MEMS(数字)麦克风基本知识
- 格式:ppt
- 大小:2.00 MB
- 文档页数:14
MEMS麦克风•MEMS(微型机电系统)麦克风是基于MEMS技术制造的麦克风,简单的说就是一个电容器集成在微硅晶片上,可以采用表贴工艺进行制造,能够承受很高的回流焊温度,容易与CMOS 工艺及其它音频电路相集成, 并具有改进的噪声消除性能与良好的RF 及EMI 抑制性能.MEMS麦克风的全部潜能还有待挖掘,但是采用这种技术的产品已经在多种应用中体现出了诸多优势,特别是中高端手机应用中。
目录•MEMS麦克风的发展前景MEMS麦克风的优势•目前,实际使用的大多数麦克风都是ECM(驻极体电容器)麦克风,这种技术已经有几十年的历史。
ECM 的工作原理是利用驻有永久电荷的聚合材料振动膜。
与ECM的聚合材料振动膜相比,MEMS麦克风在不同温度下的性能都十分稳定,其敏感性不会受温度、振动、湿度和时间的影响。
由于耐热性强,MEMS麦克风可承受260℃的高温回流焊,而性能不会有任何变化。
由于组装前后敏感性变化很小,还可以节省制造过程中的音频调试成本。
MEMS麦克风需要ASIC提供的外部偏置,而ECM没有这种偏置。
有效的偏置将使MEMS麦克风在整个操作温度范围内都可保持稳定的声学和电气参数,还支持具有不同敏感性的麦克风设计。
传统ECM的尺寸通常比MEMS麦克风大,并且不能进行SMT(表面贴装技术)操作。
在MEMS麦克风的制造过程中,SMT回流焊简化了制造流程,可以省略一个目前通常以手工方式进行的制造步骤。
在ECM麦克风内,必须添加进行信号处理的电子元件;而在MEMS麦克风中,只需在芯片上添加额外的专用功能即可。
与ECM相比,这种额外功能的优点是使麦克风具有很高的电源抑制比,能够有效抑制电源电压的波动。
另一个优点是,集成在芯片上的宽带RF抑制功能,这一点不仅对手机这样的RF应用尤其重要,而且对所有与手机操作原理类似的设备(如助听器)都非常重要。
MEMS麦克风的小型振动膜还有另一个优点,直径不到1mm的小型薄膜的重量同样轻巧,这意味着,与ECM相比,MEMS麦克风会对由安装在同一PCB上的扬声器引起的PCB 噪声产生更低的振动耦合。
关于麦克风的参数介绍-驻极体麦克风(ECM)和硅麦(MEMS)1、麦克风的分类1.1、动圈式麦克风(Dynamic Micphone)原理:基本构造包含线圈、振膜、永久磁铁三部分。
当声波进⼊麦克风,振膜受到声波的压⼒⽽产⽣振动,与振膜在⼀起的线圈则开始在磁场中移动,根据法拉第的楞次定律,线圈会产⽣感应电流。
特性:动圈式麦克风因含有磁铁和线圈,不够轻便、灵敏度较低、⾼低频响应表现较差;优点是声⾳较柔润,适合⽤来收录⼈声。
应⽤:KTV场所。
1.2、电容式麦克风(Condenser Micphone)原理:根据电容两⽚隔板间距离的改变来产⽣电压变化。
当声波进⼊麦克风,振膜产⽣振动,使得振动膜和基板之间的距离会随着振动⽽改变,于是基板间的电容会变,根据Q=C*V(电容式麦克风中电容极板的电压会维持⼀个定值)得到变化的电荷量Q。
特性:灵敏度⾼,常⽤于⾼质量的录⾳。
应⽤:消费电⼦、录⾳室。
1.3、铝带式麦克风(Ribbon Micphone)原理:在磁铁两极间放⼊通常是铝制的波浪状⾦属箔带,⾦属薄膜受声⾳震动时,因电磁感应⽽产⽣信号。
1.4、碳精麦克风(Carbon Micphone)2、两种常⽤电容式麦克风的对⽐:驻极体电容麦克风(ECM)和微机电麦克风(MEMS Micphone)2.1、驻极体电容麦克风(Electret Condenser Micphone)原理:驻极体麦克风使⽤了可保有永久电荷的驻极体物质,不需要再对电容供电。
(若驻极体麦克风中内置放⼤电路,则需要供电)优点:技术成熟、价格便宜缺点:体积⼤,不⽅便SMT、引线长,造成信号衰减、⽣产⼯序多,⼀致性差、灵敏度不稳定2.2、微机电麦克风(MEMS Micphone)原理:微机电麦克风也称麦克风芯⽚或硅麦克风,硅麦⼀般都集成了前置放⼤器,甚⾄有些硅麦会集成模拟数字转换器,直接输出数字信号,成为数字麦克风。
优点:体积⼩,可SMT、产品稳定性好缺点:价格较⾼备注:⼀般情况下,我们把集成了前置放⼤器或者模拟数字转换器的麦克风称为拾⾳器(pickup)。
mems麦克风幅频曲线公式
摘要:
一、MEMS麦克风简介
1.1 微电子机械系统技术
1.2 MEMS麦克风的优点
1.3 应用领域
二、MEMS麦克风幅频曲线
2.1 定义与重要性
2.2 公式说明
2.3 参数含义
三、MEMS麦克风幅频曲线的应用
3.1 频率响应特性分析
3.2 性能优化
3.3 指导设计和制造
正文:
MEMS麦克风是一种基于微电子机械系统技术制造的麦克风,具有体积小、重量轻、功耗低等特点,广泛应用于各种语音识别、音频处理等领域。
MEMS麦克风的幅频曲线是衡量其性能的重要指标,通过计算和分析幅频曲线,可以了解麦克风的频率响应特性。
MEMS麦克风的幅频曲线公式如下:A(f) = 1 / (1 + (f - f0) / fc)
其中,A(f)表示幅频曲线,f表示频率,f0表示麦克风的谐振频率,fc表
示麦克风的截止频率。
MEMS麦克风幅频曲线的定义与重要性体现在它反映了麦克风在不同频率下的灵敏度变化。
在音频处理领域,幅频曲线可以帮助工程师设计出性能优良的音频系统,同时也可以指导麦克风的设计和制造。
在实际应用中,通过对MEMS麦克风幅频曲线的分析,可以得到麦克风的频率响应特性。
例如,在语音识别领域,麦克风的幅频曲线可以用来判断麦克风在接收语音信号时的灵敏度,进而提高语音识别的准确率。
同时,通过调整幅频曲线的形状,可以实现对麦克风性能的优化,以满足不同应用场景的需求。
总之,MEMS麦克风幅频曲线在麦克风性能分析、优化和设计制造过程中起着关键作用。
详解模拟和数字MEMS麦克风设计区别
详解模拟和数字MEMS麦克风设计区别
模拟和数字麦克风输出信号在设计中显然有不同的考虑因素。
本文要讨论将模拟和数字MEMS麦克风集成进系统设计时的差别和需要考虑的因素。
MEMS麦克风内部细节MEMS麦克风输出并不是直接来自MEMS换能单元。
换能器实质上是一个可变电容,并且具有特别高的兆欧级输出阻抗。
在麦克风封装中,换能器信号先被送往前置放大器,而这个放大器的首要功能是阻抗变换,当麦克风接进音频信号链时将输出阻抗降低到更合适的值。
麦克风的输出电路也是在这个前置放大电路中实现的。
对于模拟MEMS麦克风来说,图1所示的这种电路基本上是一个具有特殊输出阻抗的放大器。
在数字MEMS麦克风中,这个放大器与模数转换器(ADC)集成在一起,以脉冲密度调制(PDM)或I2S格式提供数字输出。
图1:典型的模拟MEMS麦克风框图图2是PDM 输出MEMS麦克风的功能框图,图3是典型的I2S输出数字麦克风。
I2S麦克风包含PDM麦克风中的所有数字电路,还包含抽取滤波器和串口。
图2:典型的PDMMEMS麦克风框图图3:典型的I2SMEMS麦克风框图MEMS麦克风封装在半导体器件中比较独特,因为在封装中有一个洞,用于声学能量抵达换能单元。
在这个封装内部,MEMS麦克风换能器和模拟或数字ASIC绑定在一起,并安装在一个公共的叠层。
MEMS 硅麦克风MEMS 麦克风采用批量化的半导体制作工艺, 具有尺寸小、性能优良、一致性高等特点, 并且易于实现阵列化, 对语音效果实现了较大的提升。
根据制造技术, 麦克风可以分为两种主要类型, 传统的驻极体麦克风和MEMS麦克风。
驻极体麦克风通常由独立的金属部件和聚合物材料制成, 尺寸较大, 不易于集成和大批量生产。
而MEMS 麦克风采用与集成电路工艺兼容的硅微加工技术制成, 尺寸较小, 比较适合集成和大规模量产, 进一步降低了生产成本, 并在性能上也得到了较大的提升.电容式MEMS 麦克风主要由两块平行的导电极板组成(包括固定极板和可动极板), 当可动极板在声波作用下产生振动时, 改变了两极板间的距离, 从而引起电容值的变化。
那么, 通过专用集成电路(Application Specific Integrated Circuit, ASIC)可以将电容的变化转换成电压信号。
从设计的角度来说, MEMS麦克风的灵敏度取决于电学灵敏度和机械灵敏度。
其中, 电学灵敏度与偏置电压和极板面积成正比, 与极板间的距离成反比。
因此, 偏置电压越高, 极板面积越大, MEMS 麦克风的电学灵敏度就越高。
但是, 增大极板面积就意味着增大MEMS 麦克风的尺寸, 提升偏置电压就意味着增加功耗, 而且偏置电压也会受到吸合电压的限制而不能任意增大。
因此, 这就需要在尺寸、功耗、灵敏度之间找到一个平衡点, 在不增加尺寸和功耗的前提下进一步提升MEMS 麦克风的灵敏度。
MEMS 麦克风的机械灵敏度与振膜(可动电极)的刚度成正比, 一般来说, 刚度越小的薄膜在声波作用下产生的形变就越大。
因此, 减小振膜刚度可以获得更高的机械灵敏度, 但是在制作过程中, 刚度较小的振膜极易受到外界的影响产生形变甚至破裂。
而且在静电力的作用下, 振膜与固定极板之间会产生一个吸引力, 导致振膜逐渐向固定极板靠近, 当振膜与固定极板接触时的偏置电压称为吸合电压。