微电子工艺答案第四章离子注入习题参考答案
- 格式:ppt
- 大小:60.50 KB
- 文档页数:9
第一章1.集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如Si、GaAs)上,封装在一个外壳内,执行特定电路或系统功能。
集成电路发展的五个时代及晶体管数目:小规模集成电路(小于100个)、中规模集成电路(100~999)、大规模集成电路(1000~99999)、超大规模集成电路(超过10万)、甚大规模集成电路(1000万左右)。
2、硅片制备(Wafer preparation)、硅片制造(Wafer fabrication)硅片测试/拣选(Wafer test/sort)、装配与封装(Assembly and packaging)、终测(Final test)。
3、半导体发展方向:提高性能、提高可靠性、降低价格。
摩尔定律:硅集成电路按照4年为一代,每代的芯片集成度要翻两番、工艺线宽约缩小30%,IC工作速度提高1.5倍等发展规律发展。
4、特征尺寸也叫关键尺寸,集成电路中半导体器件能够加工的最小尺寸。
5、more moore定律:芯片特征尺寸的不断缩小。
从几何学角度指的是为了提高密度、性能和可靠性在晶圆水平和垂直方向上的特征尺寸的继续缩小,more than moore定律:指的是用各种方法给最终用户提供附加价值,不一定要缩小特征尺寸,如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。
6、High-K:高介电系数;low-K:低介电系数;Fabless:无晶圆厂;Fablite:轻晶片厂;IDM:Integrated Device Manufactory集成器件制造商;Foundry:专业代工厂;Chipless:无晶片1、原因:更大直径硅片,更多的芯片,单个芯片成本减少;更大直径硅片,硅片边缘芯片减小,成品率提高;提高设备的重复利用率。
硅片尺寸变化:2寸(50mm)-4寸(100mm)-5寸(125mm)-6寸(150mm)-8寸(200mm)-12寸(300mm)-18寸(450mm).2、物理尺寸、平整度、微粗糙度、氧含量、晶体缺陷、颗粒、体电阻率。
第四章 离子注入与快速热处理1.下图为一个典型的离子注入系统。
(1)给出1-6数字标识部分的名称,简述其作用。
(2)阐述部件2的工作原理。
答:(1)1:离子源,用于产生注入用的离子;2:分析磁块,用于将分选所需的离子;3:加速器,使离子获得所需能量;4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入;6:法拉第杯,收集束流测量注入剂量。
(2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式:决定。
最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。
2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系?答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。
因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。
电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。
因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。
在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。
1 2 3 4 563.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么?答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。
B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。
4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。
微电子工艺_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年1.CZ法拉不出高阻单晶硅锭的主要原因是:答案:坩埚材料分解出的氧会进入硅锭;2.实际VPE工艺温度多在质量传递控制区,此时外延速率:答案:对温度不太敏感;3.关于硅的热氧化,下面哪种说法正确:答案:氧化反应是在Si/SiO2界面发生的;4.在D-G模型中假定稳定生长氧化层时,氧化剂的气相输运、固相扩散和化学反应三个流密度应:答案:相等;5.基于LSS理论,离子注入受到靶原子核与电子的阻止:答案:核阻止和电子阻止是独立的;6.多晶硅薄膜通常采取哪种方法制备:答案:LPCVD7.PVD与CVD比较,下列那种说法正确:答案:PVD薄膜与衬底的粘附性较差;8.外延用衬底硅片一般偏离准确晶向一个小角度,如(111)-Si偏离3º,下列那种说法正确?答案:这是为了得到原子层量级的台阶;这是为外延生长提供更多的结点位置;9.硅恒定源扩散,在扩散温度硅的固溶度为N s,在进行了40min扩散后,测得结深是1.5μm,若要获得2.0μm的结深,在原工艺基础上应再扩散多少分钟?硅表面杂质浓度是多少?答案:应再扩散31 min杂质表面浓度=N s表面杂质浓度等于该工艺温度时硅的固溶度;10.P在两歩扩散工艺中,第二步再分布的同时又进行了热氧化(kp=10),这会给再分布扩散带来哪些影响:答案:P扩散速度加快;在SiO2/Si界面Si一侧的P堆积(是指高于SiO2一侧);扩入Si的P总量下降;11.扩散系数是表征扩散快慢的参数,它相当于单位浓度梯度时的扩散通量,所以它:答案:单位为m∧2/s有单位;12.看图判断,下列哪种描述正确:答案:图(b)是注入的高能离子。
图(a)是注入的低能离子;13.下列哪个工艺方法应用了等离子体技术:答案:溅射RIEHDPCVD14.蒸镀工艺要求蒸镀室为高真空度的原因:答案:为了避免蒸发分子(或原子)被氧化;为了提高蒸发分子(或原子)的平均自由程;为了降低镀膜中的杂质;15.可以采取哪种方法来提高光刻分辨率?答案:减小分辨率系数;增大光学系统数值孔径;缩短光源波长;16.CZ法、MCZ法拉单晶时必须有籽晶;而FZ法拉单晶时不需要籽晶。
一、填空与选择题(每空1.5分,共60分)1.结晶的SiO2是Si-O四面体结构,而无定形SiO2不是Si-O四面体结构,因而密度小。
()对/错2.杂质在硅晶体中的扩散机构主要有和两种。
3.二氧化硅薄膜在半导体器件生产上的应用有:()①对杂质的掩蔽作用②对器件表面的保护和钝化作用③用于器件的电绝缘和电隔离④作为电容器的介质材料⑤作为MOS场效应晶体管的绝缘栅材料A.①② B.①②③ C.①②④⑤ D.①②③④⑤4.扩散系数与下列哪些因素一定成增函数关系()①杂质的浓度梯度②温度③扩散过程的激活能④杂质的迁移率A.①②B.②③C.②④D.①④5.硅平面制造工艺的硼、磷扩散都属于_____ 。
A.替位式扩散B.间隙式扩散6.下面选项属于主扩散(再分布)的作用有()。
①调节表面浓度②控制进入硅表面内部的杂质总量③控制结深A.①B.② C .③ D.①③7.结深表达式可统一写成:,对于有限表面源扩散,A=()a.b.8.扩散多在_ _ (高/低)温下进行, 恒定表面源扩散的杂质分布服从______ _ 分布,有限表面源扩散的杂质分布服从____ _分布。
9. 结深的测量方法有_____ 法、磨槽法、光干涉法。
10.离子注入掺杂纯度高,是因为()。
A.杂质源的纯度高B.注入离子是通过质量分析器选出来的11.LSS理论认为,注入离子在靶内的能量损失分为两个彼此独立的过程:①,②。
12.减弱或消除沟道现象的措施有:()1.入射方向偏离沟道轴向2. 入射方向平行沟道轴向3.样品表面淀积一层二氧化硅4. 样品表面淀积一层氮化硅A.1,3 B. 2,3 C. 1,3,4 D. 2,3,413.真空蒸发就是利用蒸发材料在高温时所具有的进行薄膜制备。
14.溅射法制备薄膜的温度比真空蒸发低。
()对/错15.边界层(附面层)厚度δ(x)定义为从速度为零的硅片表面到气流速度为时的区域厚度。
16.BPSG是通过在中掺杂和形成的。
第四章晶圆制造1.CZ法提单晶的工艺流程。
说明CZ法和FZ法。
比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。
答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。
CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化〔需要注意的是熔硅的时间不宜过长〕。
将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶外表得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。
当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。
使其沿着籽晶晶体的方向凝固。
籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。
FZ法:即悬浮区融法。
将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。
加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。
熔体将通过熔融硅的外表张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。
此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。
当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。
CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。
缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。
FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。
②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造别离式功率元器件所需要的晶圆。
缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。
MCZ:改良直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅到达合适的掺杂均匀度。
2、切片3、磨片和倒角4、刻蚀5、化学机械抛光3. 列出单晶硅最常使用的两种晶向。
称作投影射程。
内有多少条鱼浓度(个数域单位体积内有多少条鱼,…….离子源通过吸极电源把离子从离子源引出可变狭缝v⊕一个质量数为M的正离子,以速度v垂直于磁力线的方向进入磁场,受洛伦茨力的作用,在磁场中作匀速圆周运动的半径为R。
子离开分析仪电磁场的磁极平行平板电极⊕当离子束垂直进入均匀的正交电磁场时,将同时受到电场力和洛伦茨力的作用,这两个力的方向正好相反,只有在某个质量为M的离子在分析器中所受的电场力和洛伦茨力的数值相等时,不发生偏转而到达靶室,大于或小于M的离子则被偏转加速器加速离子,获得所需能量;高真空(<10-6Torr 静电加速器:调节离子能量静电透镜:离子束聚焦静电偏转系统:滤除中性粒子X方向扫描板Y方向扫描板扫描范围中性束偏转板+-的浓度比其它地方高。
终端台:控制离子束扫描和计量离子束扫描:扫描方式:静电扫描、机械扫描和混合扫描。
常用静电扫描和混合扫描。
静电光栅扫描适于中低束流机,机械扫描适于强束流机。
两种注入机扫描系统<110>向和偏转10°方向的晶体结构视图<111><100><110>40 kevP +31注入到硅中的浓度分布0.20.40.60.8 1.0µm43210 注入深度对准<110> 偏<110> 2°偏<110> 8°子在靶中行进的重要效应之一。
窗口边缘处浓度为同等深度窗口中心部位浓度的1/2离子越轻,阈值剂量越高;温度越高,阈值剂量越高。
扩散率提高,聚集成团,几种等时退火条件下,硅中注入硼离子的激活百分比。
微电子工艺技术-复习要点答案)完整版(第四章晶圆制造法。
比法和FZ1.CZ法提单晶的工艺流程。
说明CZ FZ三种生长方法的优缺点。
较单晶硅锭CZ、MCZ和答:法:使用射频或电阻加热线圈,置于慢速转动的石CZ3、收颈4、放肩5、等径生长6、收晶。
1、溶硅2、引晶。
将一个慢速转动的夹具的单晶硅籽晶棒)英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。
当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。
使其沿着籽晶晶体的方向凝固。
籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。
的多晶硅棒垂直放在高温炉反应室。
加热将多晶硅棒的低端熔化,然后50-100cm FZ法:即悬浮区融法。
将一条长度把籽晶溶入已经熔化的区域。
熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。
此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。
当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。
法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好CZ的控制电阻率径向均匀性。
缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。
③高纯度、高电阻率、低法高。
②无需坩埚、石墨托,污染少 CZFZ法优点:①可重复生长,提纯单晶,单晶纯度较法,熔体与晶体界面复杂,很④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。
缺点:直径不如CZ氧、低碳难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。
优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀MC:改进直拉法性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。
微电子工艺作业参考答案(第1(第10次))-微电子工艺操作参考答案第一次操作(全体参与)1,微电子在人类社会中的作用简述a:自20世纪40年代晶体管诞生以来,微电子技术发展极为迅速,现已进入大规模集成电路和系统集成时代,成为整个信息时代的标志和基础。
毫不夸张地说,如果没有微电子技术,今天就不会有信息社会。
纵观人类社会发展的文明史,生产方式的所有重大变化都是由新的科学发明引起的。
科学技术作为第一生产力,推动着社会的发展。
1774年,英国格拉斯哥大学的修理工瓦特发明了蒸汽机,这引发了第一次工业革命,产生了现代纺织和机械制造业,把人类带入了一个机器被用来扩展和发展人类体力劳动的时代。
1866年,德国科学家西门子发明了发电机,引发了以电气化工业为代表的第二次技术革命。
目前,我们正在经历一场新的技术革命。
虽然第三次技术革命包括新材料、新能源、生物工程、海洋工程、航天工程和电子信息技术等。
,以微电子学为核心的电子信息技术仍然是影响最大、渗透力最强和最具代表性的新技术革命。
信息是客观事物状态和运动特征的共同表现,是仅次于物质和能量的第三大资源,是人类物质文明和精神文明赖以发展的三大支柱之一。
当前,世界正处于一场跨越时空的新信息技术革命之中。
它将对社会经济、政治和文化产生比人类历史上任何其他技术革命更大的影响。
它将改变我们人类生产、生活、工作和治理国家的方式。
实现社会信息化的关键是各种计算机和通信设备,但其基础是半导体和微电子技术。
1946年,世界上第一台电子计算机ENIAC诞生于宾夕法尼亚大学摩尔学院,运行速度仅为每秒5000次,存储容量仅为1000位,平均稳定运行时间仅为7分钟。
当时,专家认为世界上只有四个ENIAC单元就足够了。
然而,仅仅半个多世纪后,现在世界上有数亿台计算机。
微电子学是这一巨大变化的技术基础。
现在,电子信息产业已经成为世界上最大的产业毫无疑问,21世纪将是信息化的世纪。
微电子产业在国民经济中的战略地位首先体现在现代食物链的关系上。