【雨神初三全3】二次函数手写大招笔记-2(终结篇)
- 格式:pdf
- 大小:970.55 KB
- 文档页数:4
中考数学二次函数超全知识点记忆口诀1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121一次函数与反比例函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式二次函数的基本形式()2y a x h k =-+的性质:a 的绝对值越大,抛物线的开口越小。
三、二次函数图象的平移1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2。
平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图。
初三数学二次函数知识点归纳在初中数学的学习中,二次函数是一个重要的内容,也是进一步深入学习代数的基础。
学好二次函数的性质和运用对于学生的数学能力的提升至关重要。
下面将对初三数学中二次函数的知识进行归纳总结。
一、二次函数及其图象的性质1. 二次函数的定义二次函数是一个以x的二次幂作为最高次幂的多项式函数,一般的二次函数表达式为: y = ax^2 + bx + c (其中 a, b, c 为常数且 a ≠ 0)。
2. 二次函数图象的平移二次函数图象的平移可以通过改变 a, b 和 c 的值来实现。
当将 a 的值变为 a',则图象的开口方向和大小会有相应的改变;当将 b 的值变为 b',则图象在 x 轴方向上平移;当将 c 的值变为 c',则图象在y 轴方向上平移。
3. 二次函数图象的对称轴二次函数图象的对称轴是一个线段,记作 x = -b/2a,对称轴将图象分为两个对称的部分。
4. 二次函数的顶点二次函数的顶点就是图象的最高点或最低点,所有的二次函数图象都有一个顶点。
5. 二次函数图象的开口方向二次函数图象的开口方向由二次项的系数 a 的正负决定。
当 a > 0 时,图象开口向上;当 a < 0 时,图象开口向下;当 a = 0 时,不再是二次函数。
二、二次函数的求解1. 二次函数的零点二次函数的零点是指函数曲线与 x 轴相交的点,也就是函数的根。
求解二次函数的零点可以通过以下步骤进行:首先,将函数表达式设置为 y = 0;然后,应用求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 计算 x 的值。
2. 二次函数的最值二次函数的最值通过求解顶点来确定。
当a > 0 时,函数有最小值,且最小值为顶点的纵坐标;当 a < 0 时,函数有最大值,且最大值为顶点的纵坐标。
三、二次函数的应用1. 抛物线二次函数的图象通常被称为抛物线。
初三数学 二次函数知识点总结一、二次函数概念:1.二次函数的概念: 一般地,形如 y ax 2bx c a ,b ,c是常数, a 0 )的函数,叫做二次函数。
这(里需要强调:和一元二次方程类似,二次项系数a 0 ,而b ,c 可以为零.二次函数的定义域是全体实数.2. 二次函数 y ax 2bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量 x 的二次式, x 的最高次数是 2.⑵ a ,b ,c 是常数, a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式二次函数的基本形式 y a x h2k 的性质:a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向 顶点坐标 对称轴性质ah ,kxh 时, y 随 x 的增大而增大; xh 时, y 随向上X=hx 的增大而减小; x h 时, y 有最小值 k .ah ,kxh 时, y 随 x 的增大而减小; xh 时, y 随向下X=hx 的增大而增大; x h 时, y 有最大值 k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式y a x h 2h ,k ;k ,确定其顶点坐标 ⑵ 保持抛物线 yax 2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:向上 (k>0)【或向下 (k<0)】平移 |k|个单位y=ax2y=ax 2+k向右 (h>0)【或左 (h<0)】 向右 ( h>0) 【或左 ( h<0) 】 向右 (h>0) 【或左 (h<0) 】平移 |k|个单位平移 |k|个单位平移 |k|个单位向上 ( k>0) 【或下 ( k<0) 】平移 |k|个单位y=a( x-h)22向上 (k>0) 【或下 (k<0)】平移 |k|个单位y=a (x-h) +k2. 平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二: ⑴ yax 2 bx c 沿 y 轴平移 :向上(下)平移 m 个单位, y ax 2 bx c 变成y ax 2bx c m (或 y ax 2bx c m )⑵ y ax 2bx c 沿轴平移:向左(右)平移m 个单位,y ax2bx c 变成y a( x m)2b(x m) c (或 y a(x m) 2b( x m ) c )四、二次函数 y a x2k 与 y2bx c 的比较h ax从解析式上看,y a x h 2ax2bx c 是两种不同的表达形式,后者通过配方可以得到前k 与 y2b2b,k4ac b 2者,即 y a x b4ac,其中 h.2a4a2a4a五、二次函数 y ax2bx c 图象的画法五点绘图法:利用配方法将二次函数y ax2bx c 化为顶点式y a(x h)2k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图 . 一般我们选取的五点为:顶点、与 y 轴的交点0,c、以及 0 ,c关于对称轴对称的点2h ,c、与 x 轴的交点x1,0, x2,0 (若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数 y ax2bx c 的性质1. 当 a0 时,抛物线开口向上,对称轴为x b,顶点坐标为 b ,4ac b2.2a2a4a当x b时, y 随 x 的增大而减小;当x b时, y 随 x 的增大而增大;当x b时, y 有最小2a2a2a值4ac b24a.2. 当 a0 时,抛物线开口向下,对称轴为 x b,顶点坐标为 b ,4ac b 2.当 x b时, y 随2a2a4a2ax的增大而增大;当x b时, y 随 x 的增大而减小;当x b时, y 有最大值4ac b2.2a2a4a七、二次函数解析式的表示方法1.一般式:y ax 2bx c (a, b ,c为常数, a0 );2.顶点式:y a(x h)2k (a, h , k 为常数, a0 );3.两根式:y a(x x1 )( x x2 ) ( a 0 , x1, x2是抛物线与x轴两交点的横坐标) .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即b24ac 0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化 .八、二次函数的图象与各项系数之间的关系1.二次项系数 a二次函数y ax2bx c 中,a作为二次项系数,显然 a 0 .a决定了抛物线开口的大小和方向,a的正负决定开口方向, a 的大小决定开口的大小.2.一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴.ab 的符号的判定:对称轴 xb0 ,在y轴的右侧则 ab0 ,概括的说就是在 y 轴左边则ab2a“左同右异”3. 常数项c c 决定了抛物线与y 轴交点的位置.总之,只要 a ,b ,c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程 ax2bx c 0 是二次函数 y ax2bx c 当函数值 y0 时的特殊情况 .图象与 x 轴的交点个数:① 当b24ac0 时,图象与x轴交于两点 A x1,0,B x2,0(x1x2 ) ,其中的 x1,x2是一元二次方程 ax2bx c 0 a0 的两根.这两点间的距离 AB x2x1 b 24ac .②当0 时,图象与x轴只有a一个交点;③ 当0 时,图象与x轴没有交点 .1'当 a0时,图象落在 x 轴的上方,无论 x 为任何实数,都有 y0; 2' 当a 0时,图象落在 x 轴的下方,无论 x 为任何实数,都有y 0.2. 抛物线 y ax2bx c 的图象与y轴一定相交,交点坐标为(0 , c) ;3.二次函数常用解题方法总结:⑴求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y ax2bx c 中a, b ,c的符号,或由二次函数中 a ,b, c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标.二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以 x 为自变量的二次函数y ( m 2)x 2m2m 2 的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数 y kx b 的图像在第一、二、三象限内,那么函数 y kx 2bx 1 的图像大致是()y y y y110x-1 o x0 x0 1 xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3), (4,6) 两点,对称轴为x 5,求这条抛物线的解析式。
九年级数学二次函数重点归纳总结(中考复习重要资料)九年级数学二次函数重点归纳总结(中考复习重要资料)二次函数知识点总结一、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a≠0),则称y为x的二次函数。
二、二次函数的三种表达式一般式:y=ax2+bx+c(a≠0)顶点式:y=a(x-h)2+k(a≠0),此时抛物线的顶点坐标为P(h,k)交点式:y=a(x-x1)(x-x2)(a≠0)仅用于函数图像与x轴有两个交点时,x1、x2为交点的横坐标,所以两交点的坐标分别为A(x1,0)和B(x2,0)),对称轴所在的直线为x=注:在3种形式的互相转化中,有如下关系:x1x22bb4ac-b2-bb2-4ach=-,k=;x1,x2=;x1+x2=-2a2a4a2a三、二次函数的图像从图像可以看出,二次函数的图像是一条抛物线,属于轴对称图形。
四、抛物线的性质1.抛物线是轴对称图形,对称轴为直线x=-b,对称轴与抛物线唯一的交点是抛物线的顶点2aP。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)bb4ac-b24ac-b22.抛物线有一个顶点P,坐标为P(-,)。
当x=-时,y最值=,当a>02a2a4a4a时,函数y有最小值;当a6.抛物线y=ax2+bx+c(a≠0)与x 轴交点个数与方程ax2+bx+c=0的根的判定方法:Δ=b2-4ac>0时,抛物线与x 轴有2个交点,对应方程有两个不相同的实数根;Δ=b2-4ac=0时,抛物线与x 轴有1个交点,对应方程有两个相同的实数根。
Δ=b2-4ac<0时,抛物线与x 轴没有交点,对应方程没有实数根。
五、二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程,即ax2+bx+c=0,此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
初三数学二次函数知识点总结一、 二次函数概念:21•二次函数的概念:一般地,形如y ax bx c( a ,b ,。
是常数,a 0)的函数,叫做二次函数。
里需要强调:和一元二次方程类似,二次项系数 a 0,而b , c 可以为零.二次函数的定义域是全体实数. 2.二次函数y ax 2 bx c 的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵a ,b ,c 是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、 二次函数的基本形式2二次函数的基本形式 y ax h k 的性质: a 的绝对值越大,抛物线的开口越小。
a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k .a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:2方法一:⑴ 将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵保持抛物线y ax 2的形状不变,将其顶点平移到h , k 处,具体平移方法如下:2. 平移规律在原有函数的基础上 ’h 值正右移,负左移;k 值正上移,负下移概括成八个字“左加右减,上加下减”方法二: ⑴y ax 2bx c 沿y 轴平移:向上(下)平移 m 个单位,y y=ax 2向右(h>0)【或左(h<0)]平移|k|个单位y=a(x h)22y=a (x-h)2+k2 ax bx c 变成向上(k>0)【或下(k<0)] 向右(h>0)【或左(*0)]平移|k|个单位 向右(h>0)【或左(h<0)] 平移|k|个单位向上(k>0)【或向下y2ax bx cm (或y 2ax bx cm )⑵ y ax 2bxc 沿轴平移:向左(右)平移 m个单位,yax 2 bx c 变成y a(x m)2 b(x m)c (或 y a(xm)2b(x m) c )x 的增大而增大;当 x 一时,y 随x 的增大而减小;当x2a七、 二次函数解析式的表示方法21. 一般式:y ax bx c ( a , b , c 为常数,a 0); 2•顶点式:y a (x h )2 k ( a , h , k 为常数,a 0);3. 两根式:y a (x xj (x X 2) ( a 0 ,论,x ?是抛物线与x 轴两交点的横坐标)•注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示.二次函数解析式 的这三种形式可以互化•八、 二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y ax 2 bx c 中,a 作为二次项系数,显然 a 0 . a 决定了抛物线开口的大小和方向,a四、二次函数y 2a x hk 与 y ax 2bx从解析式上看, y a x h $ k 与 y2ax 者, 即 y a x —24ac b ,其中h b2a4a2ac 的比较 C 是两种不同的表达形式,后者通过配方可以得到前24ac b 4a二次函数 y axbx c 图象的画法五点绘图法: 对称轴及顶点坐标, 的交点0, c 、以及0, c 关于对称轴对称的点没有交点,则取两组关于对称轴对称的点)利用配方法将二次函数 y然后在对称轴两侧,2 2ax bx c 化为顶点式y a (x h )左右对称地描点画图•一般我们选取的五点为:2h ,c 、与x 轴的交点 x 1,0 , x 2,k ,确定其开口方向、顶点、与y 轴 0 (若与x 轴画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、 二次函数y ax 2 bx c 的性质1•当a 0时,抛物线开口向上,对称轴为诗,顶点坐标为b 4ac b 22a ' 4ax —时,y 随x 的增大而减小;当 2a 值4ac 『.4a舟时,y 随x 的增大而增大;当—2a时,y 有最小2•当a 0时,抛物线开口向下,对称轴为—,顶点坐标为 2ab 4ac b 2 2a' 4a一时,y 随 2ay 有最大值4ac b 2 4abx 2,k的正负决定开口方向, a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.b、ab 的符号的判定:对称轴 x在y 轴左边则ab 0,在y 轴的右侧则ab 0 ,概括的说就是2a“左同右异” 3. 常数项cc 决定了抛物线与 y 轴交点的位置.总之,只要a, b , c 都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法•用待定系数法求二次函数的解析式必须根 据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):一元二次方程ax 2 bx c 0是二次函数y ax 2 bx c 当函数值y 0时的特殊情况.图象与x 轴的交点个数:①当 b 2 4ac 0时,图象与x 轴交于两点, 0 , B x ?, 0 (论x ?),其中的人,x ?是一元二次方交点坐标,可由对称性求出另一个交点坐标二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数 y (m 2)x 2 m 2 m 2的图像经过原点,则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查 两个函数的图像,试题类型为选择题,如:程 ax 2 bx c0的两根.这J b 2 4ac .②0时,图象与x 轴只有一个交点;③0时,图象与x 轴没有交点.1'当a 0时,图象落在 x 轴的上方,无论x 为任 何实数,都有0 ; 2'当a 0时,图象落在x 轴的下方,无论x 为任何实数,都有2. 抛物线y3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称, 2axbx c 的图象与2ax bx c 中a , b , c 的符号,或由二次函数中a ,b , 可利用这一性质, 求和已知一点对称的点坐标, 或已知与c 的符号判 x 轴的一个如图,如果函数y kx b的图像在第一、二、三象限内,那么函数y kx2 bx 1的图像大致是(3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选 拔性的综合题,如:5已知一条抛物线经过(0,3),(4,6)两点,对称轴为x,求这条抛物线的解析式。
二次函数知识点九年级
二次函数是初中数学中的重要内容之一,以下是九年级二次函数知识点的总结:
1. 二次函数的定义:形如f(x)=ax^2+bx+c (a≠0)的函数称为二次函数。
其中a、b、c为常数,且a≠0。
2. 二次函数的图像:二次函数的图像是一个抛物线,其形状由
a、b、c的值决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的性质:二次函数具有以下性质:对称轴为x=-frac{b}{2a};顶点坐标为(-\frac{b}{2a},\frac{4ac-b^2}{4a});最大值或最小值为f(\frac{b}{2a})=\frac{4ac-b^2}{4a}$。
4. 二次函数的应用:二次函数在实际生活中有很多应用,例如计算物体的最大高度、最远距离等。
此外,二次函数还可以用于解决一些实际问题,例如求最大利润、最小成本等。
初三二次函数总结版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三二次函数总结版(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三二次函数总结版(word版可编辑修改)的全部内容。
授课时间: 5月26日 授课地点:东岗路 年级:初三 课型:一对一 上课人数:1课题:二次函数概念、性质、对称、平移、图像教学目标:1。
掌握二次函数的概念及其考察方式2.掌握二次函数的性质及其与各系数的关系3.掌握二次函数的对称和平移,会用平移解化计算4.掌握二次函数图像的相关题型解题原理教学过程:一、 二次函数概念的考查(二次项系数不能为零)例1:函数f (x )与x 轴有且只有一个焦点,求未知量的取值范围;(先通过例题引入)二、二次函数三个系数的作用(简单分析)三、 二次函数解析式的确定思路---———先介绍三种方法(一)三点式。
例:已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C(0,-3)三点,求抛物线的解析式。
(二)顶点式.例:已知抛物线y= x 2-2ax+ a 2+b 顶点为A (2,1),求抛物线的解析式.(三)交点式。
例:已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x —2a)(x-b)的解析式.(四)定点式。
例:在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q ,求抛物线的解析式.(五)平移式.例:将抛物线32-+-=x x y 向上平移,使平移后的抛物线经过点C (0,2),求平移后抛物线的解析式.(六)距离式。
初三数学二次函数知识点总结归纳二次函数最高次必须为二次,二次函数的图像是一条对称轴与y 轴平行或重合于y轴的抛物线,如果令y值等于零,则可得一个二次方程。
下面是小编为大家整理的关于初三数学二次函数知识点总结,希望对您有所帮助!初三数学二次函数知识点总结1二次函数的定义一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x 的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.2二次函数解析式的几种形式(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点3二次函数y=ax2+c的图象与性质(1)抛物线y=ax2+c的形状由a决定,位置由c决定.(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y 最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y 最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.(3)抛物线y=ax2+c与y=ax2的关系.抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.初三二次函数知识点总结1二次函数及其图像二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。