7.3 Panel Data 模型
- 格式:ppt
- 大小:976.50 KB
- 文档页数:44
平行数据(Panel Data)模型厦门大学财政系王艺明平行数据(Panel Data)§平行数据是指对不同时刻的横截面个体作连续观测所得到的多维数据。
由于这类数据有着独特的优点,使平行数据模型目前已在计量经济学、社会学等领域有着较为广泛的应用。
§平行数据在EViews中被称为时序与横截面混合数据(pooled time series and cross-section data)。
平行数据模型是一类利用平行数量分析变量间相互关系并预测其变化趋势的计量经济模型。
模型能够同时反映研究对象在时间和横截面单元两个方向上的变化规律及不同时间、不同单元的特性。
Panel Data模型的基本设定§平行数据模型的基本假设:参数齐性假设,即被解释变量y由某一参数的概率分布函数P(y|θ)。
§假定时间序列参数齐性,及参数值不随时间的不同而变化,则平行数据模型可表示为:§yit =αi+βi’xit+εiti=1,…,N; t=1,…,T§xit ’=(x1it,x2it,…,xKit),为外生变量向量,βi’=(β1i ,β2i,…,βKi),为参数向量,K是外生变量个数,T是时期总数§其中参数αi 和βi都是个体时期恒量(individual time-invariant variable),其取值只受到截面单元不同的影响§E(εit )=0; E(εit2)=σi2; E(εitεjt)=σij; E(εitεjt-s)=0Panel Data 模型的基本设定I §根据模型的不同设定通常有三类估计方法§T 较大,N 较小。
通常采用时间序列模型的假设,即T 趋于无穷大,而N 固定、有限。
§该假设下,标准的方法是Zellner 的似无相关回归方法(Zellner Seemingly Unrelated Regression, SUR ),该方法考虑到回归方程间残差的相关性,即E(εit εjt )=σij ,采用GLS 方法估计似无相关回归(SUR)§假设要估计以下方程组§y1t=α1+β1’x1t+u1t§y2t=α2+β2’x2t+u2t§y3t=α3+β3’x3t+u3t§由于各种经济形态中存在的共同事件对不同横截面误差的影响方式类似,所以它们是同期相关的§Cov(u1t ,u2t)=σ12, Cov(u2t,u3t)=σ23,Cov(u1t,u3t)=σ13§这种情况下可采用Zellner(1962)的似无相关回归(SUR)方法进行参数估计似无相关回归(SUR)§其步骤为§1、使用OLS方法分别估计每个方程并求残)差(uit§2、使用残差估计方差和协方差(σ)ij§3、使用第2步中求得的估计值求所有参数的广义最小二乘估计值(FGLS)§在EViews中可以直接进行SUR估计Panel Data 模型的基本设定II §N 较大而T 较小。
1.Panel Data 模型简介Panel Data 即面板数据,是截面数据及时间序列数据综合起来一种数据类型,是截面上个体在不同时点重复观测数据。
相对于一维截面数据和时间序列数据进行经济分析而言,面板数据有很多优点。
(1)由于观测值增多,可以增加自由度并减少了解释变量间共线性,提高了估计量抽样精度。
(2)面板数据建模比单截面数据建模可以获得更多动态信息,可以构建并检验更复杂行为模型。
(3)面板数据可以识别、衡量单使用一维数据模型所不能观测和估计影响,可以从多方面对同一经济现象进行更加全面解释。
Panel Data 模型一般形式为it K k kit kit it it x y μβα++=∑=1其中it y 为被解释变量,it x 为解释变量, i =1,2,3……N ,表示N 个个体;t=1,2,3……T ,表示已知T 个时点。
参数it α表示模型截距项,k 是解释变量个数,kit β是相对应解释变量待估计系数。
随机误差项it μ相互独立,且满足零均值,等方差为2δ假设。
面板数据模型可以构建三种形式(以截面估计为例):形式一: 不变参数模型 i K k ki k i x y μβα++=∑=1,又叫混合回归模型,是指无论从时间上还是截面上观察数据均不存在显著差异,故可以将面板数据混合在一起,采用普通最小二乘估计法(OLS )估计参数即可。
形式二:变截距模型i K k ki k i i x y μβαα+++=∑=1*,*α为每个个体方程共同截距项,i α是不同个体之间异质性差异。
对于不同个体或时期而言,截距项不同而解释变量斜率相同,说明存在不可观测个体异质影响但基本结构是相同,可以通过截距项不同而体现出来个体之间差异。
当i α及i x 相关时,那就说明模型为固定效应模型,当i α及i x 不相关时,说明模型为随机效应模型。
形式三:变参数模型 i K k ki ki i i x y μβαα+++=∑=1* ,对于不同个体或时期而言,截距项(i αα+*)和每个解释变量斜率ki β都是不相同,表明不同个体之间既存在个体异质影响也存在不同结构影响,即每个个体或时期都对应一个互不相同方程。
Panel Data模型的估计过程1.建立工作文件:CREATE A 1994 19992.建立Pool对象:在主菜单上点击Object \ New object,选择Pool,并输入Pool对象名:XF3.输入横截面标志:(为便于区别,标志名前加上_ )4.导入/ 输入数据:(1)在Pool窗口中点击View \ Spreadsheet (stacked data )(2)在序列窗口中输入序列名:cons? (注意Pool序列中统配符?都不可省略)(3)在序列窗口中先点击Edit按钮,进入数据输入/编辑状态(4)输入数据,此时可以手工输入,也可以从Excel表中直接复制-粘贴(这个方式较为方便),也可以从Excel文件导入(但必须先将Excel文件另存为win95格式,否则EViews不能识别);另外,序列窗口的数据顺序初始是按地区(横截面)排列,点击order按钮可以改成按年排列。
5.输入/ 生成其他变量数据:(1)再次点击View \ Spreadsheet (stacked data )(2)在序列窗口中输入新序列名:INC?(3)点击Procs \ Generate Pool Serise,生成新的Pool序列——上期消费CONS1:6.估计Panel Data模型:(1)打开Pool对象XF(2)点击Estimate按钮(3)在Estimation窗口中依次估计不同形式的模型:混合模型:在常系数栏(common coefficients)输入解释变量名cons1? inc?,在截据项栏(intercept)选择常数(common)变截据模型:在常系数栏(common coefficients )输入解释变量名cons1? inc?,在截据项栏(intercept )选择固定效应(fixed effects )变系数模型:在截面单元系数栏(cross section specific coefficients )输入解释变量名cons1? inc?, 在截据项栏(intercept )选择固定效应(fixed effects )7.8. Panel Data 模型的识别:∵ F 2={(1148951-299023) /[(28-1)(2+1)]}/[299023/28*5-28*3]=1.965 而 F 2 = 1.965 > F 0.05(81,56)=1.52 (利用Excel 的FINV 函数计算)∴ 拒绝H 20,模型不是混合回归模型又 ∵ F 1={(643899-299023) /[(28-1)*2]}/[299023/28*5-28*3]=1.196而 F 1 =1.196 < F 0.05(54,56)=1.56∴ 接受H 10,模型是变截据模型,而不是变系数模型,即各地区的边际消费倾向相同,差异只表现在平均水平上。
面板数据模型面板数据模型(Panel Data Model)是一种经济学和统计学中常用的数据分析方法,它允许研究人员在时间和个体维度上分析数据。
该模型结合了截面数据(Cross-sectional Data)和时间序列数据(Time Series Data),能够捕捉到个体间的异质性和时间的动态变化。
面板数据模型的基本假设是个体间存在固定效应(Fixed Effects)和时间效应(Time Effects),即个体特定的不变因素和时间特定的不变因素会对观测数据产生影响。
通过控制这些效应,面板数据模型可以更准确地估计变量之间的关系。
面板数据模型的普通形式可以表示为:Yit = α + βXit + εit其中,Yit表示第i个个体在第t个时间点的观测值,α是截距项,β是自变量Xit的系数,εit是误差项。
面板数据模型可以通过固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)来估计参数。
固定效应模型假设个体间的差异是固定的,即个体特定的不变因素对观测数据产生影响。
该模型通过引入个体固定效应来控制个体间的差异,估计其他变量对因变量的影响。
随机效应模型假设个体间的差异是随机的,即个体特定的不变因素对观测数据不产生影响。
该模型通过引入个体随机效应来控制个体间的差异,估计其他变量对因变量的影响。
面板数据模型的估计方法包括最小二乘法(Ordinary Least Squares, OLS)、固定效应估计法(Fixed Effects Estimation)和随机效应估计法(Random Effects Estimation)。
最小二乘法是一种常用的估计方法,但在面板数据模型中存在一致性问题。
固定效应估计法通过个体间的差异来估计参数,可以解决一致性问题。
随机效应估计法则通过个体间和时间间的差异来估计参数,可以更全面地捕捉到数据的变化。
面板数据模型在经济学和社会科学研究中具有广泛的应用。