第二章 连续小波变换
- 格式:ppt
- 大小:515.00 KB
- 文档页数:27
2.2 连续小波变换的概念与性质2.2. l 连续小波变换的概念将任意)(2R L 空间中的函数)(t f 在小波基下进行展开,称这种展开为函数)(t f 的连续小波变换(CWT ),其表达式为 ()⎰⎪⎭⎫⎝⎛-==-R 2/1,d )()(),(,t a t t f a t t f a WT a f τψψττ (2.9)由CWT 定义可知,小波变换与傅里叶变换的相同之处:(1) 一种积分变换。
(2) 称()τ,a WT f 为小波变换系数。
小波变换与傅里叶变换的不同之处:(1) 小波基具有尺度和平移两个参数。
(2) 函数在小波基下展开,意味着将一个时间函数投影到二维的时间—尺度相平面上。
由于小波基本身所具有的特点,将函数投影到小波变换域后,有利于提取函数的某些本质特征。
从时频分析角度来看,小波变换具有如下特点:若令tj a e t g t a t a ωττψτψ)()(,21-==⎪⎭⎫ ⎝⎛--则CWT 可视作STFT 。
CWT :任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时间段t a ∆上包含在中心频率为a0ω、带宽为aω∆频窗内的频率分量大小。
随着尺度a 的变化,对应窗口中心频率a0ω、窗口宽度aω∆也发生变化(根据式(2.6),(2.7))。
STFT :窗口固定不变(即不随ω的变化而变化)。
二者不同之处:CWT 是一种变分辨率的时频联合分析方法。
低频(大尺度),对应大时窗;高频(小尺度),对应小时窗。
举例说明。
信号)207(5.1)165(5.1)10002sin()5002sin()(-+-+⨯+⨯=t t t t t f δδππ,在不同时窗下的STFT 和CWT 的展开系数图,如图2.1所示。
与傅里叶基不同,尺度和位移均连续变化的连续小波基函数形成了一组非正交的过度完全基。
这意味着其任意函数的小波展开系数之间有一个相关关系。
若用),;,(ττψ''a a K 描述两个基函数)(,t a τψ和)(,t a τψ''的相关度的大小,则dt t t C a a K a Ra )()(),;,(,,1ττψψψψττ''-⎰⋅='' (2.11)ψK 表征了连续尺度、时移半平面),(τa (由于0>a 所以称半平面)的两个不同点之间的CWT 系数的相关关系,也称它为再生核或重建核(再生和重建的含义是指由尺度—平移相平面上的已知点,根据再生核公式可再生和重构出某一点),其结构取决于小波选取。
小波变换的数学模型及其实现方法引言:小波变换作为一种信号处理方法,在多个领域中得到了广泛的应用。
它可以将信号分解成不同频率的成分,并提供了一种有效的方式来分析信号的时频特性。
本文将介绍小波变换的数学模型以及实现方法。
一、小波变换的数学模型小波变换是一种基于时间频率局部性的信号分析方法。
它使用一组基函数(小波函数)来表示信号,并通过对信号进行连续或离散的变换来获取信号的时频信息。
1.1 连续小波变换(CWT)连续小波变换使用连续的小波函数对信号进行变换。
其数学模型可以表示为:CWT(f)(a,b) = ∫f(t)ψ((t-b)/a)dt其中,f(t)为原始信号,ψ为小波函数,a和b分别表示尺度和平移参数。
通过改变尺度和平移参数,可以得到不同尺度和位置上的小波变换系数。
1.2 离散小波变换(DWT)离散小波变换是连续小波变换的离散化形式。
它使用离散的小波函数对信号进行变换,并通过多级分解和重构来获取信号的时频信息。
其数学模型可以表示为:DWT(x)(n,k) = (1/√N) * ∑x(m)h(n-2m) * W(k-m)其中,x(n)为原始信号,h(n)为低通滤波器,W(k)为小波函数,N为信号的长度。
通过多级分解,可以得到不同尺度和位置上的小波变换系数。
二、小波变换的实现方法小波变换的实现可以通过不同的算法和工具来完成。
以下将介绍两种常用的实现方法。
2.1 基于快速傅里叶变换的实现方法通过将小波函数进行傅里叶变换,可以将小波变换转化为快速傅里叶变换(FFT)的计算问题。
这种方法在计算效率上具有优势,适用于连续小波变换和离散小波变换。
2.2 基于滤波器组的实现方法通过设计一组滤波器,可以实现小波变换的离散化计算。
这种方法适用于离散小波变换,通过多级分解和重构的方式来获取小波变换系数。
结论:小波变换作为一种信号处理方法,具有较好的时频局部性,能够有效地分析信号的时频特性。
本文介绍了小波变换的数学模型及其实现方法,包括连续小波变换和离散小波变换。
第二章连续小波变换13小波母函数(及小波函数)特点:,0)(∫∞∞−=dt t ψ语言描述为:(1)小波具有“小”,具有时、频域紧支集,包络衰减快;(2)小波具有“波动性”,正负交替,与水平轴上下围成的面积相等,直流分量为零;(3)小波具有带通滤波器特性,ψ(t )可理解为一个带通滤波器的冲激响应。
(小波的Fourier 变换是带通),0)0(ˆ=ψ示。
图2-3ω∆2ω∆2/ω∆ωt 0ω02ω2/0ω)(ˆωψa )(ˆωψa )(ˆωψa19母小波可以是实函数,也可以是复函数。
•具有带通特性,即在频域,围绕着中心频率是有限支撑的也将反映在窗口中心频率处的局部性质,从而实现所期望的频率定位功能。
)(ˆ,ωψb a )(ˆ,ωψb aMorlet小波ψ (t ) = e− t 2 / 2 iω0teˆ (ω ) = 2π e− (ω −ω0 ) ψ2/2(a)小波母函数;(b)Fourier变换Morlet小波不存在尺度函数; 快速衰减但非紧支撑. Morlet小波是Gabor 小波的特例。
g (t ) =(σ π )211/ 4e−t2 2σ 2σ = 1,η = 5Gabor 小波 Morlet小波21ψ ( t ) = g ( t ) eiηtMorlet小波morl(x) = exp(-x^2/2) * cos(5x) No Orthogonal, No Biorthogonal,No Compact Support Effective support=[-4 4], SymmetryM orlet W avelet 1 0.8 12 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 2 -0.8 -1 -5 0 -5 6 10 14 FFT of M orlet W avelet84-4-3-2-1012345-4-3-2-1012345Morlet小波是一种复数小波,时频均具有很好的局部性。