生物氧化1、生物氧化的概念:物质在生物体内进行的氧化分解过程,最终生成二氧化碳和水,并释放能量。
2、呼吸链:由一系列电子传递体组成,包括 NADH 呼吸链和FADH2 呼吸链。
生物化学重点知识点总结生物化学是研究生物体及其组成部分的化学性质和化学过程的科学,它主要关注生物大分子的组成、结构和功能以及生物体内的各种化学反应。
以下是生物化学的重点知识点总结:1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它是组成细胞和组织的基本结构单元,参与几乎所有的生物功能。
核酸是存储和传递遗传信息的重要分子,包括DNA和RNA。
多糖是由单糖分子组成的长链聚合物,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成的生物大分子,它们在细胞膜的构建和能量的储存中起重要作用。
2.生物大分子的结构和功能:生物大分子的结构决定了它们的功能。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性序列决定的,二级结构是由氢键形成的α螺旋和β折叠,三级结构是蛋白质的立体构象,四级结构是由多个蛋白质亚基组成的复合物的空间结构。
核酸的结构包括双螺旋的DNA和单链的RNA。
多糖的结构包括淀粉的分支链和纤维素的线性链。
脂类的结构包括单酰甘油、双酰甘油和磷脂。
3.生物体内的化学反应:生物体内的化学反应包括代谢途径和信号传导。
代谢途径包括蛋白质、核酸、多糖和脂类的合成和降解过程。
信号传导是细胞内外信息传递的过程,包括细胞膜受体介导的信号转导、细胞内信号分子的产生和调控。
4.酶和酶动力学:酶是催化生物体内化学反应的蛋白质,它们可以提高反应速率。
酶的催化机理包括亲和性和瞬态稳定性理论。
酶动力学研究酶的催化速率和底物浓度的关系,包括酶的速率方程、酶的底物浓度和酶的浓度对速率的影响。
5.代谢途径和调控:代谢途径是生物体内化学反应的网络,包括能量代谢途径和物质代谢途径。
能量代谢途径包括糖酵解、细胞呼吸和光合作用。
物质代谢途径包括核酸合成、脂类合成和蛋白质合成。
代谢途径的调控通过正反馈和负反馈机制来维持生物体内化学平衡,包括酶的合成和降解、调控基因表达和细胞信号传导。
6. 遗传信息的传递和表达:遗传信息通过DNA的复制和转录转化为RNA,再经过翻译转化为蛋白质。
生物化学考试重点概要
一、概述
生物化学是研究生物体内的化学成分及其相互关系的学科,涉及生物大分子、代谢途径、酶的功能等领域。
本文档将重点概括生物化学考试中的重要内容。
二、生物大分子
1. 蛋白质:结构、功能、合成与降解
2. 核酸:DNA和RNA的结构、功能和复制过程
3. 碳水化合物:单糖、多糖的组成和功能
4. 脂类:脂肪酸、甘油与脂质的分类和代谢
三、代谢途径
1. 高级碳水化合物代谢:糖原合成与分解、糖酵解、柠檬酸循环
2. 氨基酸代谢:氨基酸合成与降解、尿素循环
3. 脂类代谢:脂肪酸合成与降解
4. 核酸代谢:核苷酸合成与降解
四、酶的功能
1. 酶的分类与特性:氧化还原酶、转移酶、水解酶等
2. 酶促反应:酶的动力学参数、酶反应速率与底物浓度的关系
3. 酶的调控机制:酶的诱导与抑制、酶活性调节因子
五、其他重要知识点
1. 酶联免疫吸附测定(ELISA)原理与应用
2. PCR技术的原理与应用
3. 蛋白质电泳的原理与应用
六、复建议
1. 重点记忆各个代谢途径的关键酶与反应物
2. 针对酶的功能和调控机制进行重点理解与实例分析
3. 多做题和模拟考试,加强对知识点的掌握和应用能力
以上是生物化学考试重点概要的完整版。
希望本文档能帮助你全面复生物化学知识,取得优异的考试成绩。
生物化学考试重点笔记(完整版)第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数× 6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。
(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm 处。
由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。