中考二元一次方程组与不等式组应用整理
- 格式:docx
- 大小:82.52 KB
- 文档页数:15
新初中数学方程与不等式之二元一次方程组知识点总复习有答案解析一、选择题1.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m. 【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.2.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( )A .-2B .2C .-1D .1【答案】D 【解析】 【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可. 【详解】 由题意得:2315x y m x y +=-⎧⎨-=⎩①②,∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-, 将其代入②可得:25x m -+=, ∴3x m =+ ∵3x y +=, ∴323m m ++-=, ∴1m =, 故选:D. 【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.3.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by ce x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x byc e x fy d⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩,∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.4.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.5.如图,将长方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大18°.设∠BAE 和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的一个方程组是( )A .1890y x y x -=⎧⎨+=⎩B .18290y x y x -=⎧⎨+=⎩C .182y x y x -=⎧⎨=⎩D .18290x y y x -=⎧⎨+=⎩【答案】B 【解析】 【分析】首先根据题意可得等量关系:①∠BAD-∠BAE 大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可. 【详解】解:设∠BAE 和∠BAD 的度数分别为x°和y°, 依题意可列方程组:18290y x y x -=⎧⎨+=⎩故选:B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.6.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y代入方程组,求出a的值,即可做出判断;③将x=y代入322x ay a=+⎧⎨=--⎩求出x、y的值,从而依据x=y得出答案;④由y≤1得出关于a的不等式,解之可得.【详解】解:关于x、y的方程组135 x y ax y a+=-⎧⎨-=+⎩,解得:322 x ay a=+⎧⎨=--⎩.①∵12x y ≥,∴a+3≥−a−1,解得a≥−2,故①正确;②将x=y代入322x ay a=+⎧⎨=--⎩,得:4353xa⎧=⎪⎪⎨⎪=-⎪⎩,即当x=y时,a=53-,此结论正确;③当a=−1时,2xy=⎧⎨=⎩,满足x+y=2,此结论正确;④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误;故选:C.【点睛】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.7.二元一次方程3x+y=7的正整数解有()组.A.0 B.1 C.2 D.无数【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.8.关于x、y的方程组222x ymx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m的个数有()A.4个B.3个C.2个D.无数个【答案】A【解析】【分析】先解二元一次方程组x、y,然后利用解为整数解题即可【详解】解方程组222x ymx y m+=⎧⎨+=+⎩得到242m xmym ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m可以为0、1、3、4,所以满足条件的m的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x、y再利用解为整数求解是本题关键9.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为( )A.15 B .﹣15 C.16 D.﹣16【答案】B【解析】【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵是关于x、y的方程组的解,∴解得∴(a+b )(a-b )=(-1+4)×(-1-4)=-15. 故选:B . 【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.10.若2334a b x y +与634a bx y -的和是单项式,则a b +=( ) A .3- B .0C .3D .6【答案】C 【解析】 【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b的值. 【详解】∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩,解得30a b =⎧⎨=⎩, ∴a+b=3. 故选C. 【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A 【解析】 【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长. 【详解】设小长方形的长为x,宽为y ,根据题意有2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= , 故选:A . 【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.|21|0a b -+=,则2019()b a -等于( ) A .1- B .1C .20195D .20195-【答案】A 【解析】 【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值. 【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=, 解得2a =-, 把2a =-代入③中, 得3b =-, 所以20192019()(1)1b a -=-=-.故选A. 【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.13.已知关于x ,y 的二元一次方程组57345x y ax y a -=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( ) A .2 B .–4 C .0 D .5【答案】C【解析】 【分析】将二元一次方程组中的两个方程相加,化简整理得x –2y =4a,进而求出4a =0即可解题. 【详解】 方程组57345x y ax y a -=⎧⎨-+=⎩,两个方程相加可得:x –2y =4a ,∵x –2y =0, ∴4a =0,解得a =0, 故选C . 【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选:B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.17.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A .B .C .D .【答案】A【解析】【分析】设甲需带钱x ,乙带钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x ,乙带钱y , 根据题意,得:故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.18.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y xy ⎧+=⎪⎨⎪+=⎩ C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米,∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y,宽又是75厘米,故x+2y=75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.。
二元一次方程组和不等式应用题专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二元一次方程组和不等式应用题专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二元一次方程组和不等式应用题专题的全部内容。
班级姓名二元一次方程组和不等式(二)1。
(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?2。
某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支5的进价是第一次进价的倍,购进数量比第一次少了30支.4(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?3。
为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4。
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
初中数学方程与不等式之二元一次方程组知识点总复习附答案解析(1)一、选择题1.已知关于x ,y 的二元一次方程组57345x y a x y a-=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( )A .2B .–4C .0D .5 【答案】C【解析】【分析】将二元一次方程组中的两个方程相加,化简整理得x –2y =4a,进而求出4a =0即可解题.【详解】 方程组57345x y a x y a -=⎧⎨-+=⎩,两个方程相加可得:x –2y =4a , ∵x –2y =0,∴4a =0,解得a =0,故选C .【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.2.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( ) A .6B .-6C .9D .-9 【答案】B【解析】【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得:693ax x +=+,即(6)12a x +=,∵原方程无解,∴60a +=,解得6a =-.故选B.【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.3.已知二元一次方程1342x y -=的一组解是x a y b =⎧⎨=⎩,则63a b -+的值为( ) A .11B .7C .5D .无法确定 【答案】A【解析】【分析】 把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】 ∵x a y b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解, ∴12a-3b=4, 即a-6b=8,∴a-6b+3=8+3=11.故选:A .【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.4.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2 B .2 C .-1 D .1【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.5.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种 物品(两种都买)的方案有( )A .3种B .4种C .5种D .6种 【答案】C【解析】【分析】设1袋笔的价格为x 元,1本笔记本的价格为y 元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论,再设可购买a 袋笔和b 本笔记本,根据总价=单价×数量可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设1袋笔的价格为x 元,1本笔记本的价格为y 元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34x . ∵x ,y 均为正整数,∴411x y ⎧⎨⎩==,88x y ⎧⎨⎩==,125x y ⎧⎨⎩==,162x y ⎧⎨⎩==. 设可购买a 袋笔和b 本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b , ∵a ,b 均为正整数,∴44a b ⎧⎨⎩==; ②当x=8,y=8时,4x+6y-22=58, ∴8a+8b=58,即a+b=294,∵a ,b 均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a -, ∵a ,b 均为正整数, ∴34a b ==⎧⎨⎩; ④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a ,∵a ,b 均为正整数,∴119a b ⎧⎨⎩==,211a b ⎧⎨⎩==,33a b ⎧⎨⎩==. 综上所述,共有5种购进方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C【解析】【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.7.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,若已知大正方形的面积是196,小正方形的面积是4,若用(),x y x y >表示长方形的长和宽,则下列四个等式中不成立的是( )A .14x y +=B .2x y -=C .22196x y +=D .48xy =【答案】C【解析】【分析】 根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.【详解】由题意得,大正方形的边长为14,小正方形的边长为2∴x+y=14,x−y=2,则142x y x y +=⎧⎨-=⎩, 解得:86x y =⎧⎨=⎩, 故可得C 选项的关系式符合题意.故选C.【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意找出等量关系.8.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩ C .302001505300x y x y +=⎧⎨+=⎩ D .301502005300x y x y +=⎧⎨+=⎩ 【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩.故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021 【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.|21|0a b -+=,则2019()b a -等于( )A .1-B .1C .20195D .20195-【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】解:因为512110a b a b +++-+=,所以50,210,a b a b ++=⎧⎨-+=⎩①② 由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A【解析】【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有 2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩ ∴小长方形的周长为(42)212+⨯= ,故选:A .【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为() A .4个B .3个C .2个D .1个【答案】C【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可;【详解】2647x ay x y -=⎧⎨+=⎩①② 2⨯①-②得:()215a y --= 解得:521y a =-- 把521y a =--代入②得:54721x a -=+ 解得:7624a x a +=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合;当0a =时,3x =,是整数,符合;当3a =-时,32x =,不是整数,舍去; 故选:C.【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.13.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( ) A .4639611x y x y +=⎧⎨-=⎩ B .6396222x y x y +=⎧⎨-=⎩ C .4669633x y x y +=⎧⎨-=⎩ D .6936411x y x y +=⎧⎨-=⎩【答案】C【解析】【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y 的系数变成互为相反数.解:233 {3211 x yx y+=-=①×2得,4x+6y=6③,②×3得,9x-6y=33④,组成方程组得:466{9633 x yx y+=-=.故选C.【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.14.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030xy=⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时,故选B.【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.15.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A .106cmB .110cmC .114cmD .116cm 【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩ 则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.16.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得:2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4B .1-C .2D .1 【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm【答案】C【解析】【分析】 设长方体木块的长是xcm ,宽是ycm ,由题意得5x y -=,再代入求出桌子的高度即可.【详解】设长方体木块的长是xcm ,宽是ycm ,由题意得8070x y y x -+=-+可得5x y -=则桌子的高度是8080575x y cm -+=-=故答案为:C .【点睛】本题考查了二元一次方程的实际应用,掌握解二元一次方程的方法是解题的关键.20.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的A .1B .2C .3D .4【答案】C【解析】【分析】 整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.。
二元一次方程(组)和不等式(组)的应用1、端午节是我国传统的节日,人们素有吃粽子的习俗。
某商场在端午节来临之际,用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A种粽子的单价是B种粽子的单价的1.2倍。
(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共260 0个,已知A、B 两种粽子的进价不变,求A种粽子最多能购进多少个?2、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:老板:如果你在多买一个,就可以打八五折,花费比现在还省17元。
小明:那就多买一个吧,谢谢!(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?3、在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的总量比A型粽子的2倍少20千克,购进两种粽子公用了2560元,求两种型号粽子各多少千克?4、刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用了140元又买了一些,两次一共购买了40 kg,这种大米的原价是多少?5、随着中国传统几日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折销售,乙品牌粽子打七五折销售,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元,打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。
(1)打折前甲乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?6、某商场购进甲乙两种商品,甲种商品公用了2000元,乙种商品公用了2400元。
二元一次方程组和不等式组在数学中,方程组和不等式组是两个很常见的概念。
在解决各种实际问题时,它们是不可或缺的工具。
本文将着重探讨二元一次方程组和不等式组的概念和方法。
一、二元一次方程组1. 定义二元一次方程组是由两个形如ax+by=c的方程所组成的方程组。
其中a、b、c分别为已知常数,而x和y是未知量。
2. 解法为了解决二元一次方程组,我们可以采取以下两种方法。
(1) 相减法若方程组为:⑴ax+by=c⑵dx+ey=f则方程两边相减,得到(b-e)y = c-f 。
进而可以解出y的值。
将y的值代入其中一方程,即可求出x的值。
(2) 代入法若方程组为:⑴ax+by=c⑵dx+ey=f则可以将其中一个方程中的一个未知量表示成另一个方程相应未知量的函数。
例如,将⑴式中的x表示成y的函数,则:x = (c-by)/a将其代入⑵式中,就可得到只含有y的方程。
二、不等式组1. 定义不等式组是含有形如ax+b<y和cx+d>z的不等式的方程组。
其中a、b、c和d是已知常数,而x、y和z是未知量。
2. 解法为了解决不等式组,我们可以采取以下两种方法。
(1) 图像法不等式组可以通过对其图像进行研究来解决。
例如:ax+b<y则可以绘制出y = ax+b的函数图像。
从而可以确定该不等式组的解集。
(2) 替换法替换法是将不等式组中的一个不等式代入另一个不等式中,从而得到一个只含有一个未知量的不等式。
例如:ax+b<ycan+d>z可将第一个不等式中的y替换成can+d,从而得到ax+b<can+d。
从而得到只含有x和z的一个不等式。
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
二元一次方程组(应用题)1. 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大小瓶装两种产品各多少瓶?2. 张翔从学校出发骑自行车去县城,中途道路施工步行一段路,1小时后到答县城.他骑车的平均速度是25千米/时,步行的平均速度是5千米/时,路程全长是20千米.他骑车与步行各用多少时间?3.2台大收割机和5台小收割机2小时收割小麦3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机1小时各收割小麦多少公顷?4.甲乙两人相距6千米,两人同时出发相向而行一小时后相遇;同时出发同向而行,甲3小时可追上乙,两人的平均速度各是多少?5. 据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1.5,现要在一块长200 m,宽100 m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3,4(结果取整数)?6. 长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,公路运价为1.5元/(吨.千米),铁路运价为1.2元/(吨.千米),这两次运输共支出公路运费15000元,铁路运费97200元。
这批产品的销售款比原料费与运输费的和多多少元?7.A市至B市的航线A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30从B市逆风飞往A市需3小时20分。
求飞机的平均速度和风速。
8.甲乙二人都以不变的速度在环形路上跑步。
如果同时同地出发,相向而行,每隔2分钟相遇一次;如果同向而行,每隔六分钟相遇一次.已知甲比乙跑得快,甲乙每分各跑多少圈?不等式与不等式组(应用题)1.2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量状况良好的天数要比2002年至少增加多少?2采石场爆破时为了确保安全,操作人员点燃炸药导火线后,要在炸药爆炸前跑到400m以外的安全区域。
初中数学方程与不等式之二元一次方程组全集汇编含解析一、选择题1.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩【答案】C 【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==【答案】A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为( )A.15 B.﹣15 C.16 D.﹣16【答案】B【解析】【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵是关于x、y的方程组的解,∴解得∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选:B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.1204016x yy x+=⎧⎨=⎩B.1204332x yy x+=⎧⎨=⎩C.12040210x yy x+=⎧⎨=⨯⎩D.以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A .4243y x x y +=⎧⎨=⎩B .4243x y x y +=⎧⎨=⎩C .421134x yx y -=⎧⎪⎨=⎪⎩D .4234x y x y +=⎧⎨=⎩【答案】D 【解析】 【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可. 【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.6.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( ) A .﹣2 B .2C .1D .﹣1【答案】A 【解析】 【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可. 【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩,解得:23x y =-⎧⎨=⎩,故选:A. 【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.7.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=,∵原方程无解, ∴60a +=, 解得6a =-. 故选B. 【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.8.二元一次方程2x +y =5的正整数解有( ) A .一组 B .2组C .3组D .无数组【答案】B 【解析】 【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解. 【详解】解:当x=1,则2+y=5,解得y=3, 当x=2,则4+y=5,解得y=1, 当x=3,则6+y=5,解得y=-1, 所以原二元一次方程的正整数解为,.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A.4.5112y xyx-=⎧⎪⎨-=⎪⎩B.4.5112x yy x-=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112y xx y-=⎧⎪⎨-=⎪⎩【答案】B【解析】【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解.【详解】设绳长x尺,长木为y尺,依题意得4.5112x yy x-=⎧⎪⎨-=⎪⎩,故选B.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.10.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,若已知大正方形的面积是196,小正方形的面积是4,若用(),x y x y>表示长方形的长和宽,则下列四个等式中不成立的是()A.14x y+=B.2x y-=C.22196x y+=D.48xy=【答案】C【解析】根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项. 【详解】由题意得,大正方形的边长为14,小正方形的边长为2 ∴x+y=14,x−y=2,则142x y x y +=⎧⎨-=⎩ , 解得:86x y =⎧⎨=⎩ , 故可得C 选项的关系式符合题意. 故选C. 【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意找出等量关系.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( )A .-1B .0C .1D .2【答案】A 【解析】 【分析】观察方程组,利用第一个方程减去第二个方程即可求解. 【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得, x-y=-1. 故选A. 【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C【分析】【详解】解:解方程组34{3x y ax y a+=--=,得12{1x ay a=+=-,∵-3≤a≤1,∴-5≤x≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a两边相等,结论正确;②当a=-2时,x=1+2a=-3,y=1-a=3,x,y的值互为相反数,结论正确;③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,∴-3≤a≤0∴1≤1-a≤4∴1≤y≤4结论正确,④5{1xy==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C.【点睛】本题考查二元一次方程组的解;解一元一次不等式组.13.已知关于x,y的二元一次方程组57345x y ax y a-=⎧⎨-+=⎩,且x,y满足x–2y=0,则a的值为()A.2 B.–4C.0 D.5【答案】C【解析】【分析】将二元一次方程组中的两个方程相加,化简整理得x–2y=4a,进而求出4a=0即可解题.【详解】方程组57345x y ax y a-=⎧⎨-+=⎩,两个方程相加可得:x–2y=4a,∵x–2y=0,∴4a=0,解得a=0,故选C.【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.14.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果()颗.A .6B .8C .10D .12【答案】B 【解析】 【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解. 【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得:11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗 故选B . 【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.15.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩【答案】B 【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可. 详解:设练习本每本为x 元,水笔每支为y 元, 根据单价的等量关系可得方程为x+y=3, 根据总价36得到的方程为20x+10y=36, 所以可列方程为:3201036x y x y +⎧⎨+⎩==,故选:B .点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.16.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( )A.4639611x yx y+=⎧⎨-=⎩B.6396222x yx y+=⎧⎨-=⎩C.4669633x yx y+=⎧⎨-=⎩D.6936411x yx y+=⎧⎨-=⎩【答案】C【解析】【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y的系数变成互为相反数.【详解】解:233 {3211 x yx y+=-=①×2得,4x+6y=6③,②×3得,9x-6y=33④,组成方程组得:466{9633 x yx y+=-=.故选C.【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则29714x yx y+=⎧⎨+=⎩,解得17xy=⎧⎨=⎩则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选:A . 【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( )A .4B .1-C .2D .1 【答案】D 【解析】 【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.【详解】2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y += ∴1a = 故答案为:D . 【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A 【解析】 【分析】 【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得:2010x y x z y z =+⎧⎨-=++⎩ 解得z=5答:被移动石头的重量为5克.故选A .【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.20.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1B .2C .3D .4【答案】A【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1,故选:A.。
2011年中考数学试卷分类汇编:5二元一次方程组及其应用一、选择题1. ( 2011台湾台北,30)某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元。
该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠。
若打烊后得知,此两款鞋共卖得 1800元,还剩甲鞋x 双、乙鞋y 双,则依题意可列出下列哪一个方程式? A 200(30- x)+50(30— y)=1800 B . 200(30- x)+50(30— x — y)=1800C. 200(30-x)+50(60- x -y)=1800D. 200(30- x)+50[30- (30- x)- y]=1800【答案】D【答案】B3. (2011四川绵阳9, 3)灾后重建,四川从悲壮走向豪迈 .灾民发扬伟大的抗震救灾精神,桂花村派男女村民共 15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回 15包.请问这次采购派男女村民各多少人?A .男村民3人,女村民12人B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人【答案】B【答案】Dx — y = 2 ”” 口5. (2011广东肇庆,4, 3分)方程组丿的解是、2x + y = 4\=1 \=3"x = 0\ = 2A .丿B .丿c .丿D .丿y=2J = 1h = —2x =01 rB .x =1 C .x =1 2 D .x - —1y-1y =0y-1A.x —2y =1有无数多个解,下列四组值中不是.2. (2011湖南益阳,2, 4分)二元一次方程该方程的解的是4. (2011四川凉山州,3, 4 分)F 列方程组中是二元一次方程组的是(A .xy=12 +y = 25x_2y =3y=32x z = 0c .孙心B .【答案】D「x = 2ax + bv = 7 6. (2011山东枣庄,6, 3分)已知 '是二元一次方程组'的解,则a-b 的值为()V =1ax — by=1A 1B . 1C . 2D . 3【答案】A二、填空题‘2x + y = 57. (2011福建泉州,12 , 4分)已知x 、y 满足方程组』'则x — y 的值为 _________ .x + 2y = 4,【答案】1;[5x _2y-4=0”&8. (2011山东潍坊,15, 3分)方程组的解是 _____________________ .K + y -5 =0f x = 2答案】ly=313x y = 1 a一9. (2011湖北鄂州,7, 3分)若关于x , y 的二元一次方程组的解满足x • y v 2,则a 的取值范围为A 十 3y = 3【答案】a v 4x = 2 是关于x , y 的二兀一次方程V3x = y + a 的解. V = 3求(a+1) (a-1) +7 的值【答案】将x=2, y= . 3代入..3x = v a 中,得a —. 3。
•••( a+1) (a-1) +7=a 2-1+7=a 2+6=9三、解答题11. ( 2011江苏扬州,24,10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务x , 10. (2011河北,19, 8分)已知<由A、B两个工程队先后接力完成。
A工程队每天整治12米,B工程队每天整治8米,共用时20天。
(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:② X12,得:x+1.5y=240 ③ ③ —①,得:0.5y=60• y=120把y=120代入①,得,x=60答:A 、B 两工程队分别整治河道 60米和120米。
12. (2011山东威海,22, 9分)为了参加2011年威海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛, 李明针对自行车和长跑项目进行专项训练•某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度甲:J2x +8y =12 8根据甲、乙两名同学所列的方程组, 请你分别指出未知数 x,y 表示的意义,然后在方框中补全甲、 程组:乙两名同学所列的方甲:x 表示 ______________________ , y 表示 ________________________________ ; 乙:x 表示,y 表示【答案】解:⑴甲:丿x +y=20J2x +8y = 180乙:甲:x 表示A 工程队工作的天数,y 表示B 工程队工作的天数; 乙:x 表示A 工程队整治的河道长度,y 表示B 工程队整治的河道长度; (2)若解甲的方程组"x + y = 20①J2x+8y = 180 ②① X8,得:8x+8y=120 ③③一②,得:4x=20/• x=5把x=5代入①得:y=15,••• 12x=60,8y=120答:A 、B 两工程队分别整治河道 60米和120米。
若解乙的方程组x y =180丁計20乙为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【答案】解:设自行车路段的长度为x米,长跑路段的长度y米,可得方程组:x y 二5000,上 =5.600 200解这个方程组,得x =3000,J y = 2000.答:自行车路段的长度为32千米,长跑路段的长度2千米.13. (2011山东烟台,20,8分)小华从家里到学校的路是一段平路和一段下坡路•假设他始终保持平路每分钟走60米, 下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟•请问小华家离学校多远?【答案】解:设平路有x米,坡路有y米x y—+ 2_=10,6080A工=15.6040解这个方程组,得x =300,y =400.所以x+ y= 700.所以小华家离学校700米.14. (2011 上海,20, 10 分)解方程组:乂?'—2,2x _2xy_3y =0.x -y =2, ①x2 _2xy -3y2 = 0.②方程①变形为y=x-2 ③.把③代入②,得x2-2x(x -2) -3(x -2)2=0 .整理,得x2 -4x 3 =0 .解这个方程,得x1=1 , x2 =3 .【答案】片二 1,f x ?二 3,yi" -1; y 2 =1 -15. (2011湖南永州,22, 8分)某学校为开展 阳光体育”活动,计划拿出不超过 3000元的资金购买一批篮球、羽毛 球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为 8 : 3 : 2,且其单价和为130元.⑴请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元? ⑵若要求购买篮球、羽毛球拍和乒乓球拍的总数量是 80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?【答案】解:⑴因为篮球、羽毛球拍和乒乓球拍的单价比为8 : 3 : 2,所以,可以依次设它们的单价分别为8x , 3x ,2x 元,于是,得 8x 3x 2x =130,解得 x =10 .所以,篮球、羽毛球拍和乒乓球拍的单价分别为80元、30元和20元.⑵设购买篮球的数量为 y 个,则够买羽毛球拍的数量为 4y 副,购买乒乓球拍的数量为(80_y_4y )副,根据题意,得80y 30 4y 20(80 - y - 4y )乞 3000 ① 80 —y —4y 乞15②由不等式①,得y _14,由不等式②,得 y _13, 于是,不等式组的解集为13乞y 乞14,因为y 取整数,所以 y 只能取13或14.因此,一共有两个方案:方案一,当y =13时,篮球购买13个,羽毛球拍购买 52畐V ,乒乓球拍购买15副; 方案二,当y =14时,篮球购买14个,羽毛球拍购买 56畐V ,乒乓球拍购买10副.2011年中考数学试卷分类汇编:6不等式(组)一、选择题 1.(2011湖南永州,15,3分)某市打市电话的收费标准是:每次 3分钟以内(含3分钟)收费0.2元,以后每分钟 收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个 6分钟的市话,所用电话费为 0.5元;小刚现准备给同 学打市电话6分钟,他经过思考以后,决定先打 3分钟,挂断后再打3分钟,这样只需电话费 0.4元•如果你想给某同 学打市话,准备通话 10分钟,则你所需要的电话费至少为( )A . 0.6 元B . 0.7 元C . 0.8 元D . 0.9元所以,原方程组的解为将X 2 =3分别代入③,得y 2=1.【答案】14、填空题2. (2011山东临沂,17, 3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 ____________ 捆材料. 【答案】423. (2011湖北襄阳,15 , 3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对 _______ 道题. 【答案】14三、解答题4. (2011广东广州市,21, 12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一: 用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的 员卡,则购买商店内任何商品,一律按商品价格的 9.5折优惠.已知小敏 5月1日前不是该商店的会员. (1) 若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2) 请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算? 【答案】(1) 120X 0.95=114 (元) 所以实际应支付114元.(2)设购买商品的价格为 x 元,由题意得:0.8x+168v 0.95x 解得x>1120所以当购买商品的价格超过 1120元时,采用方案一更合算.5. (2011湖北鄂州,20, 8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有 A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从 A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为 x 万吨,完成下表总计14148折优惠;方案二:若不购买会A总计15 13 28⑵请设计一个调运方案,使水的调运量尽可能小. (调运量=调运水的重量X调运的距离,单位:万吨?千米)【答案】⑴(从左至右,从上至下) 14 —x 15-x x —1⑵y=50x+ (14—x) 30+60 (15—x) + (x—1) 45=5x+1275解不等式K x w 14所以x=1时y取得最小值y mi n = 12806. (2011广东茂名,23, 8分)某养鸡场计划购买甲、乙两种小鸡苗共 2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1) 若购买这批小鸡苗共用了 4 500元,求甲、乙两种小鸡苗各购买了多少只?(2分)(2) 若购买这批小鸡苗的钱不超过 4 700元,问应选购甲种小鸡苗至少多少只?(3分)(3) 相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?【答案】解:设购买甲种小鸡苗x只,那么乙种小鸡苗为(200 —X)只.(1)根据题意列方程,得2x 3(2000 - x) = 4500 ,解这个方程得:x =1500(只),2000 -x =2000-1500 =500(只),•即:购买甲种小鸡苗1500只,乙种小鸡苗500只.⑵根据题意得:2x 3(2000 - x)乞4700 ,解得:x_1300,即:选购甲种小鸡苗至少为 1 3 00只.(3) 设购买这批小鸡苗总费用为y元,根据题意得:y = 2x 3(2000 - x) = -x 6000 ,又由题意得:94%x 99%(2000 -x) 一2000 96% ,解得:x岂1200,因为购买这批小鸡苗的总费用y随x增大而减小,所以当x = 1200时,总费用y最小,乙种小鸡为:2000 —1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y最小,最小为4800元.7. (2011重庆市潼南,25,10分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:甲3112500说明:不同种植户种植的同类蔬菜每亩平均收入相等. ⑴ 求A 、E 两类蔬菜每亩平均收入各是多少元?⑵ 某种植户准备租20亩地用来种植 A 、E 两类蔬菜,为了使总收入不低于 63000元,且种植A 类蔬菜的面积多于种植E 类蔬菜的面积(两类蔬菜的种植面积均为整数)答案】解:(1)设A 、B 两类蔬菜每亩平均收入分别是 x 元,y 元.由题意得:3X y = 125002x + 3y =16500解得:x=3°°0y =3500答:A B 两类蔬菜每亩平均收入分别是3000元,3500元.(2)设用来种植A 类蔬菜的面积a 亩,则用来种植B 类蔬菜的面积为由题意得:3°°°a 35°°(2°")_63°°0、a >20 —a解得:10v a < 14.•/ a 取整数为:11、12、13、14. 租地方案为:10分8. (2011山东荷泽,20, 9分)我市一家电子计算器专卖店每只进价 13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10 >(20-10)=1(元),因此,所买的全部 20只计算器都按照每只 19元计算,但是最低价为每只 16元. (1) 求一次至少买多少只,才能以最低价购买? (2) 写出该专卖店当一次销售x (时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3) 若店主一次卖的只数在 10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?16500,求该种植户所有租地方案(20-a )亩.类别种植面积 单位: (亩) 111213140.1(x—10)=20 - 16,解这个方程得x=50;答:一次至少买50只,才能以最低价购买.20x —13x =7x(0< x< 50)| 1 2(2) y = [(20 —13) — 0.1(x —10)] x 8x(10< x<50).| 1016x -13x=3x(x> 50)(说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)1 2 1 2⑶将y x 8x配方得y (x-40) 160,所以店主一次卖40只时可获得最高利润,最高利润为160元•(也10 10可用公式法求得)9. (2011贵州安顺,24, 10分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品•已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.⑴求每件T恤和每本影集的价格分别为多少元?⑵有几种购买T恤和影集的方案?【答案】(1)设T恤和影集的价格分别为x元和y元•则/ -y =9gx +5y =200解得35 、y=26答:T恤和影集的价格分别为35元和26元.(2)设购买T恤t件,则购买影集(50-1)本,贝U1500 _35t 26 50 -t -1530200 230解得200乞t—230T t为正整数,••• t = 23, 24, 25,9 9 ,即有三种方案.第一种方案:购T恤23件,影集27本;第二种方案:购T恤24件,影集26本;第三种方案:购T恤25件,影集25本.10. ( 2011山东枣庄,22, 8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.©博文教育(1) 符合题意的组建方案有几种?请你帮学校设计出来;(2) 若组建一个中型图书角的费用是 860元,组建一个小型图书角的费用是 570元,试说明( 用最低,最低费用是多少元?解:(1)设组建中型图书角 x 个,则组建小型图书角为(30-x )个•由题意,得”80乂+3(30 —x ) G900 八Q0x+60(30—x )兰 1620解这个不等式组,得 18 < x w 20 •由于x 只能取整数,••• x 的取值是18, 19, 20•当 x=18 时,30-x=12 ;当 x=19 时,30-x=11 ;当 x=20 时,30-x=10 • 故有三种组建方案:方案一,中型图书角 18个, 小型图书角 12个; 、* ―万案中型图书 角19个,小型图书角 11个;方案三,中型图书角 20个,小型图书角10个....5 分(2)方案一的费用是:860X 18+570 X 12=22320 (元);方案二的费用是: 860X 19+570X 11=22610 (元);方案三的费用是: 860X 20+570X 10=22900 (元)•故方案一费用最低,最低费用是22320兀.1)中哪种方案费。